1
|
Mullai P, Sambavi SM, Vishali S, Dharmalingam K, Sutha S, Dinesh S, Anandhi T, Al Noman MA, Bilyaminu AM, James A. An integrated review on the role of different biocatalysts, process parameters, bioreactor technologies and data-driven predictive models for upgrading biogas. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125508. [PMID: 40327925 DOI: 10.1016/j.jenvman.2025.125508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/28/2025] [Accepted: 04/21/2025] [Indexed: 05/08/2025]
Abstract
As energy consumption and waste generation from human activities continue to rise, the technology of anaerobic digestion (AD), which converts waste into bioenergy, has gained popularity. Biogas produced from AD commonly contains 60 % CH4, 40 % CO2 and a minor fraction of impurities. Currently, several anaerobic reactors have been designed to upgrade the biogas with biomethane content above 90 %. This review summarizes the current trends in the biological upgradation of biogas from a bio-circular economy perspective to achieve sustainable energy goals. Examples of applications reporting the latest advancements in treating industrial effluents using high-rate anaerobic reactors have been mentioned. The integrated anaerobic-aerobic hybrid reactor offers a solution to the limitations of traditional methods in treating diverse effluents. A special focus on biological upgradation techniques such as in-situ, ex-situ, and hybrid mechanisms have been briefed. The key advantage of hybrid upgradation is its ability to address the pH rise during in-situ process. Additionally, the applications of artificial neural networks and optimization to upgrade biogas production have been discussed. The review concludes with future research directives with emphasis on the economic viability of the approaches.
Collapse
Affiliation(s)
- P Mullai
- Department of Chemical Engineering, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| | - S M Sambavi
- Department of Chemical and Biological Engineering, Energy Engineering with Industrial Management, University of Sheffield, Sheffield, United Kingdom.
| | - S Vishali
- Department of Chemical Engineering, SRM Institute of Science and Engineering, Kattankulathur, 603 203, Tamil Nadu, India.
| | - K Dharmalingam
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Gandipet, Hyderabad, Telangana, India.
| | - S Sutha
- Department of Instrumentation Engineering, Madras Institute of Technology, Anna University, Chromepet, Chennai, 600044, Tamil Nadu, India.
| | - S Dinesh
- Department of Chemical Engineering, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| | - T Anandhi
- Department of Electronics and Instrumentation Engineering, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| | - Md Abdullah Al Noman
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands.
| | - Abubakar M Bilyaminu
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands.
| | - Anina James
- J & K Pocket, Dilshad Garden, Delhi, 110095, India.
| |
Collapse
|
2
|
Tan SM, Ho LN, Wong YS, Azner Abidin CZ, Ong SA. Towards environmentally-friendly solutions for real textile-dyeing wastewater with energy recovery: Effluent recirculation and Rubia plant-derived purpurin electron mediator in microbial fuel cell. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121905. [PMID: 39067334 DOI: 10.1016/j.jenvman.2024.121905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/27/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
Escalating global water pollution exacerbated by textile-dyeing wastewater (TDW) poses significant environmental and health concerns due to the insufficient treatment methods being utilized. Thus, it is imperative to implement more effective treatment solutions to address such issues. In this research, different environmentally-friendly strategies involving effluent recirculation (ER) and Rubia cordifolia plant-derived purpurin electron mediator (EM) were introduced to enhance the treatment of real TDW and bioelectricity generation performance of an anti-gravity flow microbial fuel cell (AGF-MFC). The results revealed that optimum performance was achieved with a combination of hydraulic retention time (HRT) of 48 h with a recirculation ratio of 1, where the reduction efficiency of biochemical oxygen demand (BOD5), chemical oxygen demand (COD), ammonium (NH4+), nitrate (NO3-), sulphate (SO42-), ammonia nitrogen (NH3-N), colour and turbidity were 82.17 %, 82.15 %, 85.10 %, 80.52 %, 75.91 %, 59.52 %, 71.02 % and 93.10 %, respectively. In terms of bioelectricity generation performance, AGF-MFC showed a maximum output voltage and power density of 404.72 mV and 65.16 mW/m2, respectively. Moreover, the results also signified that higher treatment performance of TDW was obtained with natural purpurin from Rubia cordifolia plant than synthetic purpurin as EM. The reduced reactivity of highly stable synthetic purpurin EM for mediating the electron transfer was a contributing factor to the outperformance of plant-derived purpurin. Additionally, detailed electron-mediating mechanisms of purpurin were proposed to unravel the underlying electron transfer pathway involved in AGF-MFC. This research offers insight into the development of more sustainable solutions for managing TDW, and consequently reducing environmental pollution.
Collapse
Affiliation(s)
- Sing-Mei Tan
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia; Faculty of Civil Engineering and Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Li-Ngee Ho
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Yee-Shian Wong
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia; Faculty of Civil Engineering and Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Che Zulzikrami Azner Abidin
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia; Faculty of Civil Engineering and Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Soon-An Ong
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia; Faculty of Civil Engineering and Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia.
| |
Collapse
|
3
|
Zhang YX, Li YX, Zhang W, Niu Y, Zeng RJ. Enrichment of biofertilizer-type hydrogen-oxidizing bacteria on urea containing Cu(II). ENVIRONMENTAL RESEARCH 2023; 236:116831. [PMID: 37543126 DOI: 10.1016/j.envres.2023.116831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
With the utilization of pesticides and fertilizers (e.g. urea), the presence of nitrogen and heavy metals (e.g. copper) can enter and pollute the environment. Biofertilizers can be used to replace chemical fertilizers to increase crop yields and reduce environmental stress. The utilization of hydrogen-oxidizing bacteria (HOB) to be biofertilizers has recently attracted more attention. However, the enrichment of HOB on urea and the effect of copper are undetermined. HOB were successfully enriched using urea in this investigation. The average urea conversion rate (AUCR) was 180.08 mgN/L/d with a hydraulic retention time of 10 h. Microbial community (R1) was dominated by Hydrogenophaga (83.92%), a biofertilizer-type HOB. After addition of 5.47 mg/L Cu2+, the AUCR was decreased by 16%-151.18 mgN/L/d, and the growth of HOB was inhibited by 48%. Meanwhile, inhibition was also reflected by the increase of polysaccharide content (20.27 ± 0.57 to 33.45 ± 2.53 mg/gVSS) and protein content (106.19 ± 19.39 to 125.14 ± 24.73 mg/gVSS) of extracellular polymeric substances in the HOB. The resulting microbial community (R2) was changed to Azospiralium-dominated flora (91.33%). Both enriched microbial communities (R1 and R2) exhibited the abilities of ACC degradation and phosphate solubilization. This study demonstrates that employing urea can directly enrich biofertilizer-type HOB and copper-tolerant HOB can be obtained in a 5.47 mg/L Cu2+ environment. The results provide potential methods to obtain biofertilizer from copper-containing urea wastewater via HOB.
Collapse
Affiliation(s)
- Yi-Xin Zhang
- Centre of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yong-Xin Li
- Centre of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Zhang
- Centre of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Yun Niu
- Centre of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Raymond Jianxiong Zeng
- Centre of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Li P, Wei X, Wang M, Liu D, Liu J, Pei Z, Shi F, Wang S, Zuo X, Li D, Yu H, Zhang N, Yu Q, Luo Y. Simulation of anaerobic co-digestion of steam explosion pulping wastewater with cattle manure: Focusing on degradation and inhibition of furfural. BIORESOURCE TECHNOLOGY 2023; 380:129086. [PMID: 37100292 DOI: 10.1016/j.biortech.2023.129086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 05/14/2023]
Abstract
In this study, an extended Anaerobic Digestion Model No.1, which considered the degradation and inhibition properties of furfural, was established and implemented to simulate the anaerobic co-digestion of steam explosion pulping wastewater and cattle manure in batch and semi-continuous modes. Batch and semi-continuous experimental data helped calibrate the new model and recalibrate the parameters related to furfural degradation, respectively. The cross-validation results showed the batch-stage calibration model accurately predicted the methanogenic behavior of all experimental treatments (R2 ≥ 0.959). Meanwhile, the recalibrated model satisfactorily matched the methane production results in the stable and high furfural loading stages in the semi-continuous experiment. In addition, recalibration results revealed the semi-continuous system tolerated furfural better than the batch system. These results provide insights into the anaerobic treatments and mathematical simulations of furfural-rich substrates.
Collapse
Affiliation(s)
- Pengfei Li
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Workstation, Harbin 150086, PR China; Heilongjiang Academy of Black Soil Conservation and Utilization, Key Laboratory Combining Farming & Animal Husbandry, Key Laboratory of Straw Energy Utilization, Harbin 150086, PR China
| | - Xinyu Wei
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, PR China
| | - Ming Wang
- Department of Agriculture Biological Environment and Energy Engineering, School of Engineering, Northeast Agriculture University, Harbin 150030, PR China
| | - Di Liu
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Workstation, Harbin 150086, PR China
| | - Jie Liu
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Workstation, Harbin 150086, PR China; Heilongjiang Academy of Black Soil Conservation and Utilization, Key Laboratory Combining Farming & Animal Husbandry, Key Laboratory of Straw Energy Utilization, Harbin 150086, PR China.
| | - Zhanjiang Pei
- Heilongjiang Academy of Black Soil Conservation and Utilization, Key Laboratory Combining Farming & Animal Husbandry, Key Laboratory of Straw Energy Utilization, Harbin 150086, PR China
| | - Fengmei Shi
- Heilongjiang Academy of Black Soil Conservation and Utilization, Key Laboratory Combining Farming & Animal Husbandry, Key Laboratory of Straw Energy Utilization, Harbin 150086, PR China
| | - Su Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization, Key Laboratory Combining Farming & Animal Husbandry, Key Laboratory of Straw Energy Utilization, Harbin 150086, PR China
| | - Xin Zuo
- Heilongjiang Academy of Black Soil Conservation and Utilization, Key Laboratory Combining Farming & Animal Husbandry, Key Laboratory of Straw Energy Utilization, Harbin 150086, PR China
| | - Dan Li
- Heilongjiang Academy of Black Soil Conservation and Utilization, Key Laboratory Combining Farming & Animal Husbandry, Key Laboratory of Straw Energy Utilization, Harbin 150086, PR China
| | - Hongjiu Yu
- Heilongjiang Academy of Black Soil Conservation and Utilization, Key Laboratory Combining Farming & Animal Husbandry, Key Laboratory of Straw Energy Utilization, Harbin 150086, PR China
| | - Nan Zhang
- Heilongjiang Academy of Black Soil Conservation and Utilization, Key Laboratory Combining Farming & Animal Husbandry, Key Laboratory of Straw Energy Utilization, Harbin 150086, PR China
| | - Qiuyue Yu
- Heilongjiang Academy of Black Soil Conservation and Utilization, Key Laboratory Combining Farming & Animal Husbandry, Key Laboratory of Straw Energy Utilization, Harbin 150086, PR China
| | - Yifei Luo
- Heilongjiang Academy of Black Soil Conservation and Utilization, Key Laboratory Combining Farming & Animal Husbandry, Key Laboratory of Straw Energy Utilization, Harbin 150086, PR China
| |
Collapse
|
5
|
Chai A, Wong YS, Ong SA, Lutpi NA, Sam ST, Wirach T, Kee WC, Khoo HC. Exploring the potential of thermophilic anaerobic co-digestion between agro-industrial waste and water hyacinth: operational performance, kinetic study and degradation pathway. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02879-0. [PMID: 37160769 DOI: 10.1007/s00449-023-02879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/26/2023] [Indexed: 05/11/2023]
Abstract
Anaerobic co-digestion (co-AD) of agro-industrial waste, namely, palm oil mill effluent (POME) and sugarcane vinasse (Vn), with water hyacinth (WH) as co-substrate was carried out in two separate Anaerobic Suspended Growth Closed Bioreactors (ASGCBs) under thermophilic (55 °C) conditions. The highest chemical oxygen demand (COD) and soluble COD reduction in co-AD of POME-WH (78.61%, 78.86%) is slightly higher than co-AD of Vn-WH (75.75%, 78.24%). However, VFA reduction in co-AD of POME-WH (96.41%) is higher compared to co-AD of Vn-WH (85.94%). Subsequently, biogas production peaked at 13438 mL/day values and 16122 mL/day for co-AD of POME-WH and Vn-WH, respectively. However, the methane content was higher in the co-AD of POME-WH (72.04%) than in the co-AD of Vn-WH (69.86%). Growth yield (YG), maximum specific substrate utilization rate (rx,max) and maximum specific biomass growth rate (μmax) are higher in co-AD of POME-WH, as supported by the higher mixed liquor volatile suspended solids (MLVSS) and COD reduction efficiency compared to co-AD of Vn-WH. However, methane yield ([Formula: see text]) reported in the co-AD of POME-WH and Vn-WH are 0.2748 and 0.3112 L CH4/g CODreduction, respectively, which suggests that WH is a more suitable co-substrate for Vn compared to POME.
Collapse
Affiliation(s)
- Audrey Chai
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Yee-Shian Wong
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia.
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia.
| | - Soon-An Ong
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Nabilah Aminah Lutpi
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Sung-Ting Sam
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Taweepreda Wirach
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Wei-Chin Kee
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Hwa-Chuan Khoo
- Bio Synergy Laboratories Sdn Bhd, Lot 1109, Mukim Malau, Daerah Kubang PasuJitra, 06000, Kedah, Malaysia
| |
Collapse
|
6
|
Teoh TP, Koo CJ, Ho LN, Wong YS, Lutpi NA, Tan SM, Yap KL, Ong SA. Transformation from biofiltration unit to hybrid constructed wetland-microbial fuel cell: Improvement of wastewater treatment performance and energy recovery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59877-59890. [PMID: 37016256 DOI: 10.1007/s11356-023-26789-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/29/2023] [Indexed: 05/10/2023]
Abstract
This study aimed to compare the performance of biofiltration, constructed wetland, and constructed wetland microbial fuel cell (CW-MFC). The transformation from a biofiltration unit to a hybrid CW-MFC was demonstrated with the advantages of improvement of wastewater treatment while generating electricity simultaneously. The introduction of plants to the upper region of the bioreactor enhanced the DO level by 0.8 mg/L, ammonium removal by 5 %, and COD removal by 1 %. The integration of electrodes and external circuits stimulated the degradation rate of organic matter in the anodic region (1 % without aeration and 3 % with aeration) and produced 5.13 mW/m3 of maximum power density. Artificial aeration improved the nitrification efficiency by 38 % and further removed the residual COD to an efficiency of 99 %. The maximum power density was also increased by 3.2 times (16.71 mW/m3) with the aid of aeration. In treating higher organic loading wastewater (3M), the maximum power density showed a significant increment to 78.01 mW/m3 (4.6-fold) and the COD removal efficiency was 98 %. The ohmic overpotential dominated the proportion of total loss (67-91 %), which could be ascribed to the low ionic conductivity. The reduction in activation and concentration loss contributed to the lower internal resistance with the additional aeration and higher organic loading. Overall, the transformation from biofiltration to a hybrid CW-MFC system is worthwhile since the systems quite resemble while CW-MFC could improve the wastewater treatment as well as recover energy from the treated wastewater.
Collapse
Affiliation(s)
- Tean-Peng Teoh
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Chong-Jing Koo
- Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Li-Ngee Ho
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Yee-Shian Wong
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Nabilah Aminah Lutpi
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Sing-Mei Tan
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Kea-Lee Yap
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Soon-An Ong
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia.
- Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia.
| |
Collapse
|
7
|
Kee WC, Wong YS, Ong SA, Lutpi NA, Sam ST, Dahalan FA, Chai A, Eng KM. Chemical and biological combined treatment for sugarcane vinasse: selection of parameters and performance studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65364-65378. [PMID: 37081370 DOI: 10.1007/s11356-023-27046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Sugarcane vinasse has been reported as a high strength industrial wastewater that could cause severe environmental pollution due to its complex and bio-refractory compounds. Thus, the combined coagulation and sequencing batch biofilm reactor (SBBR) system was employed for the sugarcane vinasse treatment. This study aims to determine the recommended conditions of various parameters under coagulation and SBBR and investigate the effectiveness of combined processes. First, the approach of the coagulation process could achieve the maximum COD reduction and decolorization efficiencies of 79.0 ± 3.4% and 94.1 ± 1.9%, respectively, under the recommended conditions. Next, SBBR as an integrated biofilm reactor showed excellent synergistic biodegradability, removing 86.6 ± 4.3% COD concentration and 94.6 ± 3.8% color concentration at 3.0 g·COD/L of substrate loading concentration. The kinetic studies of SBBR revealed that the first-order kinetic model was the best fit for COD reduction efficiency. In contrast, the second-order kinetic model was the best fit for decolorization efficiency. The SBBR reaction was further investigated by ultraviolet-visible spectrophotometry (UV-Vis). In the combined processes, SBBR followed by the coagulation process (SBBR-CP) showed greater COD reduction and decolorization efficiencies (97.5 ± 0.3 and 99.4 ± 0.1%) when compared to the coagulation process followed by SBBR (CP-SBBR). This study demonstrated the removal performance and potential application of the combined sequential process to produce effluent that can be reused for bioethanol production and fertigation. This finding provides additional insight for developing effective vinasse treatment using combined chemical and biological processes.
Collapse
Affiliation(s)
- Wei-Chin Kee
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Yee-Shian Wong
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia.
- Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia.
| | - Soon-An Ong
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
- Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Nabilah Aminah Lutpi
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
- Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Sung-Ting Sam
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Farrah Aini Dahalan
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
- Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Audrey Chai
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Kim-Mun Eng
- Kenep Resources (Asia) Sdn. Bhd, Taman Perindustrian Ringan Jelapang Maju, No. 31 & 33, Persiaran Jelapang Maju 2, 30020, Ipoh, Perak, Malaysia
| |
Collapse
|
8
|
Keerthana Devi M, Manikandan S, Oviyapriya M, Selvaraj M, Assiri MA, Vickram S, Subbaiya R, Karmegam N, Ravindran B, Chang SW, Awasthi MK. Recent advances in biogas production using Agro-Industrial Waste: A comprehensive review outlook of Techno-Economic analysis. BIORESOURCE TECHNOLOGY 2022; 363:127871. [PMID: 36041677 DOI: 10.1016/j.biortech.2022.127871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Agrowaste sources can be utilized to produce biogas by anaerobic digestion reaction. Fossil fuels have damaged the environment, while the biogas rectifies the issues related to the environment and climate change problems. Techno-economic analysis of biogas production is followed by nutrient recycling, reducing the greenhouse gas level, biorefinery purpose, and global warming effect. In addition, biogas production is mediated by different metabolic reactions, the usage of different microorganisms, purification process, upgrading process and removal of CO₂ from the gas mixture techniques. This review focuses on pre-treatment, usage of waste, production methods and application besides summarizing recent advancements in biogas production. Economical, technical, environmental properties and factors affecting biogas production as well as the future perspective of bioenergy are highlighted in the review. Among all agro-industrial wastes, sugarcane straw produced 94% of the biogas. In the future, to overcome all the problems related to biogas production and modify the production process.
Collapse
Affiliation(s)
- M Keerthana Devi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3# Shaanxi, Yangling 712100, China; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - M Oviyapriya
- Department of Biotechnology, Kamaraj College of Engineering and Technology, Near Virudhunagar, Madurai 625 701, Tamil Nadu, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - N Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea; Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - S W Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3# Shaanxi, Yangling 712100, China.
| |
Collapse
|
9
|
Chai A, Wong YS, Ong SA, Lutpi NA, Sam ST, Kee WC, Eng KM. Kinetic model discrimination on the biogas production in thermophilic co-digestion of sugarcane vinasse and water hyacinth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61298-61306. [PMID: 35441287 DOI: 10.1007/s11356-022-20251-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Co-digestion between sugarcane vinasse (Vn) and water hyacinth (WH) at various mixing ratios of 0:1, 1:0, 1:3, 3:1, and 1:1 was carried out under thermophilic conditions (55 °C) for 60 days. The effect of various mixing ratios on the pH changes, soluble chemical oxygen demand (sCOD) reduction, and cumulative biogas production was investigated. The first order, modified Gompertz, and logistic function kinetic models were selected to fit the experimental data. Model discrimination was conducted through the Akaike Information Criterion (AIC). The study revealed that co-digestion shows better performance compared to the mono-digestion of both substrates. Vn:WH mixing ratio 1:1 with inoculum to substrate ratio (ISR) of 0.38 g VSinoculum/g VSsubstrate is the most favorable ratio, achieving sCOD reduction efficiency and cumulative biogas production of 71.6% and 1229 mL, respectively. Model selection through AIC revealed that ratio 1:1 was best fitted to the logistic function kinetic model (R2 = 0.9897) with Ym and K values of 1232 mL and 31 mL/day, respectively.
Collapse
Affiliation(s)
- Audrey Chai
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Yee-Shian Wong
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia.
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia.
| | - Soon-An Ong
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
| | - Nabilah Aminah Lutpi
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
| | - Sung-Ting Sam
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Wei-Chin Kee
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Kim-Mun Eng
- Kenep Resources (Asia) Sdn. Bhd, Taman Perindustrian Ringan Jelapang Maju, Nos. 31 & 33 Persiaran Jelapang Maju 2, 30020, Ipoh, Perak, Malaysia
| |
Collapse
|