1
|
Qiu Y, Liu Y, Yang L, Yang Z, Wang Z, Wei C. Construction of immobilized functional microflora system and research on mechanism of enhanced degradation of aromatic compounds in coal chemical wastewater. WATER RESEARCH 2025; 283:123876. [PMID: 40412029 DOI: 10.1016/j.watres.2025.123876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/20/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Aiming to address the practical challenges of aromatic compound degradation in the biochemical treatment system of coal chemical wastewater (CCW), this study constructed an immobilized functional microflora system using modified zeolite as a bacterial carrier. The study evaluated the system's continuous efficacy in degrading aromatic compounds and explored the underlying mechanisms of the immobilized microflora system in enhancing degradation. The findings demonstrated that zeolite material modified by calcination at 300 °C exhibited the highest immobilization capacity for the microflora, achieving a microorganism immobilization amount of 0.81 mg/g. Additionally, when the chemical oxygen demand (COD) concentration stabilized at 1250 ± 20 mg/L, COD removal was maintained steadily above 65 %. The removal efficiencies for phenols and polycyclic aromatic hydrocarbons were 76.85 % and 52.52 %, respectively, representing enhancements of 19.17 % and 23.15 % compared to the control group (activated sludge alone). The secretion characteristics of microbial extracellular polymeric substances and the variation in protein secondary structure and hydrogen bonding structure were further analyzed. The results indicated enhanced secretion of the protein and the polysaccharide, an increased α-helix to (β-sheet + random coil) ratio, and stronger intermolecular hydrogen bonding. These findings suggest that the immobilized microflora system improved microbial adaptability to environmental stress. Additionally, increased expression of key enzymes such as Dehydrogenase, Catechol 1,2-dioxygenase, and Catechol 2,3-dioxygenase, alongside enhanced levels of dominant bacteria like Candidatus_Competibacter, Luteococcus and Flavobacterium underscored the critical role of immobilized functional genera in the degradation of aromatic compounds. The results of the study are of great practical significance for the regulation of the operation stability of the biochemical treatment system of CCW and the realization of the completely harmless treatment of CCW.
Collapse
Affiliation(s)
- Yao Qiu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, PR China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Lu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, PR China
| | - Zhuangzhuang Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, PR China
| | - Zhu Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, PR China
| | - Chunxiao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, PR China
| |
Collapse
|
2
|
Ma Y, Shu H, Lu H, Zhou J, Zhao J, Liu F, Liu Y, Lai X, Lin J, Guo Q, Yue S, Huang W. Identification of novel strain Acinetobacter baumannii H1 and its improvement capacity for nutrient removal after coimmobilized on activated carbon and CaCO 3 in real aquaculture wastewater. ENVIRONMENTAL RESEARCH 2025; 279:121809. [PMID: 40355058 DOI: 10.1016/j.envres.2025.121809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/23/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
A new strain H1, Acinetobacter baumannii, exhibited the 96 % nitrogen and 76 % phosphate removal efficiencies in suspension environment after 48 h, and the optimal conditions were obtained at pH of 7-8, temperature of 30 °C, carbon source of succinate, carbon-nitrogen ratio of 10 and phosphorus-nitrogen ratio of 0.2, respectively. The immobilization experiments with activated carbon and CaCO3 were carried out, the optimal formula was 30 g/L CaCO3, 15 g/L activated carbon-bacteria complex, 2 % CaCl2 and a 1:1 embedding agent ratio. The removal efficiency of NH4+-N, total nitrogen, total phosphorus and chemical oxygen demand in immobilized H1 was 288.89 %, 121.87 %, 135.69 % and 667.21 % higher than that by free strain in group With Indigenous Bacteria, respectively. Under the real water environment, the nitrogen concentrations in the immobilization groups were 3-4 times lower than those of the suspension groups, and the abundances of N and P metabolism-associated bacterial communities (Proteobacteria and Patescibacteria) were higher in the immobilization groups. These results provided an approach for the practical application in aquaculture tailwater treatment.
Collapse
Affiliation(s)
- Yonghao Ma
- School of Life Science, Guangzhou University, Guangzhou, 510006, China; Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Hu Shu
- School of Life Science, Guangzhou University, Guangzhou, 510006, China.
| | - Huijie Lu
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jiayi Zhou
- School of Life Science, Guangzhou University, Guangzhou, 510006, China
| | - Jichen Zhao
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Fengkun Liu
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yuting Liu
- School of Life Science, Guangzhou University, Guangzhou, 510006, China
| | - Xunheng Lai
- School of Life Science, Guangzhou University, Guangzhou, 510006, China
| | - Junduo Lin
- School of Life Science, Guangzhou University, Guangzhou, 510006, China
| | - Qiang Guo
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Sha Yue
- School of Life Science, Guangzhou University, Guangzhou, 510006, China
| | - Wen Huang
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
3
|
Shan T, Wang B, Tu W, Huang F, Yang W, Xiang M, Luo X. Adsorption and biodegradation of butyl xanthate in mine water by Pseudomonas sp. immobilized on yak dung biochar. ENVIRONMENTAL RESEARCH 2025; 264:120300. [PMID: 39515552 DOI: 10.1016/j.envres.2024.120300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The butyl xanthate (BX) in mining wastewater poses significant environmental challenges due to its toxicity and persistence. This study aimed to evaluate the effectiveness of Pseudomonas sp. immobilized on yak dung biochar (Ps.@YDBC600) for BX degradation, emphasizing the synergistic effects of biochar adsorption and microbial degradation. BX removal efficiency of free Pseudomonas sp. cells was assessed under various environmental conditions, with optimal degradation observed at 30 °C and an initial pH of 5.0. Yak dung biochar prepared at 600 °C (YDBC600) was selected due to its high surface area, porosity, and favorable adsorption properties, enhancing the immobilization and activity of Pseudomonas sp. The absorption of BX by biochar followed a two-compartment first-order kinetic model and primarily involved hydrogen bonding, hydrophobic interactions, and pore filling. The primary crystalline mineral component of YDBC600 and Ps.@YDBC600 before and after the adsorption and degradation of BX was SiO₂. The Ps.@YDBC600 was shown to significantly enhance BX removal efficiency compared to free Pseudomonas sp. cells or biochar alone. Molecular studies indicated that biochar facilitated BX degradation by providing a stable environment for Pseudomonas sp. and optimizing metabolic resource allocation. The primary by-products, including CS₂, HS-, ROCOS-, ROCSSH and (ROCSS)₂ were effectively minimized (each by-product was reduced more than 80%), reducing secondary pollution. These findings demonstrated the potential of Pseudomonas sp. immobilized on biochar as an effective approach for treating BX-contaminated mining wastewater, offering a sustainable approach to environmental remediation and management.
Collapse
Affiliation(s)
- Tingqian Shan
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China
| | - Bin Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China.
| | - Weiguo Tu
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, Sichuan, 610015, People's Republic of China.
| | - Fuyang Huang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China
| | - Wenguang Yang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China
| | - Mengyang Xiang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China
| | - Xuemei Luo
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, Sichuan, 610015, People's Republic of China
| |
Collapse
|
4
|
Hou L, Hu K, Huang F, Pan Z, Jia X, Liu W, Yao X, Yang Z, Tang P, Li J. Advances in immobilized microbial technology and its application to wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2024; 413:131518. [PMID: 39321941 DOI: 10.1016/j.biortech.2024.131518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
The use of immobilized microbial technology in wastewater treatment has drawn extensive attention due to its advantages of high colony density, rapid reaction speed, and good stability. Immobilization carriers are the core of immobilization technology. This review summarizes the types of immobilization carriers and their advantages and disadvantages, focusing on the potential for utilizing novel immobilization carriers (composite carriers, nanomaterials, metal-organic frameworks (MOFs), and biochar materials) in wastewater applications. The basic principles and technical advantages and disadvantages of novel immobilization methods (layer-by-layer self-assembly (LBL) and electrostatic spinning) are then summarized. Additionally, the research progress and application characteristics of immobilized anaerobic ammonia oxidizing (Anammox) and aerobic denitrifying (AD) bacteria for enhanced wastewater nitrogen removal are discussed. Finally, the current challenges of immobilized microbial technology are discussed, and its future development trends are summarized and prospected. This review provides guidance and theoretical support for the practical engineering application of immobilized microbial technology.
Collapse
Affiliation(s)
- Liangang Hou
- China Construction First Group Construction & Development Co. LTD, Beijing 100102, China
| | - Kaiyao Hu
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China.
| | - Feng Huang
- China Construction First Group Construction & Development Co. LTD, Beijing 100102, China
| | - Zhengwei Pan
- China Construction First Group Construction & Development Co. LTD, Beijing 100102, China
| | - Xiang Jia
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Wanqi Liu
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Xingrong Yao
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Zongyi Yang
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Peng Tang
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
5
|
Jiao T, Zhao C, Zhang M, Han F, Han Y, Zhang S, Zhou W. Recovery of ammonia assimilating microbiome after Cr (VI) shock by bio-accelerators. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123020. [PMID: 39454390 DOI: 10.1016/j.jenvman.2024.123020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/26/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
The pretreatment process is often unable to completely intercept heavy metals in wastewater, facing a huge risk of leakage, increasing the difficulty of treating pollutants in the subsequent biochemical process or even leading to the collapse of the system, and facing the difficulty of inoperability and rehabilitation. Heterotrophic ammonia assimilation has the potential to maintain some stability after heavy metal shock, thanks to its rapid microbial proliferation, robust resistance to high loads, remarkable environmental adaptability, and inherent stability. Bio-accelerators dosing strategies could strengthen the performance recovery ability of traditional bio-system after heavy metal impact. However, no recovery strategies for inhibiting HAA have been reported. Herein, three bio-accelerants, specifically, vitamin A, 6-benzylaminopurine, and α-ketoglutaric acid, were investigated for their potential to restore the HAA system impacted by 20 mg/L Cr (VI). The three bio-accelerants effectively mitigated the toxicity of the HAA system, resulting in a 60.4% increase in NH4+-N removal efficiency within just 6 days with cytokinin. During toxicity remediation, three bio-accelerants facilitated the production of extracellular protein components in soluble microbial products and stimulated the secretion of extracellular polymeric substances. The three bio-accelerants enhanced competition among genera and influenced community assembly processes to regulate community structure and enhance functional gene expression. This study offers a practical approach to enhancing the HAA process and remediating microbial toxicity.
Collapse
Affiliation(s)
- Tong Jiao
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China
| | - Chuanfu Zhao
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China
| | - Mengru Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China
| | - Fei Han
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China
| | - Yufei Han
- Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, PR China
| | - Shuhui Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China.
| |
Collapse
|
6
|
Deng S, An Q, Song J, Yang Y, Huang Z, Feng S, Tang C, Zhao B. Enhancement of Mn 2+, Fe 2+ and NH 4+-N removal by biochar synergistic strains combined with activated sludge in real wastewater treatment. CHEMOSPHERE 2024; 359:142271. [PMID: 38734248 DOI: 10.1016/j.chemosphere.2024.142271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Acinetobacter sp. AL-6 combining with biochar was adapted in activated sludge (AS & co-system) to decontaminate Mn2+, Fe2+ and NH4+-N, and treat activated sludge (AS) for its activity and settling performance improvement. Specifically, the co-system promoted the growth of bacteria in the activated sludge, thus increasing its ability to nitrify and adsorb Mn2+ and Fe2+, resulting in the removal of high concentrations of NH4+-N, Mn2+, Fe2+ and COD in the reactor by 100%, 100%, 100%, and 96.8%, respectively. And the pH of wastewater was increased from 4 to 8.5 by co-system also facilitated the precipitation of Mn2+ and Fe2+. The MLVSS/MLSS ratio increased from 0.64 to 0.95 and SVI30 decreased from 92.54 to 1.54 after the addition of co-system, which indicated that biochar helped to improve the activity and settling performance of activated sludge and prevented it from being damaged by the compound Mn2+ and Fe2+. In addition, biochar promoted the increase of the tyrosine-like protein substance and humic acid-like organic matter in the sludge EPS, thus enhanced the ability of sludge to adsorb Mn2+ and Fe2+. Concretely, compared with AS group, the proteins content and polysaccharides content of the AS & co-system group were increased by 13.14 times and 6.30 times respectively. Further, microbial diversity analysis showed that more resistant bacteria and dominant bacteria Acinetobacter sp. AL-6 in sludge enhanced the nitrification and adsorption of manganese and iron under the promotion of biochar. Pre-eminently, the more effective AS & co-system were applied to the removal of actual electrolytic manganese slag leachate taken from the contaminated site, and the removal of NH4+-N, Mn2+, Fe2+ and COD remained high at 100%, 100%, 71.82% and 94.72%, respectively, revealing advanced value for high engineering applications of AS & co-system.
Collapse
Affiliation(s)
- Shuman Deng
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
| | - Qiang An
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China; The Key Laboratory of Eco-Environment in Three Gorges Reservoir Region, Chongqing University, Chongqing, 400045, PR China.
| | - Jiali Song
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
| | - Yichen Yang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
| | - Zhiruo Huang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
| | - Shuyun Feng
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
| | - Chuanzhu Tang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
| | - Bin Zhao
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China; The Key Laboratory of Eco-Environment in Three Gorges Reservoir Region, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
7
|
Wang Q, Zhang C, Song J, Bamanu B, Zhao Y. Enhancement of bio-promoters on hexavalent chromium inhibited sulfur-driven denitrification: repairing damage, accelerating electron transfer, and reshaping microbial collaboration. BIORESOURCE TECHNOLOGY 2024; 400:130699. [PMID: 38615966 DOI: 10.1016/j.biortech.2024.130699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/13/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Proposing recovery strategies to recover heavy-metal-inhibited sulfur-driven denitrification, as well as disclosing recovery mechanisms, can provide technical support for the stable operation of bio-systems. This study proposed an effective bio-promoter (mediator-promoter composed of L-cysteine, biotin, cytokinin, and anthraquinone-2,6-disulfonate) to recover Cr(VI) inhibited sulfur-driven denitrification, which effectively reduced the recovery time of NO3--N reduction (18-21 cycles) and NO2--N reduction (27-42 cycles) compared with self-recovery. The mediator-promoter repaired microbial damage by promoting intracellular chromium efflux. Moreover, the mediator-promoter reduced the accumulated reactive oxygen species by stimulating the secretion of antioxidant enzymes, reaching equilibrium in the oxidative-antioxidant system. To improve electron transmission, the mediator-promoter restored S2O32- oxidation to provide adequate electron donors and increased electron transfer rate by increasing cytochrome c levels. Mediator-promoter boosted the abundance of Thiobacillus (sulfur-oxidizing bacterium) and Simplicispira (denitrifying bacterium), which were positively correlated, facilitating the rapid denitrification recovery and the long-term stable operation of recovered systems.
Collapse
Affiliation(s)
- Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Chenggong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jinxin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bibek Bamanu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
8
|
Ma L, Chen N, Feng C, Yang Q. Recent advances in enhanced technology of Cr(VI) bioreduction in aqueous condition: A review. CHEMOSPHERE 2024; 351:141176. [PMID: 38211783 DOI: 10.1016/j.chemosphere.2024.141176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/11/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Due to the extensive application of chromate in industry, chromium-contaminated water has emerged as a significant hidden danger that threatens human health and the safety of the ecological environment. The reduction of Cr(VI) to Cr(III) through microbial processes has become one of the most notable methods for remediating water polluted by chromium due to its economic efficiency and environmentally friendly nature. However, several issues persist in its practical application, such as low reduction rates, the need for additional nutrients, and challenges in solid-liquid separation. Therefore, there is a growing focus on seeking enhanced methods for Cr(VI) microbial reduction, which has become a key area of research. This review represents the initial effort to systematically classify and summarize the means of enhancing Cr(VI) microbial reduction. It categorizes the enhancement methods into two main approaches: microbial-based and multi-method combined enhancement, offering detailed explanations for their mechanisms. This research provides both inspiration and theoretical support for the practical implementation of the Cr(VI) microbial reduction method.
Collapse
Affiliation(s)
- Linlin Ma
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China; School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Qing Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
9
|
Dzionek A, Nowak A, Wojcieszyńska D, Potocka I, Smułek W, Guzik U. Decomposition of non-steroidal anti-inflammatory drugs by activated sludge supported by biopreparation in sequencing batch reactor. BIORESOURCE TECHNOLOGY 2024; 395:130328. [PMID: 38242239 DOI: 10.1016/j.biortech.2024.130328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/29/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The presence of non-steroidal anti-inflammatory drugs in wastewater from sewage treatment plants indicates that they are not completely biodegradable. The designed biopreparation based on immobilized bacteria enables the degradation of paracetamol, ibuprofen, naproxen and diclofenac at a rate of 0.50 mg/L*day, 0.14 mg/L*day, 0.16 mg/L*day and 0.04 mg/L*day, respectively. Lower degradation of drugs in the mixture than in monosubstrate systems indicates their additive, antagonistic effect, limiting the degradative capacity of microorganisms. The biopreparation is stable for at least 6 weeks in bioreactor conditions. Biochemical parameters of activated sludge functioning showed increased oxygen demand, which was related to increased ammonia concentration caused by long-term exposure of activated sludge to drugs. Reduced metabolic activity was also observed. The preparation enables decomposing drugs and their metabolites, restoring the activated sludge's functionality. The tested biopreparation can support activated sludge in sewage treatment plants in degrading non-steroidal anti-inflammatory drugs and phenolic compounds.
Collapse
Affiliation(s)
- Anna Dzionek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Agnieszka Nowak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Danuta Wojcieszyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Izabela Potocka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Urszula Guzik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| |
Collapse
|
10
|
Cao G, Gao J, Song J, Jia X, Liu Y, Niu J, Yuan X, Zhao Y. Performance and mechanism of chromium reduction in denitrification biofilm system with different carbon sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167191. [PMID: 37741376 DOI: 10.1016/j.scitotenv.2023.167191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/07/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
In the process of biological reduction of Cr(VI), the type of carbon sources affects the rate and effect of Cr(VI) reduction, but its specific performance and influencing mechanism have not yet been explored. In this study, four denitrification biofilm reactors were operated under four common carbon sources (C6H12O6, CH3COONa, CH3OH, CH3COONa:C6H12O6 1:1) to reveal the impact of carbon sources on Cr(VI) reduction. Through preliminary experimental concentration research, 75 mg/L Cr(VI) was selected as the dosing concentration. In long-term operation, the composite carbon sources of CH3COONa and C6H12O6 demonstrated excellent stability and achieved an impressive Cr(VI) removal efficiency of 99.5 %. The following sequence was C6H12O6, CH3COONa, and CH3OH. Among them, CH3OH was less competitive and the system was severely unbalanced with lowest Cr(VI) reduction efficiency. The toxicity reactions, changes in EPS and its functional groups, and electron transfer revealed the reduction and fixation mechanism of chromium on denitrification biofilm. The changes in microbial communities indicated that microbial communities in composite carbon sources can quickly adapt to the high toxic environment. The proportion of Trichococcus reached 43.6 %, which played an important role in denitrification and Cr(VI) reduction. Meanwhile, the prediction of microbial COG function reflected its excellent metabolic ability and defense mechanism.
Collapse
Affiliation(s)
- Ge Cao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Junzhi Gao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jinxin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xvlong Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xin Yuan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
11
|
Wang Q, Zhao Y, Chen Z, Zhang C, Jia X, Zhao M, Tong Y, Liu Y. Nitrate Bioreduction under Cr(VI) Stress: Crossroads of Denitrification and Dissimilatory Nitrate Reduction to Ammonium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37449976 DOI: 10.1021/acs.est.2c09624] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
This study explored the response of NO3--N bioreduction to Cr(VI) stress, including reduction efficiency and the pathways involved (denitrification and dissimilatory nitrate reduction to ammonium (DNRA)). Different response patterns of NO3--N conversion were proposed under Cr(VI) suppress (0, 0.5, 5, 15, 30, 50, and 80 mg/L) by evaluating Cr(VI) dose dependence, toxicity accumulation, bioelectron behavior, and microbial community structure. Cr(VI) concentrations of >30 mg/L rapidly inhibited NO3--N removal and immediately induced DNRA. However, denitrification completely dominated the NO3--N reduction pathway at Cr(VI) concentrations of <15 mg/L. Therefore, 30 and 80 mg/L Cr(VI) (R4 and R6) were selected to explore the selection of the different NO3--N removal pathways. The pathway of NO3--N reduction at 30 mg/L Cr(VI) exhibited continuous adaptation, wherein the coexistence of denitrification (51.7%) and DNRA (13.6%) was achieved by regulating the distribution of denitrifiers (37.6%) and DNRA bacteria (32.8%). Comparatively, DNRA gradually replaced denitrification at 80 mg/L Cr(VI). The intracellular Cr(III) accumulation in R6 was 6.60-fold greater than in R4, causing more severe oxidant injury and cell death. The activated NO3--N reduction pathway depended on the value of nitrite reductase activity/nitrate reductase activity, with 0.84-1.08 associated with DNRA activation and 1.48-1.57 with DNRA predominance. Although Cr(VI) increased microbial community richness and improved community structure stability, the inhibition or death of nitrogen-reducing microorganisms caused by Cr(VI) decreased NO3--N reduction efficiency.
Collapse
Affiliation(s)
- Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhihui Chen
- China Water Resources Bei Fang Investigation, Design & Research CO.LTD, Tianjin 300222, China
| | - Chenggong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xulong Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Minghao Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
12
|
Mao Q, Bao J, Du J, He T, Zhang Y, Cheng B. Biochar enhanced the stability and microbial metabolic activity of aerobic denitrification system under long-term oxytetracycline stress. BIORESOURCE TECHNOLOGY 2023; 382:129188. [PMID: 37196743 DOI: 10.1016/j.biortech.2023.129188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Reactors were established to study the feasibility of the direct addition of modified biochar to alleviate the long-term stress of oxytetracycline (OTC) on aerobic denitrification (AD) and improve the stability of the system. The results showed that OTC stimulated at μg/L, and inhibited at mg/L. The higher the concentration of OTC, the longer the system was affected. The addition of biochar, without immobilization, improved the tolerance of community, alleviated the irreversible inhibition effect of OTC, and maintained a high denitrification efficiency. Overall, the main mechanisms of AD enhancement by biochar under OTC stress were: enhancing the bacteria metabolic activity, strengthening sludge structure and substrate transport, and improving the community stability and diversity. This study confirmed that direct addition of biochar could effectively alleviate the negative effect of antibiotics on the microorganisms, strengthen the AD, which provided a new idea to broaden the application of AD technology in livestock wastewater.
Collapse
Affiliation(s)
- Qidi Mao
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Jianguo Bao
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China.
| | - Jiangkun Du
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Ting He
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Yi Zhang
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Benai Cheng
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
13
|
Priyadarshanee M, Das S. Bacterial extracellular polymeric substances: Biosynthesis and interaction with environmental pollutants. CHEMOSPHERE 2023; 332:138876. [PMID: 37164199 DOI: 10.1016/j.chemosphere.2023.138876] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/12/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Extracellular polymeric substances (EPS) are highly hydrated matrices produced by bacteria, containing various polymers such as polysaccharides, proteins, lipids, and DNA. Extracellular polymer concentrations, ions, and functional groups provide physical stability to the EPS. Constituents of EPS form the three-dimensional architecture and help acquire nutrition for the bacteria. Structural and functional diversity of the extracellular polymer depends on the specific glycosyltransferases, polymerase and transporter proteins. These enzymes are encoded by specific genes present in operons such as crd, alg, wca, and gum reported in Agrobacterium, Pseudomonas, Enterobacteriaceae, and Xanthomonas. The operons regulate the biosynthesis of extracellular polymers such as curdlan, alginate, colonic acid, and xanthan, respectively. Various functional groups in the EPS, such as carbonyl, hydroxyl, phosphoryl, and amide, provide the sorption site for interaction with environmental pollutants. Hydrophobic interactions and coordinate bonds mainly dominate the binding of EPS with environmental pollutants. EPS binds, emulsifies, and solubilizes the organic compounds, enhancing the degradation process. EPS binds with heavy metals through complexation, surface adsorption, precipitation, and ion exchange mechanisms. The biodegradability efficiency and nontoxicity properties of EPS make it an excellent biopolymer for decontaminating environmental pollutants. This review summarizes an overview of the biosynthetic mechanisms and interaction of the bacterial extracellular polymer with environmental pollutants. Interaction mechanisms of pollutants with EPS and EPS-mediated bioremediation will help develop removal applications. Moreover, understanding the genes responsible for EPS production, and implementation of new genetic methodology can be helpful for the enhanced biosynthesis of EPS to control pollution by sequestrating more environmental pollutants.
Collapse
Affiliation(s)
- Monika Priyadarshanee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
14
|
Zhao Y, Jia X, Wang Q, Wu Y, Jia Z, Zhou X, Ji M. PMo 12 as a redox mediator for bio-reduction of Cr(VI): Promotor or inhibitor? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:159896. [PMID: 36336043 DOI: 10.1016/j.scitotenv.2022.159896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/17/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Slow reduction rate and low reduction ability were the main limitations of bio-reduction of Cr(VI). As an efficient redox mediator, how phosphomolybdic acid (PMo12) affected bio-reduction of Cr(VI) was worthy of exploration. In this study, short-term and long-term effects of PMo12 on Cr(VI) reduction were investigated to reveal the relevant mechanism. After evaluating the short-term effect of PMo12 concentration from 0.05 to 1.00 mM on Cr(VI) bio-reduction, 0.50 mM was found to be optimum by improving Cr(VI) reduction rate by 16.3 % and microbial electron transport system activity (ETSA) by 43.0 % with Cr(VI) reduction efficiency of 100 % in short-term (22 h) batch experiments. By contrast, in long-term (28 days) continuous flow experiments, 0.50 mM PMo12 exhibited serious inhibition on Cr(VI) bio-reduction. The cumulative toxicity of Mo, strong oxidative stress (reactive oxygen species increased by 16.5 %), the inhibition of extracellular polymeric substances production and the reduction of microbial activity were proved to be the main inhibition mechanism. In terms of microbial electron transport system, the main electron carriers including flavin mononucleotide (FMN), nitrate reductase (NAR), nitrite reductase (NIR) were seriously inhibited. BugBase analysis confirmed that the relative abundance of biofilm forming bacteria decreased after PMo12 addition, and the relative abundance of oxidative stress tolerance bacteria continued to increase.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Xvlong Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zichen Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xu Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
15
|
Yu X, Mao C, Wang W, Kulshrestha S, Zhang P, Usman M, Zong S, Hilal MG, Fang Y, Han H, Li X. Reduction of metronidazole in municipal wastewater and protection of activated sludge system using a novel immobilized Aspergillus tabacinus LZ-M. BIORESOURCE TECHNOLOGY 2023; 369:128509. [PMID: 36538960 DOI: 10.1016/j.biortech.2022.128509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Metronidazole (MNZ) accumulation inhibits municipal wastewater treatment bio-systems, and an effective solution to augment anaerobic activated sludge (AAS) is required. This research discovered that Aspergillus tabacinus LZ-M could degrade 77.39% of MNZ at 5 mg/L. MNZ was metabolized into urea, and the enzymes involved in its degradation were aminotransferase, methyltransferase, monooxygenase, and CN cleavage hydrolase. The strain was immobilized in polyurethane foam and used in AAS for the treatment of MNZ-containing municipal wastewater. The results showed that, using immobilized LZ-M, MNZ was completely removed, and the degradation efficiency of wastewater's chemical oxygen demand (COD) was increased from 11.7% to 83.31%. The extracellular polymer and ROS levels indicated that MNZ's toxicity on AAS was reduced. Furthermore, bioaugmentation stabilized its microbial community, and decreased MNZ resistance genes. These observations confirm that the immobilized fungi are effective in protecting AAS against antibiotic contamination in the treatment process of municipal wastewater.
Collapse
Affiliation(s)
- Xuan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Chunlan Mao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Wenxue Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Saurabh Kulshrestha
- School of Biotechnology Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan 173212, Himachal Pradesh, India
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730020, Gansu, China
| | - Muhammad Usman
- State Key Laboratory of Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, Gansu, China
| | - Simin Zong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Mian Gul Hilal
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Yitian Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China.
| |
Collapse
|
16
|
Morán-Valencia M, Nishi K, Akizuki S, Ida J, Cuevas-Rodríguez G, Cervantes-Avilés P. Nitrogen removal from wastewater by an immobilized consortium of microalgae-bacteria in hybrid hydrogels. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:527-538. [PMID: 36789701 DOI: 10.2166/wst.2023.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The high content of nitrogen in wastewater brings some operational, technical, and economical issues in conventional technologies. The aim of this study was to evaluate the nitrogen removal by hybrid hydrogels containing consortium microalgae-nitrifying bacteria in the presence of activated carbon (AC) used as an adsorbent of inhibitory substances. Hybrid hydrogels were synthesized from polyvinyl alcohol (PVA), sodium alginate (SA), biomass (microalgae-nitrifying bacteria), and AC. The hybrid hydrogels were evaluated based on the change in ammonium (NH4), nitrate (NO3), and chemical demand of oxygen (COD) concentrations, nitrification rate, and other parameters during 72 h. Results indicated that NH4 removal was more effective for hydrogels without AC than with AC, without significant differences regarding consortium biomass concentration (5 or 16%), presenting final concentrations of 3.13 and 3.75 mg NH4/L for hydrogels with 5 and 16% of the biomass, respectively. Regarding NO3 production, hydrogels without AC reached concentrations of 25.9 and 39.77 mg NO3/L for 5 and 16% of the biomass, respectively, while treatments with AC ended with 2.17 and 1.37 mg NO3/L. This confirms that hydrogels can carry out the nitrification process and do not need AC to remove potential inhibitors. The best performance was observed for the hydrogel with 5% of biomass without AC with a nitrification rate of 0.43 mg N/g TSS·h.
Collapse
Affiliation(s)
- Marien Morán-Valencia
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, Puebla 72453, Mexico
| | - Kento Nishi
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, 1-236, Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Shinichi Akizuki
- Institute of Plankton Eco-Engineering, Soka University, 1-236, Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Junichi Ida
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, 1-236, Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Germán Cuevas-Rodríguez
- Department of Civil and Environmental Engineering, Engineering Division, University of Guanajuato, Av. Juárez 77, Zona Centro, Guanajuato Gto 36000, Mexico
| | - Pabel Cervantes-Avilés
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, Puebla 72453, Mexico
| |
Collapse
|
17
|
Priya AK, Gnanasekaran L, Dutta K, Rajendran S, Balakrishnan D, Soto-Moscoso M. Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms. CHEMOSPHERE 2022; 307:135957. [PMID: 35985378 DOI: 10.1016/j.chemosphere.2022.135957] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/17/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Globally, ecotoxicologists, environmental biologists, biochemists, pathologists, and other experts are concerned about environmental contamination. Numerous pollutants, such as harmful heavy metals and emerging hazardous chemicals, are pervasive sources of water pollution. Water pollution and sustainable development have several eradication strategies proposed and used. Biosorption is a low-cost, easy-to-use, profitable, and efficient method of removing pollutants from water resources. Microorganisms are effective biosorbents, and their biosorption efficacy varies based on several aspects, such as ambient factors, sorbing materials, and metals to be removed. Microbial culture survival is also important. Biofilm agglomerates play an important function in metal uptake by extracellular polymeric molecules from water resources. This study investigates the occurrence of heavy metals, their removal by biosorption techniques, and the influence of variables such as those indicated above on biosorption performance. Ion exchange, complexation, precipitation, and physical adsorption are all components of biosorption. Between 20 and 35 °C is the optimal temperature range for biosorption efficiency from water resources. Utilizing living microorganisms that interact with the active functional groups found in the water contaminants might increase biosorption efficiency. This article discusses the negative impacts of microorganisms on living things and provides an outline of how they affect the elimination of heavy metals.
Collapse
Affiliation(s)
- A K Priya
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Kingshuk Dutta
- Advanced Polymer Design and Development Research Laboratory (APDDRL), School for Advanced Research in Petrochemicals (SARP), Central Institute of Petrochemicals Engineering and Technology (CIPET), Bengaluru, 562149, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 60210, India
| | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | | |
Collapse
|
18
|
Li B, Jiang Y, Wang Y, Li X, Xia K, Tian M, He X. Activity enhancement and the anammox mechanism under low temperature via PVA-SA and nano Fe 2O 3-PVA-SA entrapped beads. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157306. [PMID: 35839881 DOI: 10.1016/j.scitotenv.2022.157306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic ammonia-oxidizing bacteria (AAOB) have a long growth time and low activity at low temperatures. In suspended systems, sludge is easily lost, which limits the mainstream application of anaerobic ammonia oxidation (anammox).Entrapment provides effective ideas for solving these problems. In this study, polyvinyl‑sodium alginate (PVA-SA) and nano Fe2O3-PVA-SA entrapment beads were prepared to discuss the effectiveness of entrapment enhanced anammox sludge at low temperatures. The differences in the entrapped beads and granules were compared to analyze the strengthening mechanism. The results show that the nitrogen removal performance of granules, PVA-SA and nano Fe2O3-PVA-SA entrapped beads, first decreased and then increased during the cooling and low-temperature operation. Nano Fe2O3-PVA-SA entrapped beads showed the smallest decline and the highest degree of recovery. Reaction metering ratio (△NO2--N/△NH4+-N and △NO3--N/△NH4+-N) showed that entrapment could realize Nitrite oxidizing bacteria (NOB) inhibition and improve the activity of denitrifying bacteria (DNB) to promote the removal of total nitrogen by providing a strict anaerobic environment. The results demonstrate that entrapment is beneficial for maintaining the content of heme c, specifically, nano Fe2O3 can stimulate its production, and is beneficial for alleviating the reduction of hydrazine dehydrogenase (HDH) enzyme activity. The extracellular polymeric substances (EPS) content and analysis showed that entrapment does not change the composition of EPS, and can maintain the EPS content. Nano Fe2O3 can stimulate AAOB to secrete more EPS to maintain sludge stability. From a molecular perspective, entrapment can maintain the expression of functional genes, promote the enrichment of AAOB, thus improving the nitrogen removal performance from the dual perspectives of "quality" and "quantity".
Collapse
Affiliation(s)
- Bolin Li
- Wuhan University of Technology, Wuhan, Hubei 430070, China.
| | - Yuqing Jiang
- Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yue Wang
- Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiang Li
- Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Kai Xia
- Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Mengyuan Tian
- Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiaoman He
- Wuhan University of Technology, Wuhan, Hubei 430070, China
| |
Collapse
|
19
|
Effects of heavy metals on denitrification processes in water treatment: A review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Zhang S, Su J, Ali A, Huang T, Sun Y, Ren Y. Hydrophilic spongy biochar crosslinked with starch and polyvinyl alcohol biocarrier for nitrate, phosphorus, and cadmium removal in low carbon wastewater: Enhanced performance mechanism and detoxification. BIORESOURCE TECHNOLOGY 2022; 362:127875. [PMID: 36049713 DOI: 10.1016/j.biortech.2022.127875] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
This study aims to develop a functional biocarrier with hydrophilic spongy biochar crosslinked with starch and polyvinyl alcohol (WSB/starch-PVA) for simultaneous removal of NO3--N, total phosphorus (TP) and Cd2+ in low carbon wastewater. Results showed that the WSB/starch-PVA bioreactor achieved the maximum NO3--N removal efficiency in subphase 1.2 with 98.07 % (3.64 mg L-1h-1) versus control (75.30 %, 2.81 mg L-1h-1), and removed 54.84 % and 73.97 % of TP and Cd2+. Material characterization suggested that functional groups (related to C, N and O) on biocarrier and biofilm, and biogenic co-precipitation facilitated TP and Cd2+ removal. The WSB made the biocarrier pores larger and regular, and decreased fluorescent soluble microbial products. The predicted metagenome further suggested that central citrate cycle, oxidative phosphorylation of bio-community, and NO3--N removal were enhanced. Functions for microbial induced co-precipitation, Cd2+ transport/efflux, antioxidants, and enhanced biofilm formation favored the NO3--N/TP removal and Cd2+ detoxification.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yi Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
21
|
Zhang H, Shi Y, Ma B, Huang T, Zhang H, Niu L, Liu X, Liu H. Mix-cultured aerobic denitrifying bacteria augmented carbon and nitrogen removal for micro-polluted water: Metabolic activity, coexistence and interactions, and immobilized bacteria for reservoir raw water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156475. [PMID: 35660604 DOI: 10.1016/j.scitotenv.2022.156475] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Less attention has been paid on the oligotrophic water body nitrogen treatment with mix-cultured aerobic denitrifying bacteria (Mix-CADB). In this study, three Mix-CADB communities were screened from the sediments of reservoirs. The nitrate and dissolved organic carbon (DOC) removal efficiencies of Mix-CADB communities were higher than 92 % and 91 %, respectively. Biolog results suggested that Mix-CADB communities displayed excellent carbon source metabolic activity. The nirS gene sequencing indicated that Pseudomonas sp. and Pseudomonas stutzeri accounted for more proportions in the core species of three Mix-CADB communities. The network model revealed that Pseudomonas sp. and Pseudomonas stutzeri mainly drove the total nitrogen and DOC removal of Mix-CADB communities. More importantly, the immobilized Mix-CADB communities could reduce >91 % nitrate in the adjusted reservoir raw water. Overall, this study showed that the three Mix-CADB communities could be regarded as potential candidates for the nitrogen treatment in oligotrophic water body ecosystems.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yinjie Shi
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hui Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
22
|
Li R, Wang B, Niu A, Cheng N, Chen M, Zhang X, Yu Z, Wang S. Application of biochar immobilized microorganisms for pollutants removal from wastewater: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155563. [PMID: 35504384 DOI: 10.1016/j.scitotenv.2022.155563] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/23/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Microbial immobilization technology (MIT) has been rapidly developed and used to remove pollutants from water/wastewater in recent years, owing to its high stability, rapid reaction rate, and high activity. Microbial immobilization carrier with low cost and high removal efficiency is the key of MIT. Biochar is considered to be an efficient carrier for microbial immobilization because of its high porosity and good adsorption effect, which can provide a habitat for microorganisms. The use of biochar immobilized microorganisms to treat different pollutants in wastewater is a promising treatment method. Compared with the other biological treatment technology, biochar immobilized microorganisms can improve microbial abundance, repeated utilization ratio, microbial metabolic capacity, etc. However, current research on this method is still in its infancy. Little attention has been paid to the interaction mechanisms between biochar and microorganisms, and many studies are only carried out in the laboratory. There are still problems such as difficult recovery after use and secondary pollution caused by residual pollutants after biochar adsorption, which need further clarification. To have comprehensive digestion and an in-depth understanding of biochar immobilized microorganisms technology in wastewater treatment, the wastewater treatment methods based on biochar are firstly summarized in this review. Then the mechanisms of immobilized microorganisms were explored, and the applications of biochar immobilized microorganisms in wastewater were systematically reviewed. Finally, suggestions and perspectives for future research and practical application are put forward.
Collapse
Affiliation(s)
- Rui Li
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Bing Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, China.
| | - Aping Niu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ning Cheng
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Miao Chen
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, China
| | - Xueyang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, China
| | - Zebin Yu
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment & Materials, Guangxi University, Nanning, Guangxi 530004, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| |
Collapse
|
23
|
Zhao Y, Wang Q, Yang Z, Jia X, Cabrera J, Ji M. Bio-capture of Cr(VI) in a denitrification system: Electron competition, long-term performance, and microbial community evolution. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128697. [PMID: 35334263 DOI: 10.1016/j.jhazmat.2022.128697] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Chromium is widely applied in industries as an important metal resource, but the discharge of Cr(VI) containing wastewater leads to the loss of chromium resources. This study proposed a bio-capture process of chromium in a denitrification system. The bio-capture potentiality was explored by investigating the electron competition between Cr(VI) and nitrogen compounds reduction, the long-term bio-capture performance, and the microbial community evolution. In the competition utilization of electron donors, both NO3--N and NO2--N took precedence over Cr(VI), and NO2--N reduction was proved to be the rate-limiting step. Under the optimum conditions of 20 mg/L NO3--N and 6 h HRT, 99.95% of 30 mg/L Cr(VI) could be reduced, and 220980 μg Cr/g MLSS was captured by the biofilm, which was fixed in intercellular as Cr(III). Microbiological analysis confirmed that the bio-reduction of Cr(VI) and NO3--N was mediated by synergistic interactions of a series of dominant bacteria, including genera Acidovorax, Thermomonas, and Microbacterium, which contained both the denitrification genes (narG, narZ, nxrA, and nirK) and chromate reduction genes (chrA and chrR). This study proved the feasibility of chromium bio-capture in denitrification systems and provided a new perspective for the Cr(VI) pollution treatment.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhifan Yang
- Tianjin Municipal Engineering Design & Research Institute Co. Ltd., Tianjin 300380, China
| | - Xulong Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jonnathan Cabrera
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
24
|
Gong L, Tong Y, Yang H, Feng S. Simultaneously pollutant removal and S 0 recovery from composite wastewater containing Cr(VI)-S 2- based on biofilm enhancement. BIORESOURCE TECHNOLOGY 2022; 351:127017. [PMID: 35306135 DOI: 10.1016/j.biortech.2022.127017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Bioaugmentation of extracellular polymeric substances-producing bacteria was applied in pollutant removal and S0 recovery from composite wastewater in a mixotrophic denitrification system. In the presence of 200 mg·L-1 S2- and 50 mg·L-1 Cr(VI), the removal efficiencies of chemical oxygen demand, NO3-, S2- and Cr(VI) were 86.38%, 91.82%, 95.75%, and 100.00% respectively, while S0 recovery efficiency reached 79.17%. Increased contents of protein and polysaccharide, especially the high ratio of protein/polysaccharide verified the structural stability of biofilm was promoted by biofilm enhancement. The widespread distribution of bacteria/extracellular polymeric substance (EPS) revealed the more obvious biofilms formation in biofilm-enhanced group. High-throughput sequencing analysis showed that EPS-producing bacteria (Flavobacterium, Thauera, Thiobacillus and Simplicispira) were dominant bacteria in the biofilm-enhanced group. Moreover, by comprehensive considering of redundancy analysis, the colonization of selected bacteria improved the robustness of the reactor and treatment performance to wastewater contained toxic pollutions.
Collapse
Affiliation(s)
- Liangqi Gong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China
| | - Yanjun Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China
| | - Hailin Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China; Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China
| | - Shoushuai Feng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China; Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China.
| |
Collapse
|
25
|
Ren J, Cheng X, Ma H, Ma X. Characteristics of a novel heterotrophic nitrification and aerobic denitrification bacterium and its bioaugmentation performance in a membrane bioreactor. BIORESOURCE TECHNOLOGY 2021; 342:125908. [PMID: 34534943 DOI: 10.1016/j.biortech.2021.125908] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
A novel bacteria with heterotrophic nitrification and aerobic denitrification ability was obtained from a membrane bioreactor (MBR) and identified as Acinetobacter sp. TSH1. The nitrogen removal characteristics, nitrogen balance analysis, kinetic characteristics, and enhanced biological treatment in MBR of the novel isolated strain TSH1 were determined. Results showed that strain TSH1 could remove approximately 96.6% of NH4+-N, 82.9% of NO2--N and 98.7% of NO3--N in 24 h, and the corresponding maximum removal rates were 3.64 mg-N/(L·h), 1.77 mg-N/(L·h) and 3.94 mg-N/(L·h). The nitrogen balance analysis indicated that most of NH4+-N (62.6%) and NO3--N (71.9%) were transformed to gaseous nitrogen. The kinetic experiments showed that strain TSH1 had a high Km of 151.64 mg-NH4+-N/L and 203.25 mg-NO3--N/L. The enhanced biological treatment of synthetic wastewater in MBR showed that the strain TSH1 can significantly improve the nitrogen removal efficiency.
Collapse
Affiliation(s)
- Jilong Ren
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, PR China
| | - Xuewen Cheng
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, PR China; School of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Hongjing Ma
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, PR China; School of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Xiaona Ma
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, PR China; The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China.
| |
Collapse
|
26
|
Ren J, Bai X, Liu Y, Huang X. Simultaneous nitrification and aerobic denitrification by a novel isolated Ochrobactrum anthropi HND19. BIORESOURCE TECHNOLOGY 2021; 340:125582. [PMID: 34332445 DOI: 10.1016/j.biortech.2021.125582] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
The study aimed to isolate a novel strain with heterotrophic nitrification and aerobic denitrification ability and evaluate the nitrogen removal characteristics. Results showed that Ochrobactrum anthropi HND19 could remove approximately 98.6% of NH4+-N (104.3 mg·L-1) and 97.6% of NO3--N (98.6 mg·L-1), and the removal rates achieved 4.28 and 4.01 mg-N/(L·h) by heterotrophic nitrification and aerobic denitrification. The optimal incubate conditions of strain HND19 were 120 rpm (shaking speed), 5 ‰ (salinity), 30 °C (temperature), 7.5 (C/N ratio) with sodium acetate as carbon resource. And the removal efficiency of the total nitrogen (TN) realized 73.4% under the optimal conditions. Functional genes (hao, napA, nirK, norB, and nosZ) involved in the nitrogen removal processes were successfully amplified from strain HND19. These findings indicate that the strain HND19 possesses great application feasibility in treating wastewater with high-intensity nitrogen.
Collapse
Affiliation(s)
- Jilong Ren
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xianyu Bai
- Beijing Enterprise of Technology Service (Guangdong) Co.LTD., Guangzhou 510360, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Wang Q, Zhao Y, Zhai S, Liu D, Zhou X, Wang Y, Cabrera J, Ji M. Application of different redox mediators induced bio-promoters to accelerate the recovery of denitrification and denitrifying functional microorganisms inhibited by transient Cr(VI) shock. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126664. [PMID: 34329097 DOI: 10.1016/j.jhazmat.2021.126664] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The transient hexavalent chromium (Cr(VI)) shock may directly inhibit the denitrification process of municipal wastewater treatment plants (WWTPs), which is difficult to recover in a short time. This study developed four nontoxic bio-promoters (combination of L-cysteine, flavin adenine dinucleotide (FAD), biotin, cytokinin and different redox mediators) to quickly restore the denitrification performance after high-loading Cr(VI) suppressing. After feeding with 100 mg/L of Cr(VI) for 42 cycles (T, 4 h), the removal efficiency of nitrate was reduced by 85.00%, and nitrite was accumulated simultaneously. The denitrification performance was recovered quickly with the addition of bio-promoters, introducing redox mediators showed noticeable superiority on the bio-inhibition release. Compared with sodium humate and riboflavin, the AQDS induced bio-promoter achieved the best nitrate removal recovery performance within only 28 T, and the recovery rate was 2.16 times faster than the natural recovery. Microbial analysis showed that Cr(VI) specially inhibited napA-type denitrifiers, and the OTU numbers sharply dropped by 48.74%. Redox mediators induced bio-promoters could effectively recover the abundance of napA-type and nirS-type denitrifying microorganisms, which was consistent with the change of nitrate removal efficiency. This study offers a cost-effective approach to deal with Cr(VI) shock problem, which may promote the development of bio-promoters for WWTPs.
Collapse
Affiliation(s)
- Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Siyuan Zhai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Duo Liu
- The Ninth Waterworks of Beijing Waterworks Group Co., Ltd, Beijing 100012, China
| | - Xu Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yue Wang
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australian
| | - Jonnathan Cabrera
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
28
|
Feng L, Yang J, Ma F, Xing L, Pi S, Cui D, Li A. Biological stimulation with Fe(III) promotes the growth and aerobic denitrification of Pseudomonas stutzeri T13. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145939. [PMID: 33647667 DOI: 10.1016/j.scitotenv.2021.145939] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/28/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Certain metal ions can contribute to the functional microorganisms becoming dominant by stimulating their metabolism and activity. Therefore, Pseudomonas stutzeri T13 was used to investigate the impacts of biological stimulation with certain metal ions on aerobic denitrifying bacteria. Results showed that with the addition of 0.036 mmol/L Fe3+ ions, the nitrogen-assimilation capacity of P. stutzeri T13 significantly increased by 43.99% when utilizing ammonium as the sole nitrogen source. Kinetic models were applied to analyze the role of Fe3+ ions in the growth, and results indicated that increasing Fe3+ ion concentrations decreased the decay rate. The maximum nitrate reduction rate increased from 9.55 mg-N L-1 h-1 to 19.65 mg-N L-1 h-1 with Fe3+ ion concentrations increasing from 0.004 to 0.036 mmol/L, which was due to the increased level of napA gene transcription and activity of nitrate reductase. This study provides a theoretical foundation for further understanding of the mechanism of Fe3+ ion stimulation of aerobic denitrification, benefiting the practicable application of aerobic denitrifiers.
Collapse
Affiliation(s)
- Liang Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Lulu Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Shanshan Pi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Di Cui
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, People's Republic of China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| |
Collapse
|
29
|
Wang Y, Li B, Li Y, Chen X. Research progress on enhancing the performance of autotrophic nitrogen removal systems using microbial immobilization technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145136. [PMID: 33609842 DOI: 10.1016/j.scitotenv.2021.145136] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
The autotrophic nitrogen removal process has great potential to be applied to the biological removal of nitrogen from wastewater, but its application is hindered by its unstable operation under adverse environmental conditions, such as those presented by low temperatures, high organic matter concentrations, or the presence of toxic substances. Granules and microbial entrapment technology can effectively retain and enrich microbial assemblages in reactors to improve operating efficiency and reactor stability. The carriers can also protect the reactor's internal microorganisms from interference from the external environment. This article critically reviews the existing literature on autotrophic nitrogen removal systems using immobilization technology. We focus our discussion on the natural aggregation process (granulation) and entrapment technology. The selection of carrier materials and entrapment methods are identified and described in detail and the mechanisms through which entrapment technology protects microorganisms are analyzed. This review will provide a better understanding of the mechanisms through which immobilization operates and the prospects for immobilization technology to be applied in autotrophic nitrogen removal systems.
Collapse
Affiliation(s)
- Yue Wang
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Bolin Li
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China.
| | - Ye Li
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiaoguo Chen
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| |
Collapse
|
30
|
Yuan W, Xiao X, Yu X, Xie F, Feng P, Malik K, Wu J, Ye Z, Zhang P, Li X. Probiotic Therapy (BIO-THREE) Mitigates Intestinal Microbial Imbalance and Intestinal Damage Caused by Oxaliplatin. Probiotics Antimicrob Proteins 2021; 14:60-71. [PMID: 33956306 DOI: 10.1007/s12602-021-09795-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 12/17/2022]
Abstract
Gastrointestinal mucositis associated with the use of chemotherapeutic drugs can seriously affect the quality of life of patients. In this study, a probiotic mixture, BIO-THREE, was used to alleviate intestinal damage caused by oxaliplatin in mice and human patients. Kunming mice were injected with 15 mg/kg of oxaliplatin twice, and BIO-THREE tablets were administered to mice for 12 days. Patients with gastric cancer undergoing oxaliplatin treatment took BIO-THREE tablets for 2 weeks. The changes in the composition of fecal microbiota both in patients and mice were analyzed using 16S rRNA high-throughput sequencing. In mice, oxaliplatin caused a drop in body weight and produced lesions in the liver and small intestines. Probiotic therapy successfully mitigated the damage caused by oxaliplatin to the intestinal tract, but it was not very effective for the liver damage and weight loss caused by oxaliplatin. The sequencing of the gut microflora indicated that oxaliplatin treatment increased the abundance of Bacteroidetes and decreased the abundance of Prevotella in mice. After taking probiotics, the feces of mice and human patients both had a higher abundance of Plovitella and a lower abundance of Bacteroides. The increase in Bacteroidetes and decrease in Prevotella in the gut community might be associated with oxaliplatin-induced intestinal damage. Probiotics appeared to be beneficial, decreasing intestinal damage by restoring the abundance of Bacteroidetes and Prevotella.
Collapse
Affiliation(s)
- Wenzhen Yuan
- The First Hospital of Lanzhou University, Donggangxilu #1, Lanzhou, 730000, Gansu, Republic of China
| | - Xingpeng Xiao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, 730000, Gansu, Republic of China
| | - Xuan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, 730000, Gansu, Republic of China.
| | - Fuquan Xie
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, 730000, Gansu, Republic of China
| | - Pengya Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, 730000, Gansu, Republic of China
| | - Kamran Malik
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, 730000, Gansu, Republic of China
| | - Jingyuan Wu
- The First Clinical Medical College of Lanzhou University, Tianshuinanlu #222, Lanzhou, 730000, Gansu, Republic of China
| | - Ze Ye
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, 730000, Gansu, Republic of China
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, 730020, Gansu, Republic of China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, 730000, Gansu, Republic of China.
| |
Collapse
|
31
|
Jiang Y, Huang H, Tian Y, Yu X, Li X. Stochasticity versus determinism: Microbial community assembly patterns under specific conditions in petrochemical activated sludge. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124372. [PMID: 33338810 DOI: 10.1016/j.jhazmat.2020.124372] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
The pattern of microbial community assembly in petrochemical sludge is not well-explained. In this study, three kinds of petrochemical activated sludge (AS) from the same seed sludge were investigated to determine their microbial assembly pattern for long-term adaptation. Beta Nearest Taxon Index analysis revealed that the assembly strategies of the abundant and rare operational taxonomic unit (OTU) sub-communities are different for archaeal and bacterial communities. Abundant OTUs preferred deterministic processes, whereas rare OTUs randomly formed due to weak selection. Canonical correspondence analysis/variation partition analysis and Mantel testing results revealed that ammonium, petroleum, and chromium (Cr (VI)) mainly structured the abundant sub-communities. On the other hand, environmental variables, including ammonium, petroleum, and heavy metals, shaped the rare sub-communities. The PICRUSt2 tool was used to predict the functions. Results indicated a greater abundance of microbes harboring the hydrocarbon degradation pathway and heavy-metal-resistant enzymes. Cross-treatment experiments using one type of AS to treat the other two kinds of wastewater were conducted. The results of the cross-treatment experiments and qPCR both suggest the functional adaptation of the microbial community. We revealed selection strategies for the adaptation of bacteria and archaea in AS during environmental changes, providing a theoretical basis for petrochemical wastewater treatment.
Collapse
Affiliation(s)
- Yiming Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China; Institute of Virology, Helmholtz Center Munich/ Technical University of Munich, Germany
| | - Haiying Huang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China; Institute of Virology, Helmholtz Center Munich/ Technical University of Munich, Germany
| | - Yanrong Tian
- Sewage Disposal Plant, Lanzhou Petrochemical Company, PetroChina, Huanxingdonglu #88, Lanzhou, Gansu 730060, PR China
| | - Xuan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
32
|
Nie H, Nie M, Diwu Z, Wang L, Yan H, Bai X. Immobilization of Rhodococcus qingshengii strain FF on the surface of polyethylene and its adsorption and biodegradation of mimic produced water. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124075. [PMID: 33265063 DOI: 10.1016/j.jhazmat.2020.124075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 09/21/2020] [Indexed: 06/12/2023]
Abstract
Low pH and high salinity characteristic of produced water (PW) posed a big challenge for the direct biological treatment. The immobilization of R. qingshengii strain FF, which degraded petroleum effectively under low pH, and application of immobilized R. qingshengii strain FF in treating mimic PW was studied in this work. The immobilization of R. qingshengii strain FF on the surface of polyethylene foam (PEF), one type of waste packaging materials, was optimized using the response surface methodology. Under optimum conditions, cell density of R. qingshengii strain FF immobilized on the surface of PEF reached 388 mg (cells)/g(PEF). In addition, a few factors, including hydraulic retention time (HRT), pH and salinity, were studied for treating mimic PW using immobilized R. qingshengii strain FF. The result of this study demonstrated that TPH degradation efficiency of PW by immobilized R. qingshengii strain FF reached above 90% when HRT was longer than 8 h. Weak acid and high salinity conditions only moderately decreased TPH. Asphalt, alkanes and aromatic hydrocarbon contained in petroleum can be degraded to some extent. These results indicated that immobilized R. qingshengii strain FF can be used as a highly efficient strain which could be used in biological treatment of real PW.
Collapse
Affiliation(s)
- Hongyun Nie
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province The People's Republic of China; Key Laboratory of Membrane Separation of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province The People's Republic of China
| | - Maiqian Nie
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province The People's Republic of China; Key Laboratory of Membrane Separation of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province The People's Republic of China.
| | - Zhenjun Diwu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province The People's Republic of China; Key Laboratory of Membrane Separation of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province The People's Republic of China.
| | - Lei Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province The People's Republic of China; Key Laboratory of Membrane Separation of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province The People's Republic of China
| | - Han Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province The People's Republic of China
| | - Xuerui Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province The People's Republic of China
| |
Collapse
|
33
|
Deng M, Zhao X, Senbati Y, Song K, He X. Nitrogen removal by heterotrophic nitrifying and aerobic denitrifying bacterium Pseudomonas sp. DM02: Removal performance, mechanism and immobilized application for real aquaculture wastewater treatment. BIORESOURCE TECHNOLOGY 2021; 322:124555. [PMID: 33352391 DOI: 10.1016/j.biortech.2020.124555] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
A bacterial strain was isolated and identified as Pseudomonas sp. DM02 from an aquaculture system. Strain DM02 showed efficient heterotrophic nitrification-aerobic denitrification capability. Total ammonia nitrogen (TAN, 10 mg/L) could be completely removed by strain DM02 within 12 h under low nutrient condition. Nitrogen mass balance indicated that 70.8% of the initial TAN was translated into gaseous nitrogen and 28.1% was converted into intracellular nitrogen. Various carbon sources can be used for nitrate removal (>95% within 28 h). The optimal conditions for TAN, nitrate and nitrite removal were pH 7 with carbon/nitrogen (C/N) ratios of 8, 12 and 12, respectively. The napA, nirK, and nosZ functional genes were successful amplified from strain DM02. Both bioaugmentation and immobilized technology of strain DM02 present ability (>88%) for continuous treatment of real aquaculture wastewater. This research indicated a great potential for practical application of Pseudomonas sp. DM02 in aquaculture wastewater treatment.
Collapse
Affiliation(s)
- Min Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yeerken Senbati
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xugang He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
34
|
Liu X, Zhu H. Treatment of Low C/N Ratio Wastewater by a Carbon Cloth Bipolar Plate Multicompartment Electroenhanced Bioreactor (CBM-EEB). ACS OMEGA 2020; 5:27823-27832. [PMID: 33163765 PMCID: PMC7643109 DOI: 10.1021/acsomega.0c02828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/25/2020] [Indexed: 05/04/2023]
Abstract
The traditional biological denitrification process has the problems of low removal rates and lack of a carbon source when treating wastewater with high ammonia nitrogen concentration and a low carbon-nitrogen ratio. Based on a bio-electrochemical system (BES), a novel carbon cloth bipolar plate multicompartment electroenhanced bioreactor (CBM-EEB) system was constructed. In this study, nitrogen removal efficiency and enrichment of functional bacteria using CBM-EEB under different voltage conditions were investigated. The results from next-generation sequencing indicated that the CBM-EEB included heterotrophic nitrification and aerobic denitrification (HNAD) and was dominated by heterotrophic nitrification aerobic denitrifying bacteria (HNADB). The applied voltage was confirmed as having the ability to regulate the microbial community structure and abundance of functional genes, thereby further enhancing the nitrogen removal efficiency of the system. The total nitrogen removal efficiency was 77.70 ± 1.14, 87.10 ± 0.56, 86.40 ± 0.59, and 89.30 ± 0.53% under applied voltages of 0.4, 0.7, 1.0, and 1.3 V, respectively. All values were significantly higher than the control group (62.86 ± 2.06%). HNADB had the highest abundance among the 17 detected genera related to nitrogen metabolism. Facultative denitrifying bacteria, Pseudoxanthomonas, along with key bacteria of HNADB, such as Flavobacterium, constructed a shortcut simultaneous nitrification-denitrification (SND) process. Poisson analysis and redundancy analysis (RDA) showed that the applied voltage improved the denitrification efficiency by changing the microbial community structure, reducing the abundance of heterotrophic bacteria, and increasing the unit abundance of key functional genes so that less organics were required for the denitrification process. The increased nitrogen removal efficiency in the experimental group was mainly related to simultaneous nitrification-denitrification process and cooperation of microbial communities in the anode and the cathode. This study highlighted the feasibility of CBM-EEB to enhance the HNAD reaction and the response of wastewater with a low C/N ratio to enhance the abundance of microbial bacteria and their functional gene abundance.
Collapse
Affiliation(s)
- Xueyu Liu
- Biomass Energy Research Center, Tongji University, Shanghai 201804, P. R. China
| | - Hongguang Zhu
- Biomass Energy Research Center, Tongji University, Shanghai 201804, P. R. China
| |
Collapse
|