1
|
Ovis-Sánchez JO, Vital-Jácome M, Buitrón G, Cervantes-Avilés P, Carrillo-Reyes J. Antibiotic resistance reduction mechanisms during thermophilic anaerobic digestion of microalgae-bacteria aggregates. BIORESOURCE TECHNOLOGY 2025; 419:132037. [PMID: 39756663 DOI: 10.1016/j.biortech.2025.132037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/07/2025]
Abstract
Microalgae-bacteria-based systems are an emerging and promising approach for wastewater treatment plants (WWTP), having nutrient and antibiotic resistance removal comparable to conventional technologies. Still, antibiotic-resistance genes and bacteria (ARG and ARB) can proliferate in microalga-bacteria aggregates (MABA), a concern to control. Different temperature regimes of MABA continuous anaerobic digestion (AD), thermophilic (55 °C), and mesophilic (35 °C) were evaluated in this study as a strategy to eliminate ARB and ARGs. Plate counting techniques and metagenomic-based analysis revealed that thermophilic temperature had a better performance, achieving ARB log reductions of 1.1 to 1.7 for various antibiotics and significantly reduced ARG abundance up to 19.5 ± 0.8 ppm. The microbiome selection, the mobilome restriction, and directed functionality to thermal stress resistance were the main mechanisms responsible for resistome reduction at thermophilic conditions. Thermophilic AD effectively manages antibiotic resistance in microalgae-bacteria aggregates, which has important implications for wastewater treatment and reduces environmental risks.
Collapse
Affiliation(s)
- Julián O Ovis-Sánchez
- Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro 76230, México
| | - Miguel Vital-Jácome
- Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro 76230, México
| | - Germán Buitrón
- Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro 76230, México
| | - Pabel Cervantes-Avilés
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, 72453 Puebla, México
| | - Julián Carrillo-Reyes
- Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro 76230, México.
| |
Collapse
|
2
|
Raju NP, Ansari A, Patil G, Sheeraz MS, Kukade S, Kumar S, Kapley A, Qureshi A. Antibiotic Resistance Dissemination and Mapping in the Environment Through Surveillance of Wastewater. J Basic Microbiol 2025; 65:e2400330. [PMID: 39676299 DOI: 10.1002/jobm.202400330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/17/2024]
Abstract
Antibiotic resistance is one of the major health threat for humans, animals, and the environment, according to the World Health Organization (WHO) and the Global Antibiotic-Resistance Surveillance System (GLASS). In the last several years, wastewater/sewage has been identified as potential hotspots for the dissemination of antibiotic resistance and transfer of resistance genes. However, systematic approaches for mapping the antibiotic resistance situation in sewage are limited and underdeveloped. The present review has highlighted all possible perspectives by which the dynamics of ARBs/ARGs in the environment may be tracked, quantified and assessed spatio-temporally through surveillance of wastewater. Moreover, application of advanced methods like wastewater metagenomics for determining the community distribution of resistance at large has appeared to be promising. In addition, monitoring wastewater for antibiotic pollution at various levels, may serve as an early warning system and enable policymakers to take timely measures and build infrastructure to mitigate health crises. Thus, by understanding the alarming presence of antibiotic resistance in wastewater, effective action plans may be developed to address this global health challenge and its associated environmental risks.
Collapse
Affiliation(s)
- Neenu P Raju
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Aamir Ansari
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Gandhali Patil
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Mohammed Shahique Sheeraz
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Sushrut Kukade
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Shailendra Kumar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Atya Kapley
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Asifa Qureshi
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| |
Collapse
|
3
|
Zhao K, Yin X, Wang N, Chen N, Jiang Y, Deng L, Xiao W, Zhou K, He Y, Zhao X, Yang Y, Zhang J, Chen A, Wu Z, He L. Optimizing the management of aerobic composting for antibiotic resistance genes elimination: A review of future strategy for livestock manure resource utilization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122766. [PMID: 39369531 DOI: 10.1016/j.jenvman.2024.122766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Aerobic composting technology is an efficient, safe and practical method to reduce the residues of antibiotics and antibiotic resistance genes (ARGs) due to unreasonable disposal of livestock manure. Nowadays, it remains unclear how aerobic composting works to minimize the level of remaining antibiotics and ARGs in manure. Moreover, aerobic composting techniques even have the potential to enhance ARGs level. Therefore, this study conducted a literature review on ARGs variation during the composting process to assess the fate, migration, and risk features of antibiotics and ARGs in different livestock manure and compost. The relationship between ARGs reduction and crucial factors (temperature, heavy metal, and microbial community structures) in the composting process was discussed. The merits and limitations of different technologies used in compost was summarized. The effects on ARGs reduction in the aerobic composting process with various strategies was examined. We attempt to provide a fresh and novel viewpoint on the advancement of global aerobic composting technology.
Collapse
Affiliation(s)
- Keqi Zhao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Xiaowei Yin
- POWERCHINA Zhongnan Engineering Corporation Limited, Changsha, Hunan, 410014, China
| | - Nanyi Wang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Nianqiao Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Youming Jiang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Linyan Deng
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Wenbo Xiao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Kun Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Yong He
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Xichen Zhao
- Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, 410000, Hunan, China; National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Yuan Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China.
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Zhibin Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Liuqin He
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, 410000, Hunan, China.
| |
Collapse
|
4
|
Alfian SD, Azzahra AM, Khoiry QA, Griselda M, Puspitasari IM, Abdulah R. Pharmacists perspectives on challenges and facilitators in initiating medications take-back program in Indonesia: A qualitative study. SAGE Open Med 2024; 12:20503121241290968. [PMID: 39434985 PMCID: PMC11492182 DOI: 10.1177/20503121241290968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
Objective The establishment of a medication take-back program is an important intervention to prevent the improper disposal of expired or unused household medications. However, such a program has not been established in Indonesia. A significant step in establishing the program is to gain a better understanding of pharmacists' perspectives on the associated challenges and facilitators. Therefore, this study aimed to explore pharmacists' perspectives on the associated challenges and facilitators in initiating medications take-back program in Indonesia. Methods This qualitative study was conducted through Key Informant Interviews with a purposive sample of nine pharmacists working in community health centers (CHC) in Bandung City, Indonesia. The discussions were transcribed, coded, and analyzed using Atlas.ti9 software. Results Pharmacists' perspectives on initiating medications take-back program were categorized into two main themes, including challenges and facilitators. The identified challenges comprised a lack of personnel, financial constraints, geographical constraints, lack of facilities, and inadequate knowledge. Meanwhile, the facilitators included the good responsibility of pharmacists, incentives, and convenient locations. Conclusion The identified challenges and facilitators should be considered when initiating medication take-back programs in Indonesia.
Collapse
Affiliation(s)
- Sofa D Alfian
- Faculty of Pharmacy, Department of Pharmacology and Clinical Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Drug Utilization and Pharmacoepidemiology Research Group, Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
- Center for Health Technology Assessment, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Annisa M Azzahra
- Faculty of Pharmacy, Department of Pharmacology and Clinical Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Qisty A Khoiry
- Faculty of Pharmacy, Department of Pharmacology and Clinical Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Meliana Griselda
- Faculty of Pharmacy, Department of Pharmacology and Clinical Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Irma M Puspitasari
- Faculty of Pharmacy, Department of Pharmacology and Clinical Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Drug Utilization and Pharmacoepidemiology Research Group, Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Rizky Abdulah
- Faculty of Pharmacy, Department of Pharmacology and Clinical Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Drug Utilization and Pharmacoepidemiology Research Group, Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
5
|
Alfian SD, Adhinagoro B, Winardi DO, Angela F, Griselda M, Gathera VA, Abdulah R. Pharmacist-led interventions in addressing improper disposal practices of unused and expired household medication: A systematic review. Heliyon 2024; 10:e37764. [PMID: 39315146 PMCID: PMC11417203 DOI: 10.1016/j.heliyon.2024.e37764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Background Improper household medication disposal practices are a source of significant threat to environmental safety and public health. Pharmacists play a crucial role in mitigating these risks by educating the public about proper medication disposal. Evidence regarding the effectiveness of efforts conducted by health professionals to reduce the risks associated with improper disposal practices is still lacking. Therefore, this study aimed to systematically review pharmacist-led interventions in addressing unused and expired household medication disposal. Method A comprehensive literature search was conducted using PubMed, Scopus, and Google Scholar databases to identify studies evaluating pharmacist-led interventions and the effectiveness in improving household medication disposal practices until January 2024 with no constraints on publication year. Two reviewers independently performed the study selection process, data extraction, and outcomes assessment. Subsequently, the entire collected data were extracted and synthesized using qualitative and quantitative methods. Results The results showed that two among the total 83 studies retrieved during the search process met the inclusion criteria. The identified pharmacist-led interventions included the provision of an at-home medication disposal kit and an informational handout on proper disposal. However, these interventions showed no significant effects in improving household medication disposal practices, and all studies reported a low engagement rate with interventions. Conclusion The systematic review identified limited literature on pharmacist-led interventions for unused and expired household medication disposal practices, with no observed significant effects. Active patient and pharmacist engagement were required to enhance the effectiveness of interventions. Furthermore, the included limited studies suggested the need for the development of more pharmacist-led interventions to facilitate the role of pharmacist in educating the public on proper household medication disposal.
Collapse
Affiliation(s)
- Sofa D. Alfian
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Drug Utilization and Pharmacoepidemiology Research Group, Centre of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
- Center for Health Technology Assessment, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Bagus Adhinagoro
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Devani O. Winardi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Fidelia Angela
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Meliana Griselda
- Drug Utilization and Pharmacoepidemiology Research Group, Centre of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Vesara A. Gathera
- Department of Clinical Pharmacy, Universiti Kuala Lumpur, Malaysia
- Department of Biology Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Indonesia
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Drug Utilization and Pharmacoepidemiology Research Group, Centre of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
6
|
Zhang X, Yang G, Jiang Q, Fan J, Wang S, Chen J. Carboxymethyl cellulose-based photothermal film: A sustainable packaging with high barrier and tensile strength for food long-term antibacterial protection. Int J Biol Macromol 2024; 276:133910. [PMID: 39029837 DOI: 10.1016/j.ijbiomac.2024.133910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Traditional packaging materials feed the growing global food protection. However, these packaging materials are not conducive to environment and have not the ability to kill bacteria. Herein, a green and simple strategy is reported for food packaging protection and long-term antibacterial using carboxymethylcellulose-based photothermal film (CMC@CuS NPs/PVA) that consists of carboxymethyl cellulose (CMC) immobilized copper sulfide nanoparticles (CuS NPs) and polyvinyl alcohol (PVA). With satisfied oxygen transmittance (0.03 cc/m2/day) and water vapor transmittance (163.3 g/m2/day), the tensile strength, tear strength and burst strength reached to 3401.2 N/m, 845.7 mN and 363.6 kPa, respectively, which could lift 4.5 L of water. The composite film had excellent photothermal conversion efficiency and photothermal stability. Under the irradiation of near infrared (NIR), it can rapidly heated up to 197 °C within 25 s. The antibacterial analysis showed that the inhibition rate of composite film against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) could all reach >99 %. Furthermore, the synthesized CuS NPs was well immobilized and the residual rate of copper kept 98.7 % after 10 days. Noticeably, the composite film can preserve freshness of strawberries for up to 6 days. Therefore, the composite film has potential application for food antibacterial protection.
Collapse
Affiliation(s)
- Xv Zhang
- Key Lab of Pulp & Paper Science and Technology of Education Ministry of China/State Key Laboratory of Bio-Based Material and Green Papermaking, Qilu University of Technology, Jinan 250353, China
| | - Guihua Yang
- Key Lab of Pulp & Paper Science and Technology of Education Ministry of China/State Key Laboratory of Bio-Based Material and Green Papermaking, Qilu University of Technology, Jinan 250353, China.
| | - Qimeng Jiang
- Key Lab of Pulp & Paper Science and Technology of Education Ministry of China/State Key Laboratory of Bio-Based Material and Green Papermaking, Qilu University of Technology, Jinan 250353, China.
| | - Jiaming Fan
- Key Lab of Pulp & Paper Science and Technology of Education Ministry of China/State Key Laboratory of Bio-Based Material and Green Papermaking, Qilu University of Technology, Jinan 250353, China
| | - Shaoguang Wang
- Asia Symbol (Shan Dong) Pulp and Paper Co., Ltd., Rizhao 276800, China
| | - Jiachuan Chen
- Key Lab of Pulp & Paper Science and Technology of Education Ministry of China/State Key Laboratory of Bio-Based Material and Green Papermaking, Qilu University of Technology, Jinan 250353, China.
| |
Collapse
|
7
|
Zhang X, Ma L, Zhang XX. Neglected risks of enhanced antimicrobial resistance and pathogenicity in anaerobic digestion during transition from thermophilic to mesophilic. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134886. [PMID: 38878435 DOI: 10.1016/j.jhazmat.2024.134886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Minimization of antibiotic resistance genes (ARGs) and potential pathogenic antibiotic-resistant bacteria (PARB) during anaerobic digestion (AD) is significantly impacted by temperature. However, knowledge on how ARGs and PARB respond to temperature transition from thermophilic to mesophilic is limited. Here, we combined metagenomic-based with culture-based approaches and revealed the risks of antimicrobial resistance and pathogenicity during transition from 55 °C to 35 °C for AD, with strategies of sharp (ST, one-step by 20 °C/d) and mild (MT, step-wise by 1 °C/d). Results indicated a lower decrease in methane production with MT (by 38.9%) than ST (by 88.8%). Phenotypic assays characterized a significant propagation of multi-resistant lactose-fermenting Enterobacteriaceae and indicator pathogens after both transitions, especially via ST. Further genomic evidence indicated a significant increase of ARGs (29.4-fold), virulence factor genes (1.8-fold) and PARB (65.3-fold) after ST, while slight enrichment via MT. Bacterial succession and enhanced horizontal transfer mediated by mobile genetic elements promoted ARG propagation in AD during transition, which was synchronously exacerbated through horizontal transfer mechanisms mediated by cellular physiological responses (oxidative stress, membrane permeability, bacterial conjugation and transformation) and co-selection mechanisms of biomethanation metabolic functions (acidogenesis and acetogenesis). This study reveals temperature-dependent resistome and pathogenicity development in AD, facilitating microbial risk control.
Collapse
Affiliation(s)
- Xingxing Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Liping Ma
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai 200062, PR China.
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
8
|
Guo H, Li Z, Sun X, Xing M. Impact of earthworms on suppressing dissemination of antibiotic resistance genes during vermicomposting treatment of excess sludge. BIORESOURCE TECHNOLOGY 2024; 406:130991. [PMID: 38885722 DOI: 10.1016/j.biortech.2024.130991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Earthworms play a crucial role in suppressing the dissemination of antibiotic resistance genes (ARGs) during vermicomposting. However, there is still a lack of how earthworms influence the spread of ARGs. To address this gap, a microcosm experiment was conducted, incorporating earthworms and utilizing metagenomics and quantitative PCR to assess the impact of earthworms on microbial interactions and the removal of plasmid-induced ARGs. The findings revealed that vermicomposting led to a reduction in the relative abundance of ARGs by altering microbial communities and interactions. Significantly, vermicomposting demonstrated an impressive capability, reducing 92% of ARGs donor bacteria and impeding the transmission of 94% of the RP4 plasmid. Furthermore, through structural equation model analysis, it was determined that mobile genetic elements and environmental variables were the primary influencers of ARG reduction. Overall, this study offers a fresh perspective on the effects of vermicomposting and its potential to mitigate the spread of ARGs.
Collapse
Affiliation(s)
- Hongan Guo
- Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhan Li
- Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaojie Sun
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Meiyan Xing
- Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
9
|
Pourrostami Niavol K, Bordoloi A, Suri R. An overview of the occurrence, impact of process parameters, and the fate of antibiotic resistance genes during anaerobic digestion processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41745-41774. [PMID: 38853230 PMCID: PMC11219439 DOI: 10.1007/s11356-024-33844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
Antibiotic resistance genes (ARGs) have emerged as a significant global health threat, contributing to fatalities worldwide. Wastewater treatment plants (WWTPs) and livestock farms serve as primary reservoirs for these genes due to the limited efficacy of existing treatment methods and microbial adaptation to environmental stressors. Anaerobic digestion (AD) stands as a prevalent biological treatment for managing sewage sludge and manure in these settings. Given the agricultural utility of AD digestate as biofertilizers, understanding ARGs' fate within AD processes is essential to devise effective mitigation strategies. However, understanding the impact of various factors on ARGs occurrence, dissemination, and fate remains limited. This review article explores various AD treatment parameters and correlates to various resistance mechanisms and hotspots of ARGs in the environment. It further evaluates the dissemination and occurrence of ARGs in AD feedstocks and provides a comprehensive understanding of the fate of ARGs in AD systems. This review explores the influence of key AD parameters such as feedstock properties, pretreatments, additives, and operational strategies on ARGs. Results show that properties such as high solid content and optimum co-digestion ratios can enhance ARG removal, while the presence of heavy metals, microplastics, and antibiotics could elevate ARG abundance. Also, operational enhancements, such as employing two-stage digestion, have shown promise in improving ARG removal. However, certain pretreatment methods, like thermal hydrolysis, may exhibit a rebounding effect on ARG levels. Overall, this review systematically addresses current challenges and offers future perspectives associated with the fate of ARGs in AD systems.
Collapse
Affiliation(s)
- Kasra Pourrostami Niavol
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Achinta Bordoloi
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Rominder Suri
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
10
|
Alfian SD, Rendrayani F, Khoiry QA, Pratama MA, Griselda M, Pradipta IS, Nursiswati N, Abdulah R. Do pharmacists counsel customers on the disposal of unused or expired household medications? A national survey among 1,596 pharmacists in Indonesia. Saudi Pharm J 2024; 32:102020. [PMID: 38525264 PMCID: PMC10960135 DOI: 10.1016/j.jsps.2024.102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/03/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Pharmacists play a vital role in counseling customers on proper medication disposal, yet their consistency in providing such information is often lacking. This study aimed to assess pharmacists' awareness of appropriate disposal practices for unused and expired household medications. Additional objectives included evaluating whether pharmacists offer disposal information during counseling, measuring their willingness to receive medication waste from the public, and identifying associated factors. Methods A national cross-sectional online survey employing convenience sampling was conducted among pharmacists working in hospitals, pharmacies, clinics, or community health centers (CHCs) in Indonesia, using a validated questionnaire to assess awareness, information provision, and willingness to receive medications for disposal. Binary logistic regression, with 95% confidence intervals (CI) and odds ratios (OR), explored potential associations between factors and outcomes. Results This study involved 1,596 pharmacists across 37 Indonesian provinces. Most pharmacists were women (80.4 %), aged 31-40 years (49.3 %), with a pharmacist professional background (93.8 %), working in CHCs (41.2 %), and practicing for 1-5 years (51.0 %). More than half were unaware of guidelines for returning medications to health facilities. While 69.9 % never counseled customers on disposal practices, 64.9 % expressed willingness to receive unused and expired medication from the public. Pharmacists practicing for at least six years were more likely to provide disposal information during counseling (OR: 2.54; 95 % CI: 1.44-4.47). Conversely, those in clinics (OR: 2.16; 95 % CI: 1.29-3.62), CHCs (OR: 2.07; 95 % CI: 1.45-2.95), or hospitals (OR: 2.00; 95 % CI: 1.27-3.14) were more likely to be unwilling to receive expired and unused household medication. Conclusions The study reveals that most pharmacists, particularly those with limited practice duration, lacked awareness regarding the importance of proper medication disposal and did not provide counseling on appropriate medication disposal to patients. To address this issue, there is a pressing need for intensified education intensified education at the undergraduate level, continuous training for pharmacists, and a clear policy and practical guidelines, particularly targeting pharmacists in clinics, CHCs, and hospitals, to facilitate the acceptance of unused and expired household medications.
Collapse
Affiliation(s)
- Sofa D. Alfian
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Drug Utilization and Pharmacoepidemiology Research Group, Centre of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
- Center for Health Technology Assessment, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Farida Rendrayani
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Qisty A. Khoiry
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Mochammad A.A. Pratama
- Drug Utilization and Pharmacoepidemiology Research Group, Centre of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Meliana Griselda
- Drug Utilization and Pharmacoepidemiology Research Group, Centre of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Ivan Surya Pradipta
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Drug Utilization and Pharmacoepidemiology Research Group, Centre of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| | | | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Drug Utilization and Pharmacoepidemiology Research Group, Centre of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
11
|
Luo Q, Wang H, Lu X, Wang C, Chen R, Cheng J, He T, Fu T. Potential of combined reactor and static composting applications for the removal of heavy metals and antibiotic resistance genes from chicken manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120592. [PMID: 38508009 DOI: 10.1016/j.jenvman.2024.120592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/01/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Chicken manure (CM) can pose a serious threat to environmental and human health, and need to be managed properly. The compost can effectively treat CM. However, there is limited research on the heavy metals and antibiotic resistance genes (ARGs) during compost CM. In this study, the combined application of reactor and static composting (RSC) was used to produce organic fertilizer of CM (OCM), and heavy metals, ARGs and bacterial community structure was investigated. The results show that RSC could be used to produce OCM, and OCM meet the National organic fertilizer standard (NY/T525-2021). Compared to the initial CM, DTPA-Cu, DTPA-Zn, DTPA-Pb, DTPA-Cr, DTPA-Ni and DTPA-As in OCM decreased by 40.83%, 23.73%, 34.27%, 38.62%, 16.26%, and 43.35%, respectively. RSC decreased the relative abundance of ARGs in CM by 84.06%, while the relative abundance of sul1 and ermC increased. In addition, the relative abundance and diversity of ARGs were mainly influenced by the bacterial community, with Actinobacteria, Firmicutes, and Proteobacteria becoming the dominant phyla during composting, and probably being the main carriers and dispersers of most of the ARGs. Network analyses confirmed that Gracilibacillus, Lactobacillus, Nocardiopsis, Mesorhizobium and Salinicoccus were the main potential hosts of ARGs, with the main potential hosts of sul1 and ermC being Mesorhizobium and Salinicoccus. The passivation and physicochemical properties of heavy metals contribute to the removal of ARGs, with sul1 and ermC being affected by the toal heavy metals. Application of RSC allows CM to produce mature, safe organic fertilizer after 32 d and reduces the risk of rebound from ARGs, but the issues of sul1 and ermC gene removal cannot be ignored.
Collapse
Affiliation(s)
- Qu Luo
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China; Guizhou Engineering Laboratory of Mountain Livestock and Poultry Farming Pollution Control and Resource Technology, Institute of New Rural Development, Guizhou University, Guiyang, 550025, China
| | - Hu Wang
- Guizhou Chuyang Ecological Environmental Protection Technology Co., Ltd., Guizhou, 550003, China
| | - Xiaoqing Lu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China; Guizhou Engineering Laboratory of Mountain Livestock and Poultry Farming Pollution Control and Resource Technology, Institute of New Rural Development, Guizhou University, Guiyang, 550025, China
| | - Can Wang
- Lijiang Agricultural Environmental Protection Monitoring Station, Lijiang, Yunnan, 674100, China
| | - Ruiying Chen
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China; Guizhou Engineering Laboratory of Mountain Livestock and Poultry Farming Pollution Control and Resource Technology, Institute of New Rural Development, Guizhou University, Guiyang, 550025, China
| | - Jianbo Cheng
- Guizhou Engineering Laboratory of Mountain Livestock and Poultry Farming Pollution Control and Resource Technology, Institute of New Rural Development, Guizhou University, Guiyang, 550025, China
| | - Tengbing He
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China; Guizhou Engineering Laboratory of Mountain Livestock and Poultry Farming Pollution Control and Resource Technology, Institute of New Rural Development, Guizhou University, Guiyang, 550025, China
| | - Tianling Fu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China; Guizhou Engineering Laboratory of Mountain Livestock and Poultry Farming Pollution Control and Resource Technology, Institute of New Rural Development, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
12
|
Huang B, Lv X, Zheng H, Yu H, Zhang Y, Zhang C, Wang J. Microbial organic fertilizer prepared by co-composting of Trichoderma dregs mitigates dissemination of resistance, virulence genes, and bacterial pathogens in soil and rhizosphere. ENVIRONMENTAL RESEARCH 2024; 241:117718. [PMID: 37995998 DOI: 10.1016/j.envres.2023.117718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
The use of manure, mycelium dregs and other waste as organic fertilizer is the main source of antibiotic resistance genes (ARGs) and pathogens in farmland. Composting of waste may effectively remove ARGs and pathogens. However, the profiles and drivers of changes in metal resistance genes (MRGs), biocide resistance genes (BRGs), and virulence genes (VGs) in soil-crop rhizosphere systems after compost application remain largely unknown. Here, we prepared two kinds of microbial organic fertilizers (MOF) by using Trichoderma dregs (TDs) and organic fertilizer mixing method (MOF1) and TDs co-composting method (MOF2). The effects of different types and doses of MOF on resistance genes, VGs and pathogens in soil-rhizosphere system and their potential mechanisms were studied. The results showed that co-composting of TDs promoted the decomposition of organic carbon and decreased the absolute abundance of ARGs and mobile genetic elements (MGEs) by 53.4-65.0%. MOF1 application significantly increased the abundance and diversity of soil ARGs, BRGs, and VGs, while low and medium doses of MOF2 significantly decreased their abundance and diversity in soil and rhizosphere. Patterns of positive co-occurrence between MGEs and VGs/MRGs/BRGs/ARGs were observed through statistical analysis and gene arrangements. ARGs/MRGs reductions in MOF2 soil were directly driven by weakened horizontal gene transfer triggered by MGEs. Furthermore, MOF2 reduced soil BRGs/VGs levels by shifting bacterial communities (e.g., reduced bacterial host) or improving soil property. Our study provided new insights into the rational use of waste to minimize the spread of resistomes and VGs in soil.
Collapse
Affiliation(s)
- Bin Huang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiaolin Lv
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Haitao Yu
- Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Yu Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Chengsheng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Jie Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
13
|
Ma R, Wang J, Liu Y, Wang G, Yang Y, Liu Y, Kong Y, Lin J, Li Q, Li G, Yuan J. Dynamics of antibiotic resistance genes and bacterial community during pig manure, kitchen waste, and sewage sludge composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118651. [PMID: 37499413 DOI: 10.1016/j.jenvman.2023.118651] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/04/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
Organic solid wastes (OSWs) are important reservoirs for antibiotic resistance genes (ARGs). Aerobic composting transforms OSWs into fertilizers. In this study, we investigated ARGs dynamics and their driving mechanisms in three OSW composts: pig manure (PM), kitchen waste (KC), and sewage sludge (SG). The dominant ARGs were different in each OSW, namely tetracycline, aminoglycoside, and macrolide resistance (PM); tetracyclines and aminoglycosides (KC); and sulfonamides (SG). ARGs abundance decreased in PM (71%) but increased in KC (5.9-fold) and SG (1.3-fold). Interestingly, the ARGs abundance was generally similar in all final composts, which was contributed to the similar bacterial community in final composts. In particular, sulfonamide and β-lactam resistant genes removed (100%) in PM, while sulfonamide in KC (38-fold) and tetracycline in SG (5-fold) increased the most. Additionally, ARGs abundance rebounded during the maturation period in all treatments. Firmicutes, Proteobacteria, and Actinobacteria were the main ARGs hosts. Several persistent and high-risk genes included tetW, aadA, aadE, tetX, strB, tetA, mefA, intl1, and intl2. The structural equation models showed ARGs removal was mainly affected by physicochemical parameters and bacterial communities in PM, the ARGs enrichment in KC composting correlated with increased mobile genetic elements (MGEs). In general, thermophilic aerobic composting can inhibit the vertical gene transfer (VGT) of pig manure and horizontal gene transfer (HGT) of sludge, but it increases the HGT of kitchen waste, resulting in a dramatic increase of ARGs in KC compost. More attention should be paid to the ARGs risk of kitchen waste composting.
Collapse
Affiliation(s)
- Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Jiani Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Yan Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Ying Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Jiacong Lin
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Qinfen Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China.
| |
Collapse
|
14
|
Luo G, Liu M, Zeng J, Huang S, Huang J, Ahmed Z, Yang Y, Lai R, Xu D. Improvement of carbon source composition reduces antibiotic resistance genes in the ectopic fermentation system. BIORESOURCE TECHNOLOGY 2023; 380:129064. [PMID: 37068526 DOI: 10.1016/j.biortech.2023.129064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/14/2023]
Abstract
Effectively reduce antibiotic resistance genes (ARGs) in ectopic fermentation system (EFS) is essential for practical production. In this study, three experiments were performed to explore how to remove ARGs in EFS effectively. Results demonstrated that ARGs were easily enriched in rice-husk-sawdust padding; simultaneous addition of laccase and cellulase suppressed the ARGs, mainly by increasing soluble carbohydrate concentration and promoting humic acid concentration; addition of corn stalks into rice-husk-sawdust decreased the abundance of ARGs by improving the carbon source structure and enhancing cellulase activity. In conclusion, the present study provides a guidance to reduce the threat of ARGs in EFS, which paved a potential pathway to safely utilize manure resources.
Collapse
Affiliation(s)
- Gan Luo
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinjie Zeng
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuntao Huang
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingshu Huang
- Agricultural Development Center of Hubei Province, Wuhan 430064, China
| | - Zulfiqar Ahmed
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaokun Yang
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Renhao Lai
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dequan Xu
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China.
| |
Collapse
|
15
|
Yang J, Xiang J, Xie Y, Yu K, Li P, Yew-Hoong Gin K, He Y. Antibiotic resistome associated with influencing factors in industrial-scale organic waste aerobic composting plants. BIORESOURCE TECHNOLOGY 2023:129354. [PMID: 37336453 DOI: 10.1016/j.biortech.2023.129354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
This study investigated the fate of antibiotic resistance genes (ARGs) and bacterial evolution in six industrial-scale organic wastes aerobic composting plants and identified key factors driving ARGs dynamics. A total of 226 ARGs and 46 mobile genetic elements (MGEs), mainly resistant to aminoglycoside and MLSB, were detected by high-throughput qPCR. Briefly, aerobic composting showed good performance in reducing the diversity and abundance of ARGs, where the total absolute abundance was reduced by 88.34%-97.08% except for cattle manures. Rapid composting may lead to a rebound of ARGs due to long-term storage compared to traditional composting. Hub ARGs and bacterial genera were screened out by co-occurrence patterns. As the dominant phyla in composting, the main potential hosts of ARGs were Firmicutes, Bacteroidota and Proteobacteria. Structural equation model indicated that MGEs and heavy metals were key factors affecting ARGs dynamics. In addition, nutrients and bacterial α-diversity can indirectly influence ARGs by affecting MGEs.
Collapse
Affiliation(s)
- Jun Yang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Jinyi Xiang
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai 200025, China
| | - Yu Xie
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kaifeng Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Peng Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
16
|
Han Z, Shao B, Lei L, Pang R, Wu D, Tai J, Xie B, Su Y. The role of pretreatments in handling antibiotic resistance genes in anaerobic sludge digestion - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161799. [PMID: 36709893 DOI: 10.1016/j.scitotenv.2023.161799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Sludge is among the most important reservoirs of antibiotic resistance genes (ARGs), which would cause potential environmental risks with the sludge utilization. Currently, anaerobic digestion (AD) is effective to simultaneously realize the resource recovery and pollutants removal, including antibiotic resistance genes (ARGs), and various pretreatments are used to enhance the performance. Recently, plentiful publications have focused on the effects of pretreatment on ARGs removal, but the contradictory results are often obtained, and a comprehensive understanding of the research progress and mechanisms is essential. This study summarizes various pretreatment techniques for improving AD efficiency and ARGs reduction, investigates promising performance in ARGs removal when pretreatments combined with AD, and analyzes the potential mechanisms accounting for ARGs fates. The results showed that although thermal hydrolysis pretreatment showed the best performance in ARGs reduction during the pretreatment process, the significant rebound of ARGs would occur in the subsequent AD process. Conversely, ozone pretreatment and alkali pretreatment had no significant effect on ARGs abundance in the pretreatment stage, but could enhance ARGs removal by 15.6-24.3 % in the subsequent AD. Considering the efficiency and economic effectiveness, free nitrous acid pretreatment would be a promising and feasible option, which could enhance methane yield and ARGs removal by up to 27 % and 74.5 %, respectively. Currently, the factors determining ARGs fates during pretreatment and AD processes included the shift of microbial community, mobile genetic elements (MGEs), and environmental factors. A comprehensive understanding of the relationship between the fate of ARGs and pretreatment technologies could be helpful for systematically evaluating various pretreatments and facilitating the development of emerging and effective pretreatment techniques. Moreover, given the effectiveness, economic efficiency and environmental safety, we called for the applications of modern analysis approaches such as metagenomic and machine learning on the optimization of pretreatment conditions and revealing underlying mechanisms.
Collapse
Affiliation(s)
- Zhibang Han
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Boqun Shao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lang Lei
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Ruirui Pang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jun Tai
- Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd., Shanghai 200232, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China.
| |
Collapse
|
17
|
Sun W, Qian X, Wang X, Gu J. Residual enrofloxacin in cattle manure increased persistence and dissemination risk of antibiotic resistance genes during anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116864. [PMID: 36436244 DOI: 10.1016/j.jenvman.2022.116864] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/02/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic digestion is a common approach to dispose and recycle livestock manures, and the agricultural application of anaerobic digestives represents an important pathway of spreading antibiotic resistance genes (ARGs) from livestock manures to soils. Enrofloxacin is a clinically important fluoroquinolone antibiotic with high residual concentrations in livestock manure, and propagation of fluoroquinolone resistance genes poses a huge risk to public health. Compared with other antibiotics, enrofloxacin is relatively durable in anaerobic digestion system. However, its effect on the persistence of ARGs during anaerobic digestion and its mechanism are not clear. In this study, we investigated effects of 0, 4, and 8 mg/L enrofloxacin on the abundance, persistence, and transferring risk of five plasmid-mediated fluroquinolone ARGs and five typic clinically important non-fluoroquinolone ARGs during cattle manure digestion. The responses of integrons and microbial communities to enrofloxacin were assessed to uncover the underlying mechanisms. All the ten detected ARGs were highly persistent in anaerobic digestion, among them seven ARGs increased over 8.2 times after digestion. Network analysis revealed that the potential hosts of ARGs were critical functional taxa during anaerobic digestion, which can explain the high persistence of ARGs. Residual enrofloxacin significantly increased the abundance of aac(6')-ib-cr, sul1, intI1, and intI2 throughout the digestion, but had no impact on the other ARGs, demonstrating its role in facilitating horizontal gene transfer of the plasmid-mediated aac(6')-ib-cr. The influence of enrofloxacin on microbial communities disappeared at the end of digestion, but the ARG profiles remained distinctive between the enrofloxacin treatments and the control, suggesting the high persistence of enrofloxacin induced ARGs. Our results suggested the high persistence of ARGs in anaerobic digestion system, and highlighted the role of residual enrofloxacin in livestock manure in increasing dissemination risk of fluroquinolone resistance genes.
Collapse
Affiliation(s)
- Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Interdisciplinary Research Center for Soil Microbial Ecology and Land Sustainable Productivity in Dry Areas, Yangling, Northwest A&F University, Shaanxi 712100, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Interdisciplinary Research Center for Soil Microbial Ecology and Land Sustainable Productivity in Dry Areas, Yangling, Northwest A&F University, Shaanxi 712100, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Interdisciplinary Research Center for Soil Microbial Ecology and Land Sustainable Productivity in Dry Areas, Yangling, Northwest A&F University, Shaanxi 712100, China.
| |
Collapse
|
18
|
Gaur VK, Sirohi R, Bhat MI, Gautam K, Sharma P, Srivastava JK, Pandey A. A review on the effect of micro- and nano-plastics pollution on the emergence of antimicrobial resistance. CHEMOSPHERE 2023; 311:136877. [PMID: 36257395 DOI: 10.1016/j.chemosphere.2022.136877] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The recent upsurge in the studies on micro/nano plastics and antimicrobial resistance genes has proven their deleterious effects on the environmental and human health. Till-date, there is a scarcity of studies on the interactions of these two factors and their combined influence. The interaction of microplastics has led to the formation of new plastics namely plastiglomerates, pyroplastics. and anthropoquinas. It has long been ignored that the occurrence of microplastics has become a breeding ground for the emergence of antimicrobial resistance genes. Evidently microplastics are also associated with the occurrence of other pollutants such as polyaromatic hydrocarbons and pesticides. The increased use of antibiotics (after Covid breakout) has further elevated the detrimental effects on human health. Therefore, this study highlights the relation of microplastics with antibiotic resistance generation. The factors such as uncontrolled use of antibiotics and negligent plastic consumption has been evaluated. Furthermore, the future research prospective was provided that can be helpful in correctly identifying the seriousness of the environmental occurrence of these pollutants.
Collapse
Affiliation(s)
- Vivek Kumar Gaur
- Centre for Energy and Environmental Sustainability, Lucknow, 226 029, India; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India; School of Energy and Chemical Engineering, Ulsan National Institute for Science and Technology, Ulsan, 44919, Republic of Korea
| | - Ranjna Sirohi
- Department of Food Technology, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, 248 007, Uttarakhand, India
| | - Mohd Ishfaq Bhat
- Department of Post-Harvest Process and Food Engineering, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, India
| | - Krishna Gautam
- Centre for Energy and Environmental Sustainability, Lucknow, 226 029, India
| | - Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | | | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow, 226 029, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India.
| |
Collapse
|
19
|
Zhu P, Wu Y, Ru Y, Hou Y, San KW, Yu X, Guo W. Industrial-scale aerobic composting of livestock manures with the addition of biochar: Variation of bacterial community and antibiotic resistance genes caused by various composting stages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120270. [PMID: 36162559 DOI: 10.1016/j.envpol.2022.120270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/04/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The presence of large amounts of antibiotic resistance genes (ARGs) in livestock manures poses an impending, tough safety risk to ecosystems. To investigate more comprehensively the mechanisms of ARGs removal from industrial-scale composting of livestock manure based on biochar addition, we tracked the dynamics of bacterial community and ARGs at various stages of aerobic composting of livestock manures with 10% biochar. There were no significant effects of biochar on the bacterial community and the profiles of ARGs. During aerobic composting, the relative abundance of ARGs and mobile genetic elements (MGEs) showed overall trends of decreasing and then increasing. The key factor driving the dynamics of ARGs was bacterial community composition, and the potential hosts of ARGs were Caldicoprobacter, Tepidimicrobium, Ignatzschineria, Pseudogracilibacillus, Actinomadura, Flavobacterium and Planifilum. The retention of the thermophilic bacteria and the repopulation of the initial bacteria were the dominant reasons for the increase in ARGs at maturation stage. Additionally, among the MGEs, the relative abundance of transposon gene was substantially removed, while the integron genes remained at high relative abundance. Our results highlighted that the suitability of biochar addition to industrial-scale aerobic composting needs to be further explored and that effective measures are needed to prevent the increase of ARGs content on maturation stage.
Collapse
Affiliation(s)
- Pengcheng Zhu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Yuxin Wu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Yuning Ru
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Yihang Hou
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Kim Woon San
- Tounong Organic Fertilizer Co. Ltd., Qingdao, 266733, PR China
| | - Xiaona Yu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Weihua Guo
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
20
|
Zhao S, Chang Y, Liu J, Sangeetha T, Feng Y, Liu D, Xu C. Removal of antibiotic resistance genes and mobile genetic elements in a three-stage pig manure management system: The implications of microbial community structure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116185. [PMID: 36088762 DOI: 10.1016/j.jenvman.2022.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
In this work, the removal of antibiotic resistance genes (ARGs) in the industrial-scale pig manure management system has been investigated. Additionally, the implications of mobile genetic elements (MGEs) and microbial community structure have been discussed. During the whole period of manure management, 19 ARGs and 7 MGEs were obtained from the system. The results identified that the 9 ARGs and 2 MGEs were removed from the pig manure-based materials after composting, while 5 ARGs and 2 MGEs were still remained, indicating that the ARGs/MGEs could not be removed completely as contaminants by composting. The pig farm without additional antibiotics in-feed was still faced with the risk of ARGs/MGEs from outside. Microbial community analysis illuminated that a greater decrease in the abundance of norank_f__JG30-KF-CM45, Corynebacterium, Terrisporobacter, Truepera, Salinispora and Clostridium, was responsible for the removal of ARGs/MGEs. The genes, including tnpA-01, tnpA-02, tnpA-05, Tp614, tetQ, tetM-01, tetR-02, tetX, cfxA, floR, dfrA1 and ermF exhibited significantly positive correlation with fungal communities. Fungal community analysis verified that a remarkable decrease in the abundance of Aspergillus and Thermomyces after composting was responsible for the ARGs/MGEs removal. The results elucidated the crucial roles of the related bacterial and fungal communities in the removal of ARGs/MGEs. The compound microbial agent assisted the temperature rise of composting, thereby changing the related microbial community structure and resulting in ARGs/MGEs removal.
Collapse
Affiliation(s)
- Shuai Zhao
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yang Chang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jia Liu
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, School of Geography and Tourism, Harbin University, Harbin, 150086, China
| | - Thangavel Sangeetha
- Research Centre of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, National Taipei University of Technology, Taipei, 10608, Taiwan; Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Yanzhong Feng
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Chunzhu Xu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
21
|
Cai L, Guo HT, Zheng GD, Wang XY, Wang K. Metagenomic analysis reveals the microbial degradation mechanism during kitchen waste biodrying. CHEMOSPHERE 2022; 307:135862. [PMID: 35944670 DOI: 10.1016/j.chemosphere.2022.135862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/14/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Biodrying is a treatment to remove moisture using bio-heat generated during organic degradation. Organic matter degradation and microbial metabolism were studied during the whole kitchen waste biodrying, using metagenomic analysis. After the 25-day biodrying process, carbohydrate, protein and lipid contents decreased by 83.7%, 27.8% and 79.3%, respectively, and their degradation efficiencies increased after the thermophilic phase. Lipase activity exceeded 10 mmol d-1 g-1 throughout biodrying. Cellulase and lipase activities recovered by 2.21% and 5.77%, respectively, after the thermophilic phase, while the protease activity had a maximum increment of 347%. Metabolic analysis revealed that carbohydrate, amino acid and lipid metabolism was possibly inhibited by the high temperature, but the relative abundances of related predicted functions recovered by more than 0.9%, 7% and 11%, respectively, by the end of biodrying. Protein function prediction suggests that β-oxidation, fatty acid biosynthesis, and the degradation of cellulose and chitin were possibly enhanced during the thermophilic phase. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that leucine, isoleucine and lysine could ultimately degraded to acetyl-CoA. Weissella, Aeribacillus and Bacillus were the genera with the most enriched functional genes during the whole biodrying process. These findings help elucidate the microbial degradation processes during biodrying, which provides further scientific support for improving the application of biodrying products.
Collapse
Affiliation(s)
- Lu Cai
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, China
| | - Han-Tong Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guo-Di Zheng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xin-Yu Wang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, China
| | - Kan Wang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
22
|
Zhang X, Zhang X, Cui H, Zhao R, Zhao M, Wei Z. Characteristics of oxytetracycline stress-sensitive microbe-dissolved organic matter component interactions during composting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119975. [PMID: 35988676 DOI: 10.1016/j.envpol.2022.119975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Dissolved organic matter (DOM) has important impacts on the transportation of antibiotics through chemical and biological processes in composting. The interaction between DOM and antibiotics is reciprocal. The interaction between DOM ligands and antibiotics could be characterized based on a technique combining parallel factor analysis (PARAFAC) and microbial community structure analysis. However, PARAFAC cannot reveal the dynamic changes in each DOM peak in one PARAFAC component under antibiotic stress. In this study, two-dimensional correlation spectroscopy (2DCOS) combined with PARAFAC and bacterial community diversity analyses were employed to reveal the effects of oxytetracycline (OTC) stress and the key microorganisms on the transformation of different fluorescent peaks from DOM PARAFAC components during chicken manure composting. The results showed that OTC inhibits the transformation between DOM PARAFAC components by inhibiting the core microbial activities involved in the transformation of DOM components. Protein-like components (C1 and C2) were more sensitive to OTC residue, and components with a high humification degree promoted the degradation of OTC. The interaction between special DOM PARAFAC components and certain bacteria affects the degradation of OTC. The DOM PARAFAC components A2(C1), B1(C2), B2(C2) and Z1(C4) enhanced OTC degradation by stimulating the genera Pseudomonas, Glycomyces and Hyphomicrobium. With these promising results, the true effect of DOM PARAFAC components on the degradation of OTC can be revealed, which is helpful for addressing antibiotic contamination to improve the bioavailability of compost products.
Collapse
Affiliation(s)
- Xu Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xinlin Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Ran Zhao
- Environmental Monitoring Center of Heilongjiang Province, Harbin, 150056, China
| | - Meiyang Zhao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
23
|
Mpelane S, Mketo N, Mlambo M, Bingwa N, Nomngongo PN. One-Step Synthesis of a Mn-Doped Fe 2O 3/GO Core-Shell Nanocomposite and Its Application for the Adsorption of Levofloxacin in Aqueous Solution. ACS OMEGA 2022; 7:23302-23314. [PMID: 35847327 PMCID: PMC9281305 DOI: 10.1021/acsomega.2c01460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This study describes for the first time the synthesis, characterization, and application of a MnFe2O3/GO core-shell nanocomposite as an adsorbent for the removal of levofloxacin (Lev) from real water samples. The formation of the proposed nanocomposite was confirmed using various characterization techniques. The structural techniques revealed a 20 nm average particle size of the MnFe2O3/GO core-shell nanocomposite, with a surface area of 70.7 m2 g-1, as shown by the BET results. The most influential parameters (adsorbent dosage, stirring rate, and Lev pH) that affected the adsorption process were optimized using the response surface methodology (RSM) based on a central composite design. The optimum conditions were 0.007 g, 2, and 7 for adsorbent dosage, stirring rate, and Lev pH, respectively. The adsorption behavior of Lev on the MnFe2O3/GO core-shell nanocomposite was examined using isotherm models, kinetics, and thermodynamics. The kinetic models demonstrated that the adsorption process was controlled by both intraparticle and outer diffusion. Furthermore, the results obtained revealed that the adsorption of Lev on MnFe2O3/GO was dominated by electrostatic interactions. Moreover, Dubinin-Radushkevich and Temkin isotherms confirmed that the sorption mechanism was dominated by electrostatic interactions, while Langmuir and Sips models confirmed a monolayer adsorption process. The maximum adsorption capacity of Lev onto the MnFe2O3/GO adsorbent was found to be 129.9 mg g-1. Furthermore, the thermodynamic data revealed that the adsorption system was spontaneous and exothermic. The synthesized MnFe2O3/GO core-shell nanocomposite showed significant recyclability and regenerability properties up to five adsorption-desorption cycles. As a proof of concept, the performance of the prepared adsorbent was evaluated for laboratory-scale purification of spiked real water samples. The prepared adsorbent significantly reduced the concentration of Lev in the real water samples and the removal efficiency ranged from 86 to 97%.
Collapse
Affiliation(s)
- Siyasanga Mpelane
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa
- Analytical
Facility, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
- Department
of Science and Innovation (DSI)/National Research Foundation (NRF)
South African Research Chair Initiative (SARChI): Nanotechnology for
Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Nomvano Mketo
- Department
of Chemistry, College of Science and Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg 1710, South Africa
| | - Mbuso Mlambo
- Institute
for Nanotechnology and Water Sustainability, Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg 1710, South
Africa
| | - Ndzondelelo Bingwa
- Department
of Chemical Sciences, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
- Centre
for Synthesis and Catalysis, University
of Johannesburg, P.O. Box 524, Auckland Park 2006, South
Africa
| | - Philiswa N. Nomngongo
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa
- Department
of Science and Innovation (DSI)/National Research Foundation (NRF)
South African Research Chair Initiative (SARChI): Nanotechnology for
Water, University of Johannesburg, Doornfontein 2028, South Africa
- Centre
for Synthesis and Catalysis, University
of Johannesburg, P.O. Box 524, Auckland Park 2006, South
Africa
| |
Collapse
|
24
|
Haffiez N, Chung TH, Zakaria BS, Shahidi M, Mezbahuddin S, Hai FI, Dhar BR. A critical review of process parameters influencing the fate of antibiotic resistance genes in the anaerobic digestion of organic waste. BIORESOURCE TECHNOLOGY 2022; 354:127189. [PMID: 35439559 DOI: 10.1016/j.biortech.2022.127189] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
The overuse and inappropriate disposal of antibiotics raised severe public health risks worldwide. Specifically, the incomplete antibiotics metabolism in human and animal bodies contributes to the significant release of antibiotics into the natural ecosystems and the proliferation of antibiotic-resistant bacteria carrying antibiotic-resistant genes. Moreover, the organic feedstocks used for anaerobic digestion are often highly-rich in residual antibiotics and antibiotic-resistant genes. Hence, understanding their fate during anaerobic digestion has become a significant research focus recently. Previous studies demonstrated that various process parameters could considerably influence the propagation of the antibiotic-resistant genes during anaerobic digestion and their transmission via land application of digestate. This review article scrutinizes the influences of process parameters on antibiotic-resistant genes propagation in anaerobic digestion and the inherent fundamentals behind their effects. Based on the literature review, critical research gaps and challenges are summarized to guide the prospects for future studies.
Collapse
Affiliation(s)
- Nervana Haffiez
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Tae Hyun Chung
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Manjila Shahidi
- 4S Analytics & Modelling Ltd., Edmonton, AB, T6W 3V6, Canada
| | | | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
25
|
Cui G, Fu X, Bhat SA, Tian W, Lei X, Wei Y, Li F. Temperature impacts fate of antibiotic resistance genes during vermicomposting of domestic excess activated sludge. ENVIRONMENTAL RESEARCH 2022; 207:112654. [PMID: 34990606 DOI: 10.1016/j.envres.2021.112654] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/29/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Effect of temperature on antibiotic resistance genes (ARGs) during vermicomposting of domestic excess sludge remains poorly understood. Vermicomposting experiment with excess sludge was conducted at three different temperatures (15 °C, 20 °C, and 25 °C) to investigate the fate of ARGs, bacterial community and their relationship in the process. The vermicomposting at 25 °C did not significantly attenuate the targeted ARGs relative to that at 15 °C and 20 °C. The dynamics of qnrA, qnrS, and tetM genes during vermicomposting at 15 °C and 20 °C followed the first-order kinetic model. Temperature remarkably impacted bacterial diversity of the final products with the lowest Shannon index at 25 °C. The presence of the genus (Aeromonas and Chitinophagaceae) at 25 °C may contribute to the rebound of the genes (qnrA, qnrS and tetM). The study indicates that 20 °C is a suitable vermicomposting temperature to simultaneously reach the highest removal efficiency of the ARGs and the good biostability of the final product.
Collapse
Affiliation(s)
- Guangyu Cui
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai, 200092, China; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Xiaoyong Fu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Sartaj Ahmad Bhat
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; Waste Reprocessing Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, Maharashtra 440020, India
| | - Weiping Tian
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Xuyang Lei
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Xingtai, 054000, China
| | - Yongfen Wei
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Fusheng Li
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
26
|
Zhao C, Xin L, Xu X, Qin Y, Wu W. Dynamics of antibiotics and antibiotic resistance genes in four types of kitchen waste composting processes. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127526. [PMID: 34736188 DOI: 10.1016/j.jhazmat.2021.127526] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/18/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Kitchen waste might be a potential source of antibiotics and antibiotic resistance genes. Composting is recognized as an effective way for kitchen waste disposal. However, the effects of different kitchen waste composting types on the removal of antibiotics and antibiotic resistance genes haven't been systematically studied. In this study, the dynamics of antibiotics and antibiotic resistance genes from kitchen waste of four composting processes were compared. Results showed that although kitchen waste was composted, it remained an underestimated source of antibiotics (25.9-207.3 μg/kg dry weight) and antibiotic resistance genes (1012-1017 copies/kg dry weight). Dynamic composting processes (i.e., dynamic pile composting and mechanical composting) decreased the antibiotic removal efficiency and increased the abundance of some antibiotic resistance genes (5.35-8534.7% enrichment). Partial least-squares path model analysis showed that mobile genetic elements played a dominant role in driving antibiotic resistance genes dynamics. Furthermore, redundancy analysis revealed that temperature, pH, and water content considerably affected the removal of antibiotics and mobile genetic elements. This study provides further insights into exploring the effective strategies in minimizing the risk of antibiotic resistance from kitchen waste via composting process.
Collapse
Affiliation(s)
- Changxun Zhao
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, PR China
| | - Liqing Xin
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, PR China
| | - Xingkun Xu
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, PR China
| | - Yong Qin
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, PR China
| | - Weixiang Wu
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, PR China.
| |
Collapse
|
27
|
Zhou H, Li X, Jin H, She D. Mechanism of a double-channel nitrogen-doped lignin-based carbon on the highly selective removal of tetracycline from water. BIORESOURCE TECHNOLOGY 2022; 325:124710. [PMID: 34979279 DOI: 10.1016/j.biortech.2021.124710] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 05/26/2023]
Abstract
A high-performance nitrogen-doped lignin-based carbon material (ILAC-N) was synthesized using industrial lignin and urea by hydrothermal and activation, as an absorbent of tetracycline hydrochloride (TC). The results showed that the ILAC-N comprises a double-channeled structure with micro and mesopores. It exhibits an excellent adsorption capacity of TC across a wide pH range (pH 2-11), with the highest adsorption capacity of 1396 mg g-1 at 323 K. Tests in actual wastewater showed that the TC removal rate by ILAC-N exceeded 97.4%. Moreover, it maintained a removal rate of 84% after 10 regeneration cycles, revealing its high reusability. Mechanisms suggested that pore filling and π-π interaction played a critical role in this process. In conclusion, ILAC-N can be broadly applied to livestock manure and pharmaceutical wastewater treatment, owing to its high adsorption capacity, good adsorption properties across a wide pH range, excellent reusability. Furthermore, this research opens a new path for lignin utilization.
Collapse
Affiliation(s)
- Hanjun Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xianzhen Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Haoting Jin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Diao She
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, PR China; Institute of Soil and Water Conservation, CAS&MWR, Yangling 712100, PR China.
| |
Collapse
|
28
|
Jiang M, Song S, Liu H, Dai X, Wang P. Responses of methane production, microbial community and antibiotic resistance genes to the mixing ratio of gentamicin mycelial residues and wheat straw in anaerobic co-digestion process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150488. [PMID: 34607101 DOI: 10.1016/j.scitotenv.2021.150488] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic co-digestion (AcoD) of gentamicin mycelial residues (GMRs), a kind of nitrogen-rich biowaste, and wheat straw (WS) is an attractive technology for the recycling of GMRs. However, the effects of the co-substrate ratio on methane production, system stability and antimicrobial resistance during co-digestion remain unclear. Thus, this study aimed to fill in the blanks through AcoD of GMRs and WS with different mixing ratios (1:0, 2:1, 1:1, 1:2, 0:1, VS basis) via batch tests. Results showed that AcoD facilitated methane production than mono anaerobic digestion and reduced the accumulation of the toxic substances, such as ammonia nitrogen and humic-like substances. The maximum methane production was obtained at the reactors with the mixing ratio of 1:1 and 1:2 (R-1:1 and R-1:2), which matched with the relative abundance of key enzymes related to methanogenesis predicted by PICRUSt. Microbial community analysis indicated that Methanosaeta was the most dominant methanogen in the AcoD reactors. The highest relative abundance of Methanosaeta (45.1%) was obtained at R-1:1 due to the appropriate AcoD conditions, thus, providing greater possibilities for high stability of AcoD system. Additionally, AcoD of the GMRs and WS under the mixing ratio of 1:1 and 1:2 did not prompt the increase of antibiotic resistance genes (ARGs). Not only that, the likelihood of horizontal gene transfer declined in R-1:1 due to the weaker connection and transport between host and recipient bacteria. Findings of this study suggested that the suitable mixing ratio of GMRs and WS contributes to methane production and system stability, and reduces the dissemination risks of ARGs.
Collapse
Affiliation(s)
- Mingye Jiang
- School of Environment, State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Siqi Song
- School of Environment, State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huiling Liu
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Xiaohu Dai
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Peng Wang
- School of Environment, State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
29
|
Lu Y, Meng X, Wang J, Yorgan Dieketseng M, Xiao Y, Yan S, Chen Y, Zhou L, Zheng G. Bioleaching rather than chemical conditioning using Fe[III]/CaO or polyacrylamide mitigates antibiotic resistance in sludge composting via pre-removing antibiotic resistance genes and limiting horizontal gene transfer. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 137:89-99. [PMID: 34749181 DOI: 10.1016/j.wasman.2021.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/27/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Conditioning can drastically improve the dewaterability of sewage sludge and is widely practiced in most wastewater treatment plants (WWTPs). Sludge conditioning was also reported as a crucial step in sludge treatment to attenuate antibiotic resistance, but it remains unclear whether the attenuated antibiotic resistance by conditioning treatments would guarantee low abundance of antibiotic resistance genes (ARGs) in the compost products of municipal sewage sludge. Herein, the impacts of three conditioning treatments, including bioleaching and chemical conditioning using Fe[III]/CaO or polyacrylamide (PAM), on the abundances of 20 ARGs and 4 mobile genetic elements (MGEs) during conventional aerobic composting of dewatered sludge were investigated. It was found that the absolute and relative abundances of total ARGs in compost product of bioleached sludge accounted for only 13.8%-28.8% of that in compost products of un-conditioned, Fe[III]/CaO-conditioned, or PAM-conditioned sludges. Besides, bioleaching conditioning resulted in the lowest abundances of ARG subtypes and ARG-associated bacteria in the sludge compost product. The shift of ARG profiles in the bioleached sludge composting can be mainly ascribed to the ARG-associated bacteria, while the MGEs drove the ARG profiles during conventional composting of un-conditioned sludge and the two chemically conditioned sludge. Thus, bioleaching conditioning is superior to the chemical conditioning using Fe[III]/CaO or PAM in mitigating antibiotic resistance in sludge compost products, which was contributed by the pre-removal of ARGs prior to composting treatment and the potential limitation of ARGs transfer during conventional composting.
Collapse
Affiliation(s)
- Yi Lu
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xiaoqing Meng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiajun Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mahlatsi Yorgan Dieketseng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifan Xiao
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Su Yan
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Chen
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| |
Collapse
|
30
|
Zhang Q, Xu J, Wang X, Zhu T, Liu J, Qin S. Performance of full-scale aerobic composting and anaerobic digestion on the changes of antibiotic resistance genes in dairy manure. BIORESOURCE TECHNOLOGY 2021; 342:125898. [PMID: 34530251 DOI: 10.1016/j.biortech.2021.125898] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Understanding the different performances of full-scale active composting (AC) and anaerobic digestion (AD) on the changes of antibiotic resistance genes (ARGs) in dairy manure is crucial to uncover the dissemination risks of ARGs in post-biotreated manure. In this regard, metagenomic sequencing was deployed to reveal the variations of ARGs in dairy manure in an intensive dairy farm. Results showed that the total abundance of ARGs increased from 150.64 reads/ng DNA to 204.06 reads/ng DNA in dairy manure, and it is mainly attributed to the contributions of AC (85.49%) rather than AD (14.51%). In AC, more ARG subtypes were induced and the dominant ARG subtypes were shifted completely, probably due to the enrichment of Proteobacteria and Actinobacteria which could be the hosts of multiple ARGs. These results inspire us to further evaluate the dissemination risks of ARGs along the route from composted manure to soil and to plants.
Collapse
Affiliation(s)
- Qiuping Zhang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jifei Xu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Key Laboratory of Environmental Pollution Prevention and Waste Resource Recycle, Inner Mongolia University, Hohhot 010021, China.
| | - Xiujun Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tianjiao Zhu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jianguo Liu
- College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Shuai Qin
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
31
|
Liu B, Yu K, Ahmed I, Gin K, Xi B, Wei Z, He Y, Zhang B. Key factors driving the fate of antibiotic resistance genes and controlling strategies during aerobic composting of animal manure: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148372. [PMID: 34139488 DOI: 10.1016/j.scitotenv.2021.148372] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Occurrence of antibiotic resistance genes (ARGs) in animal manure impedes the reutilization of manure resources. Aerobic composting is potentially effective method for resource disposal of animal manure, but the fate of ARGs during composting is complicated due to the various material sources and different operating conditions. This review concentrates on the biotic and abiotic factors influencing the variation of ARGs in composting and their potential mechanisms. The dynamic variations of biotic factors, including bacterial community, mobile genetic elements (MGEs) and existence forms of ARGs, are the direct driving factors of the fate of ARGs during composting. However, most key abiotic indicators, including pH, moisture content, antibiotics and heavy metals, interfere with the richness of ARGs indirectly by influencing the succession of bacterial community and abundance of MGEs. The effect of temperature on ARGs depends on whether the ARGs are intracellular or extracellular, which should be paid more attention. The emergence of various controlling strategies renders the composting products safer. Four potential removal mechanisms of ARGs in different controlling strategies have been concluded, encompassing the attenuation of selective/co-selective pressure on ARGs, killing the potential host bacteria of ARGs, reshaping the structure of bacterial community and reducing the cell-to-cell contact of bacteria. With the effective control of ARGs, aerobic composting is suggested to be a sustainable and promising approach to treat animal manure.
Collapse
Affiliation(s)
- Botao Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaifeng Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Imtiaz Ahmed
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Gin
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
32
|
Rasmussen PU, Phan HUT, Frederiksen MW, Madsen AM. A characterization of bioaerosols in biowaste pretreatment plants in relation to occupational health. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 131:237-248. [PMID: 34171828 DOI: 10.1016/j.wasman.2021.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Occupational exposure to microorganisms can be associated with adverse health outcomes. In this study, we assessed exposure to bioaerosols in two biowaste pretreatment plants in Denmark, which differed in location (city or countryside) and how they were built ('closed-off processes' or 'open processes'). Bioaerosol exposures were characterized by microbial concentrations in personal, stationary, sedimented dust, and hand samples, and their size distribution was assessed. Furthermore, species were identified by matrix-assisted laser desorption-ionisation time-of-flight mass spectrometry (MALDI-TOF MS), and inhalable dust, endotoxin, biofilm production, the total inflammatory potential, and fungicide resistance to four fungicides (amphotericin B, caspofungin acetate, itraconazole, voriconazole) were determined. Bacterial and fungal concentrations were on average (GM) in the order of 104 cfu/m3, but ranged from 102 to 108 cfu/m3. Several species which may cause health problems were identified. Personal endotoxin exposures were on average 28 EU/m3, but both personal and stationary samples ranged from 0.6 to 2035 EU/m3. Bioaerosols had the potential to form biofilms and to induce inflammation as measured in a human cell line. Exposures were higher in the plants that outdoor reference values. Higher exposures were found in the 'open process' plant, such as in microbial concentrations, species richness, endotoxin, biofilm production, and the total inflammatory potential. Six out of 28 tested Aspergillus fumigatus isolates were resistant to fungicides (amphotericin B and voriconazole). In conclusion, there is a high exposure to bioaerosols during work in biowaste pretreatment plants, however, results also suggests that how the plant is built and functions may affect the exposures.
Collapse
Affiliation(s)
- Pil U Rasmussen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark.
| | - Hoang U T Phan
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Margit W Frederiksen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark.
| | - Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
33
|
Guo X, Zhu L, Zhong H, Li P, Zhang C, Wei D. Response of antibiotic and heavy metal resistance genes to tetracyclines and copper in substrate-free hydroponic microcosms with Myriophyllum aquaticum. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125444. [PMID: 33621774 DOI: 10.1016/j.jhazmat.2021.125444] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/27/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Constructed wetlands for antibiotics and heavy metals removal have become important reservoirs of antibiotic resistance genes (ARGs) and heavy metal resistance genes (MRGs), especially in the substrates. Here, substrate-free hydroponic microcosms of Myriophyllum aquaticum were established; tetracyclines (TCs) and Cu(II) were added to evaluate the behaviours of ARGs and MRGs in the microcosms. Several ARGs, MRGs, and mobile genetic elements (MGE) were detected in the biofilms attached to the plants, ranging from 0.5 to 2.3 × 108 copies/g dry weight. ARGs and MRGs exhibited higher relative abundances in the effluent suspended solids (SS); however, their absolute amounts were much lower than those in conventionally constructed wetlands. Microcosms with TCs and Cu(II) exhibited a higher level of resistant genes than those with compound added singularly owing to co-selection pressure. The existence of TCs and copper significantly changed the microbial communities in the microcosms. The exogenous input of TC/Cu(II) and microbial community structure were the factors driving the occurrence of ARGs, whereas MRGs were more correlated with the copper addition. Thus, reducing the exogenous inputs of antibiotics /heavy metals and SS of the effluent is suggested for the mitigation of resistant genes in phytoremediation technologies working in the absence of conventional substrates.
Collapse
Affiliation(s)
- Xuan Guo
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing 100097, China.
| | - Lin Zhu
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Hua Zhong
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing 100097, China
| | - Peng Li
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing 100097, China
| | - Chengjun Zhang
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing 100097, China.
| | - Dan Wei
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
34
|
Lü H, Chen XH, Mo CH, Huang YH, He MY, Li YW, Feng NX, Katsoyiannis A, Cai QY. Occurrence and dissipation mechanism of organic pollutants during the composting of sewage sludge: A critical review. BIORESOURCE TECHNOLOGY 2021; 328:124847. [PMID: 33609883 DOI: 10.1016/j.biortech.2021.124847] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Sewage sludge contains various classes of organic pollutants, limiting its land application. Sludge composting can effectively remove some organic pollutants. This review summarizesrecent researches on concentration changes and dissipation of different organic pollutants including persistent organic pollutants during sludge composting, and discusses their dissipation pathways and the current understanding on dissipation mechanism. Some organic pollutants like PAHs and phthalates were removed mainly through biodegradation or mineralization, and their dissipation percentages were higher than those of PCDD/Fs and PCBs. Nevertheless, some recalcitrant organic pollutants could be sequestrated in organic fractions of sludge mixtures, and their levels and ARG abundance even increased after sludge composting in some studies, posing potential risks for land application. This review demonstrated that microbial community and their corresponding degradation for organic pollutants were influenced by different pollutants, bulking agents, composting methods and processes. Further research perspectives on removing organic pollutants during sludge composting were highlighted.
Collapse
Affiliation(s)
- Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Hong Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Min-Ying He
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Athanasios Katsoyiannis
- Norwegian Institute for Air Research (NILU) - FRAM High North Research Centre on Climate and the Environment, Hjalmar Johansens gt. 14, NO-9296, Tromsø, Norway
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
35
|
Wang G, Li G, Chang J, Kong Y, Jiang T, Wang J, Yuan J. Enrichment of antibiotic resistance genes after sheep manure aerobic heap composting. BIORESOURCE TECHNOLOGY 2021; 323:124620. [PMID: 33429314 DOI: 10.1016/j.biortech.2020.124620] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
In this study, physio-chemical properties, 45 antibiotics, 6 heavy metals, 42 antibiotic resistance genes (ARGs), 3 mobile genetic elements, and the bacterial community structure were investigated to analyze the fate of ARGs during sheep manure aerobic heap composting. Results showed that sheep manure heap composting could produce mature compost. The degradation processes reduced the total antibiotics content by 85%. The abundance of ARGs and mobile genetic elements (MGEs) were enriched 9-fold, with the major increases to sul and tet genes (sulI, sulII, tetQ, and tetX). Tetracycline and sulfonamide resistance genes were the most abundant ARGs after composting (more than 88% of all genes). The genes tetA, tetX and sulI were related to the most diverse bacteria that were most able to proliferate during heap composting. Therefore, sulI and tetX are the major ARGs to be controlled, and Actinobacteria and Bacteroidetes may be the major host bacteria.
Collapse
Affiliation(s)
- Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, PR China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, PR China
| | - Jiali Chang
- Division of Environmental Engineering, School of Chemistry, Resources and Environment, Leshan Normal University, Sichuan 614000, PR China
| | - Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, PR China
| | - Tao Jiang
- Division of Environmental Engineering, School of Chemistry, Resources and Environment, Leshan Normal University, Sichuan 614000, PR China
| | - Jiani Wang
- Division of Environmental Engineering, School of Chemistry, Resources and Environment, Leshan Normal University, Sichuan 614000, PR China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, PR China.
| |
Collapse
|