1
|
Kleiner FH, Oh JJ, Aubin-Tam ME. Solving Challenges in Microalgae-Based Living Materials. ACS Synth Biol 2025; 14:307-315. [PMID: 39980378 PMCID: PMC11852197 DOI: 10.1021/acssynbio.4c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Indexed: 02/22/2025]
Abstract
Engineered living materials (ELMs) integrate aspects of material science and biology into a unique platform, leading to materials and devices with features of life. Among those, ELMs containing microalgae have received increased attention due to the many benefits photosynthetic organisms provide. Due to their relatively recent occurrence, photosynthetic ELMs still face many challenges related to reliability, lifetime, scalability, and more, often based on the complicated crosstalk of cellular, material-based, and environmental variables in time. This Viewpoint aims to summarize potential avenues for improving ELMs, beginning with an emphasis on understanding the cell's perspective and the potential stresses imposed on them due to recurring flaws in many current ELMs. Potential solutions and their ease of implementation will be discussed, ranging from choice of organism, adjustments to the ELM design, to various genetic modification tools, so as to achieve ELMs with longer lifetime and improved functionality.
Collapse
Affiliation(s)
- Friedrich Hans Kleiner
- Department of Bionanoscience, Kavli
Institute of Nanoscience, Delft University
of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Jeong-Joo Oh
- Department of Bionanoscience, Kavli
Institute of Nanoscience, Delft University
of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Marie-Eve Aubin-Tam
- Department of Bionanoscience, Kavli
Institute of Nanoscience, Delft University
of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
2
|
González-Portela RE, Romero-Villegas GI, Kapoore RV, Alammari ZM, Malibari RA, Shaikhi AA, Al Hafedh Y, Aljahdali AH, Banjar RE, Mhedhbi E, Filimban A, Padri M, Fuentes-Grünewald C. Cultivation of Limnospira maxima under extreme environmental conditions in Saudi Arabia: Salinity adaptation and scaling-up from laboratory culture to large-scale production. BIORESOURCE TECHNOLOGY 2024; 406:131089. [PMID: 38986884 DOI: 10.1016/j.biortech.2024.131089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Limnospira maxima has been adapted to grow in high salinity and in an economically alternative medium using industrial-grade fertilizers under harsh environmental conditions in Saudi Arabia. A sequence of scaling-up processes, from the laboratory to large-scale open raceways, was conducted along with gradual adaptation to environmental stress (salinity, light, temperature, pH). High biomass concentration at harvest point and areal productivity were achieved during the harsh summer season (1.122 g L-1 and 60.35 g m-2 day-1, respectively). The average protein content was found to be above 40 % of dry weight. Changes in the color and morphological appearance of the L. maxima culture were observed after direct exposure to sunlight in the outdoor raceways. These results demonstrate a successful and robust adaptation method for algal cultivation at outdoor large-scale in harsh environment (desert conditions) and also prove the feasibility of using hypersaline seawater (42 g kg-1) as an algal growth medium.
Collapse
Affiliation(s)
- Ricardo E González-Portela
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia.
| | - Gabriel I Romero-Villegas
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Rahul V Kapoore
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Zain M Alammari
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Raghdah A Malibari
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Ali Al Shaikhi
- Ministry of Environment, Water and Agriculture (MEWA), King Abdulaziz Rd., Riyadh 11195, Kingdom of Saudi Arabia
| | - Yousef Al Hafedh
- Ministry of Environment, Water and Agriculture (MEWA), King Abdulaziz Rd., Riyadh 11195, Kingdom of Saudi Arabia
| | - Abdulaziz H Aljahdali
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Rana E Banjar
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Emna Mhedhbi
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Akram Filimban
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Mohamad Padri
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Claudio Fuentes-Grünewald
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
3
|
E SSA, Sharma Y, J R, Shankar V. A comparative assessment of microbial biodiesel and its life cycle analysis. Folia Microbiol (Praha) 2024; 69:521-547. [PMID: 38480635 DOI: 10.1007/s12223-024-01153-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/19/2024] [Indexed: 05/30/2024]
Abstract
Biodiesel is a type of sustainable, biodegradable energy made from natural sources like vegetable oils, animal fat, and from microbes. Unlike traditional diesel, it has a lower carbon footprint and produces fewer harmful emissions when burned. Biodiesel has gained popularity as a more sustainable substitute for hydrocarbon-based diesel and may be utilized in diesel engines without any modification. In this review, biodiesel from microorganisms such as algae, yeast, and fungi and advantages over another feedstock were discussed. The life cycle evaluation of biodiesel is a thorough assessment of the ecological and economic effects of biodiesel production and use, from the extraction of raw ingredients to the waste disposal process. The life cycle analysis considers the entire process, including the production of feedstocks, the production of biodiesel, and the use of biodiesel in vehicles and other applications. Life cycle analysis of biodiesel produced from microorganisms takes into consideration the environmental impact and sustainability of each step in the production process, including the impact on land use, water use, greenhouse gas emissions, and the availability of resources. In this section, biodiesel produced from microorganisms and other raw materials, its comparisons, and also steps involved in the life cycle such as the cultivation of microorganisms, harvesting of biomass, and conversion to biodiesel were discussed. The processes like extraction and purification, hydrothermal liquefaction, and their environmental impacts were examined by using various LCA software from the previously mentioned process.
Collapse
Affiliation(s)
- Swathe Sriee A E
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 14, India
| | - Yamini Sharma
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 14, India
| | - Ranjitha J
- CO2 Research and Green Technologies Centre, Vellore Institute of Technology, Katpadi, Vellore 14, Tamil Nadu, 632014, India
| | - Vijayalakshmi Shankar
- CO2 Research and Green Technologies Centre, Vellore Institute of Technology, Katpadi, Vellore 14, Tamil Nadu, 632014, India.
| |
Collapse
|
4
|
Xu P, Shao S, Qian J, Li J, Xu R, Liu J, Zhou W. Scale-up of microalgal systems for decarbonization and bioproducts: Challenges and opportunities. BIORESOURCE TECHNOLOGY 2024; 398:130528. [PMID: 38437968 DOI: 10.1016/j.biortech.2024.130528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The threat of global climate change presents a significant challenge for humanity. Microalgae-based carbon capture and utilization (CCU) technology has emerged as a promising solution to this global issue. This review aims to comprehensively evaluate the current advancements in scale-up of microalgae cultivation and its applications, specifically focusing on decarbonization from flue gases, organic wastewater remediation, and biogas upgrading. The study identifies critical challenges that need to be addressed during the scale-up process and evaluates the economic viability of microalgal CCU within the carbon market. Additionally, it analyzes the commercial status of microalgae-derived products and highlights those with high market demand. This review serves as a crucial resource for researchers, industry professionals, and policymakers to develop and implement innovative approaches to enhance the efficiency of microalgae-based CO2 utilization while addressing the challenges associated with the scale-up of microalgae technologies.
Collapse
Affiliation(s)
- Peilun Xu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| | - Shengxi Shao
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| | - Jun Qian
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| | - Jingjing Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| | - Rui Xu
- Jiangxi Ganneng Co., Ltd, Nanchang 330096, China.
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| | - Wenguang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
5
|
Rady HA, Ali SS, El-Sheekh MM. Strategies to enhance biohydrogen production from microalgae: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120611. [PMID: 38508014 DOI: 10.1016/j.jenvman.2024.120611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/30/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Microalgae represent a promising renewable feedstock for the sustainable production of biohydrogen. Their high growth rates and ability to fix carbon utilizing just sunlight, water, and nutrients make them well-suited for this application. Recent advancements have focused on improving microalgal hydrogen yields and cultivation methods. This review aims to summarize recent developments in microalgal cultivation techniques and genetic engineering strategies for enhanced biohydrogen production. Specific areas of focus include novel microalgal species selection, immobilization methods, integrated hybrid systems, and metabolic engineering. Studies related to microalgal strain selection, cultivation methods, metabolic engineering, and genetic manipulations were compiled and analyzed. Promising microalgal species with high hydrogen production capabilities such as Synechocystis sp., Anabaena variabilis, and Chlamydomonas reinhardtii have been identified. Immobilization techniques like encapsulation in alginate and integration with dark fermentation have led to improved hydrogen yields. Metabolic engineering through modulation of hydrogenase activity and photosynthetic pathways shows potential for enhanced biohydrogen productivity. Considerable progress has been made in developing microalgal systems for biohydrogen. However, challenges around process optimization and scale-up remain. Future work involving metabolic modeling, photobioreactor design, and genetic engineering of electron transfer pathways could help realize the full potential of this renewable technology.
Collapse
Affiliation(s)
- Hadeer A Rady
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
6
|
Xu Y, Wei C, Liu D, Li J, Tian B, Li Z, Xu L. Life-cycle and economic assessments of microalgae biogas production in suspension and biofilm cultivation systems. BIORESOURCE TECHNOLOGY 2024; 395:130381. [PMID: 38281545 DOI: 10.1016/j.biortech.2024.130381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Biogas production via anaerobic digestion is highly attractive for microalgae. The technology of microalgae cultivation has profound impacts on biogas production system as it is the most energy-consuming process. However, a comprehensive evaluation of the environmental and economic benefits of different cultivation systems has yet to be sufficiently conducted. Here, life-cycle and economic assessments of open raceway ponds, photobioreactors and biofilm systems were investigated. Results showed greenhouse gas emissions of all systems were positive because more than two-thirds of carbon in fuel gas was lost and the fixed carbon in product gas and solid fertilizer was less than the emitted carbon during energy input. Particularly, biofilm system achieved the least greenhouse gas emissions (9.3 g CO2-eq/MJ), net energy ratio (0.7) and levelized cost of energy (0.9 $/kWh), indicating the optimum cultivation system. Open raceway ponds and photobioreactors failed to achieve positive benefits because of low harvesting efficiency and biomass concentration.
Collapse
Affiliation(s)
- Yilin Xu
- School of Chemical Engineering, Northwest University, Xi'an 710069 China
| | - Chaoyang Wei
- School of Chemical Engineering, Northwest University, Xi'an 710069 China.
| | - Dawei Liu
- School of Chemical Engineering, Northwest University, Xi'an 710069 China
| | - Jingying Li
- School of Chemical Engineering, Northwest University, Xi'an 710069 China
| | - Bin Tian
- School of Chemical Engineering, Northwest University, Xi'an 710069 China
| | - Zhuo Li
- School of Chemical Engineering, Northwest University, Xi'an 710069 China
| | - Long Xu
- School of Chemical Engineering, Northwest University, Xi'an 710069 China
| |
Collapse
|
7
|
Cao TND, Mukhtar H, Le LT, Tran DPH, Ngo MTT, Pham MDT, Nguyen TB, Vo TKQ, Bui XT. Roles of microalgae-based biofertilizer in sustainability of green agriculture and food-water-energy security nexus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161927. [PMID: 36736400 DOI: 10.1016/j.scitotenv.2023.161927] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
For years, agrochemical fertilizers have been used in agriculture for crop production. However, intensive utilization of chemical fertilizers is not an ecological and environmental choice since they are destroying soil health and causing an emerging threat to agricultural production on a global scale. Under the circumstances of the increasing utilization of chemical fertilizers, cultivating microalgae to produce biofertilizers would be a wise solution since desired environmental targets will be obtained including (1) replacing chemical fertilizer while improving crop yields and soil health; (2) reducing the harvest of non-renewable elements from limited natural resources for chemical fertilizers production, and (3) mitigating negative influences of climate change through CO2 capture through microalgae cultivation. Recent improvements in microalgae-derived-biofertilizer-applied agriculture will be summarized in this review article. At last, the recent challenges of applying biofertilizers will be discussed as well as the perspective regarding the concept of circular bio-economy and sustainable development goals (SDGs).
Collapse
Affiliation(s)
- Thanh Ngoc-Dan Cao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Hussnain Mukhtar
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Linh-Thy Le
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), Ward 11, District 5, Ho Chi Minh city 72714, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Duyen Phuc-Hanh Tran
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan, ROC; Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - My Thi Tra Ngo
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Mai-Duy-Thong Pham
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNUT.HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan, ROC
| | - Thi-Kim-Quyen Vo
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan street, Tan Phu district, Ho Chi Minh city 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNUT.HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
8
|
Osorio-Reyes JG, Valenzuela-Amaro HM, Pizaña-Aranda JJP, Ramírez-Gamboa D, Meléndez-Sánchez ER, López-Arellanes ME, Castañeda-Antonio MD, Coronado-Apodaca KG, Gomes Araújo R, Sosa-Hernández JE, Melchor-Martínez EM, Iqbal HMN, Parra-Saldivar R, Martínez-Ruiz M. Microalgae-Based Biotechnology as Alternative Biofertilizers for Soil Enhancement and Carbon Footprint Reduction: Advantages and Implications. Mar Drugs 2023; 21:93. [PMID: 36827134 PMCID: PMC9958754 DOI: 10.3390/md21020093] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/21/2023] [Accepted: 01/21/2023] [Indexed: 02/01/2023] Open
Abstract
Due to the constant growth of the human population and anthropological activity, it has become necessary to use sustainable and affordable technologies that satisfy the current and future demand for agricultural products. Since the nutrients available to plants in the soil are limited and the need to increase the yields of the crops is desirable, the use of chemical (inorganic or NPK) fertilizers has been widespread over the last decades, causing a nutrient shortage due to their misuse and exploitation, and because of the uncontrolled use of these products, there has been a latent environmental and health problem globally. For this reason, green biotechnology based on the use of microalgae biomass is proposed as a sustainable alternative for development and use as soil improvers for crop cultivation and phytoremediation. This review explores the long-term risks of using chemical fertilizers for both human health (cancer and hypoxia) and the environment (eutrophication and erosion), as well as the potential of microalgae biomass to substitute current fertilizer using different treatments on the biomass and their application methods for the implementation on the soil; additionally, the biomass can be a source of carbon mitigation and wastewater treatment in agro-industrial processes.
Collapse
Affiliation(s)
| | | | | | - Diana Ramírez-Gamboa
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | | | - Ma. Dolores Castañeda-Antonio
- Centro de Investigaciones en Ciencias Microbiológicas del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72490, Mexico
| | - Karina G. Coronado-Apodaca
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Rafael Gomes Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
9
|
Liu WS, Liu Y, Gao J, Zheng H, Lu ZM, Li M. Biomembrane-Based Nanostructure- and Microstructure-Loaded Hydrogels for Promoting Chronic Wound Healing. Int J Nanomedicine 2023; 18:385-411. [PMID: 36703725 PMCID: PMC9871051 DOI: 10.2147/ijn.s387382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
Wound healing is a complex and dynamic process, and metabolic disturbances in the microenvironment of chronic wounds and the severe symptoms they cause remain major challenges to be addressed. The inherent properties of hydrogels make them promising wound dressings. In addition, biomembrane-based nanostructures and microstructures (such as liposomes, exosomes, membrane-coated nanostructures, bacteria and algae) have significant advantages in the promotion of wound healing, including special biological activities, flexible drug loading and targeting. Therefore, biomembrane-based nanostructure- and microstructure-loaded hydrogels can compensate for their respective disadvantages and combine the advantages of both to significantly promote chronic wound healing. In this review, we outline the loading strategies, mechanisms of action and applications of different types of biomembrane-based nanostructure- and microstructure-loaded hydrogels in chronic wound healing.
Collapse
Affiliation(s)
- Wen-Shang Liu
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Yu Liu
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Hao Zheng
- Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Zheng-Mao Lu
- Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China,Zheng-Mao Lu, Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China, Tel +086-13651688596, Fax +086-021-31161589, Email
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China,Correspondence: Meng Li, Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China, Tel +086-15000879978, Fax +086-021-23271699, Email
| |
Collapse
|
10
|
Vázquez-Romero B, Perales JA, Pereira H, Barbosa M, Ruiz J. Techno-economic assessment of microalgae production, harvesting and drying for food, feed, cosmetics, and agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155742. [PMID: 35526636 DOI: 10.1016/j.scitotenv.2022.155742] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
The objective of this techno-economic analysis is to define the costs for an industrial microalgae production process, comparing different operation strategies (Nannochloropsis oceanica cultivation during the whole year or cultivation of two species, where Phaeodactylum tricornutum and Tisochrysis lutea alternate), production scales (1 and 10 ha), harvesting technologies (centrifugation or ultrafiltration) and drying methods (freeze-drying or spray drying). This study is based on an industrial scale process established in the south of Portugal. The strategy of cultivating N. oceanica all year round is more attractive from an economic perspective, with production costs of 53.32 €/kg DW and a productivity of 27.61 t/y for a scale of 1 ha, a 49.31% lower cost and two-fold productivity than species alternation culture strategy. These results are for biomass harvested by centrifugation (10.65% biomass cost) and freeze-drying (20.15% biomass cost). These costs could be reduced by 7.03% using a combination of ultrafiltration and spray drying, up to 17.99% if expanded to 10 ha and 10.92% if fertilisers were used instead of commercial nutrient solutions. The study shows potentially competitive costs for functional foods, food, and feed additives, specialised aquaculture products (live feed enrichment) and other high value applications (e.g., cosmetics).
Collapse
Affiliation(s)
- Bárbara Vázquez-Romero
- Departamento de Tecnologías del Medio Ambiente, Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEIMAR), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain; Alga Development Engineering and Services, S.L., 11500 El Puerto de Santa María, Cádiz, Spain
| | - José Antonio Perales
- Departamento de Tecnologías del Medio Ambiente, Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEIMAR), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain; Alga Development Engineering and Services, S.L., 11500 El Puerto de Santa María, Cádiz, Spain
| | - Hugo Pereira
- GreenCoLab - Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139, Portugal; Necton S.A., Belamandil s/n, 8700-152 Olhão, Portugal
| | - Maria Barbosa
- Wageningen University, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Jesús Ruiz
- Departamento de Tecnologías del Medio Ambiente, Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEIMAR), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain; Alga Development Engineering and Services, S.L., 11500 El Puerto de Santa María, Cádiz, Spain.
| |
Collapse
|
11
|
Rasheed R, Thaher M, Younes N, Bounnit T, Schipper K, Nasrallah GK, Al Jabri H, Gifuni I, Goncalves O, Pruvost J. Solar cultivation of microalgae in a desert environment for the development of techno-functional feed ingredients for aquaculture in Qatar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155538. [PMID: 35489502 DOI: 10.1016/j.scitotenv.2022.155538] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
The demand for aquaculture feed will increase in the coming years in order to ensure food security for a growing global population. Microalgae represent a potential fish-feed ingredient; however, the feasibility of their sustainable production has great influence on its successful application. Geographical locations offering high light and temperature, such as Qatar, are ideal to cultivate microalgae with high productivities. For that, the environmental and biological interactions, including field and laboratory optimization, for solar production and application of two native microalgae, Picochlorum maculatum and Nannochloris atomus, were investigated as potential aquaculture feed ingredients. After validating pilot-scale outdoor cultivation, both strains were further investigated under simulated seasonal conditions using a thermal model to predict light and culture temperature cycles for the major climatic seasons in Qatar. Applied thermal and light variations ranged from 36 °C and 2049 μmol/m2/s in extreme summer, to as low as 15 °C and 1107 μmol/m2/s in winter, respectively. Biomass productivities of both strains varied significantly with maximum productivities of 32.9 ± 2.5 g/m2/d and 17.1 ± 0.8 g/m2/d found under moderate summer conditions for P. maculatum and N. atomus, respectively. These productivities were significantly reduced under both extreme summer, as well as winter conditions. To improve annual biomass productivities, the effect of implementation of a simple ground heat exchanger for thermal regulation of raceway ponds was also studied. Biomass productivities increased significantly, during extreme seasons due to respective cooling and heating of the culture. Both strains produced high amounts of proteins during winter, 54.5 ± 0.55% and 44 ± 2.25%, while lipid contents were high during summer reaching up to 29.6 ± 0.75 and 28.65 ± 0.65%, for P. maculatum and N. atomus respectively. Finally, using acute toxicity assay with zebra fish embryos, both strains showed no toxicity even at the highest concentrations tested, and is considered safe for use as feed ingredient and to the environment.
Collapse
Affiliation(s)
- Rihab Rasheed
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| | - Mahmoud Thaher
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Nadin Younes
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; Department of Biomedical Sciences, College of Health Sciences, Member of QU Health, Qatar University, Doha 2713, Qatar
| | - Touria Bounnit
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Kira Schipper
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; Department of Biomedical Sciences, College of Health Sciences, Member of QU Health, Qatar University, Doha 2713, Qatar
| | - Hareb Al Jabri
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar; Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Imma Gifuni
- Algosource Technologies, 7, Rue Eugène Cornet, 44600 Saint-Nazaire, France
| | - Olivier Goncalves
- CNRS, GEPEA, UMR 6144, Université de Nantes, Oniris, F-44600 Saint-Nazaire, France
| | - Jeremy Pruvost
- CNRS, GEPEA, UMR 6144, Université de Nantes, Oniris, F-44600 Saint-Nazaire, France
| |
Collapse
|
12
|
Abstract
Whole-cell microalgae biomass and their specific metabolites are excellent sources of renewable and alternative feedstock for various products. In most cases, the content and quality of whole-cell biomass or specific microalgal metabolites could be produced by both fresh and marine microalgae strains. However, a large water footprint for freshwater microalgae strain is a big concern, especially if the biomass is intended for non-food applications. Therefore, if any marine microalgae could produce biomass of desired quality, it would have a competitive edge over freshwater microalgae. Apart from biofuels, recently, microalgal biomass has gained considerable attention as food ingredients for both humans and animals and feedstock for different bulk chemicals. In this regard, several technologies are being developed to utilize marine microalgae in the production of food, feed, and biofuels. Nevertheless, the production of suitable and cheap biomass feedstock using marine microalgae has faced several challenges associated with cultivation and downstream processing. This review will explore the potential pathways, associated challenges, and future directions of developing marine microalgae biomass-based food, feed, and fuels (3F).
Collapse
|
13
|
Theodosiou E, Tüllinghoff A, Toepel J, Bühler B. Exploitation of Hetero- and Phototrophic Metabolic Modules for Redox-Intensive Whole-Cell Biocatalysis. Front Bioeng Biotechnol 2022; 10:855715. [PMID: 35497353 PMCID: PMC9043136 DOI: 10.3389/fbioe.2022.855715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
The successful realization of a sustainable manufacturing bioprocess and the maximization of its production potential and capacity are the main concerns of a bioprocess engineer. A main step towards this endeavor is the development of an efficient biocatalyst. Isolated enzyme(s), microbial cells, or (immobilized) formulations thereof can serve as biocatalysts. Living cells feature, beside active enzymes, metabolic modules that can be exploited to support energy-dependent and multi-step enzyme-catalyzed reactions. Metabolism can sustainably supply necessary cofactors or cosubstrates at the expense of readily available and cheap resources, rendering external addition of costly cosubstrates unnecessary. However, for the development of an efficient whole-cell biocatalyst, in depth comprehension of metabolic modules and their interconnection with cell growth, maintenance, and product formation is indispensable. In order to maximize the flux through biosynthetic reactions and pathways to an industrially relevant product and respective key performance indices (i.e., titer, yield, and productivity), existing metabolic modules can be redesigned and/or novel artificial ones established. This review focuses on whole-cell bioconversions that are coupled to heterotrophic or phototrophic metabolism and discusses metabolic engineering efforts aiming at 1) increasing regeneration and supply of redox equivalents, such as NAD(P/H), 2) blocking competing fluxes, and 3) increasing the availability of metabolites serving as (co)substrates of desired biosynthetic routes.
Collapse
Affiliation(s)
- Eleni Theodosiou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Adrian Tüllinghoff
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| | - Jörg Toepel
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| |
Collapse
|
14
|
Hirayama A, Sueyoshi MN, Nakano T, Ota Y, Kurita H, Tasaki M, Kuroiwa Y, Kato T, Serizawa S, Kojima K, Al-Maamari RS, Hasegawa T, Thomas-Hall SR, Schenk PM. Development of large-scale microalgae production in the Middle East. BIORESOURCE TECHNOLOGY 2022; 343:126036. [PMID: 34626761 DOI: 10.1016/j.biortech.2021.126036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Microalgae in the Middle East can theoretically address food security without competing for arable land, but concerns exist around scalability and durability of production systems under the extreme heat. Large-scale Chlorella sorokiniana production was developed in outdoor raceway ponds in Oman and monitored for 2 years to gather data for commercial production. Biological and technical challenges included construction, indoor/outdoor preculturing, upscaling, relating productivity to water temperature and meteorological conditions, harvesting, drying, and quality control. Small cultivation systems required cooling for initial scale-up, but, despite maximum temperatures of 49.7 °C, water temperatures were at acceptable levels by evaporative cooling in larger raceway ponds. Contamination with Vampirovibrio chlorellavorus was identified by 16S rDNA amplicon sequencing and addressed by culture replacement. Productivities ranged from 8 to 30 g-dry weight m-2d-1, with estimated annual productivity of 16 g-dry weight m-2d-1 as functions of solar intensity and water temperature, confirming that the region is suitable for commercial microalgae production.
Collapse
Affiliation(s)
| | | | | | - Yuki Ota
- Shimizu Corporation, Tokyo 104-8370, Japan
| | | | | | | | | | | | | | - Rashid S Al-Maamari
- Petroleum & Chemical Engineering Dept., College of Engineering, Sultan Qaboos University, Al-Khoudh PC 123, Oman
| | - Takeshi Hasegawa
- Ecorenaissance-Entech Co., Ltd., 4-7-18, Kashiwa, Chiba 2770841, Japan
| | - Skye R Thomas-Hall
- Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Peer M Schenk
- Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
15
|
Kumar Sharma A, Kumar Ghodke P, Manna S, Chen WH. Emerging technologies for sustainable production of biohydrogen production from microalgae: A state-of-the-art review of upstream and downstream processes. BIORESOURCE TECHNOLOGY 2021; 342:126057. [PMID: 34597808 DOI: 10.1016/j.biortech.2021.126057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Biohydrogen (BioH2) is considered as one of the most environmentally friendly fuels and a strong candidate to meet the future demand for a sustainable source of energy. Presently, the production of BioH2 from photosynthetic organisms has raised a lot of hopes in the fuel industry. Moreover, microalgal-based BioH2 synthesis not only helps to combat current global warming by capturing greenhouse gases but also plays a key role in wastewater treatment. Hence, this manuscript provides a state-of-the-art review of the upstream and downstream BioH2 production processes. Different metabolic routes such as direct and indirect photolysis, dark fermentation, photofermentation, and microbial electrolysis are covered in detail. Upstream processes (e.g. growth techniques, growth media) also have a great impact on BioH2 productivity and economics, which is also explored. Technical and scientific obstacles of microalgae BioH2 systems are finally addressed, allowing the technology to become more innovative and commercial.
Collapse
Affiliation(s)
- Amit Kumar Sharma
- Department of Chemistry, Centre for Alternate and Renewable Energy Research, R&D, University of Petroleum & Energy Studies (UPES), School of Engineering, Energy Acres Building, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Praveen Kumar Ghodke
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode 673601, Kerala, India
| | - Suvendu Manna
- Department of Health Safety, Environment and Civil Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| |
Collapse
|
16
|
Progress toward a bicarbonate-based microalgae production system. Trends Biotechnol 2021; 40:180-193. [PMID: 34325913 DOI: 10.1016/j.tibtech.2021.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 11/20/2022]
Abstract
Commercial applications of microalgae for biochemicals and fuels are hampered by their high production costs, and the use of conventional carbon supplies is a key reason. Bicarbonate has been proposed as an alternative carbon source due to its potential advantages in lower carbon supply costs, convenience for photobioreactor development, biomass harvesting, and labor and energy savings. We review recent progress in bicarbonate-based microalgae cultivation, which validated previous assumptions, suggested further advantages, and demonstrated potential to significantly reduce production cost. Future research should focus on improving production efficiency and reducing energy inputs, including optimizing photobioreactor design, comprehensive utilization of natural power, and automation in production systems.
Collapse
|