1
|
Yu J, Usman M, Liu F, Schäfer F, Shen Y, Zheng Z, Cai Y. CO 2 agitation combined with magnetized biochar to alleviate "ammonia inhibited steady-state": Exploring the mechanism by combining metagenomics with macroscopic indicators. WATER RESEARCH 2025; 276:123250. [PMID: 39946947 DOI: 10.1016/j.watres.2025.123250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 03/03/2025]
Abstract
The "ammonia inhibited steady-state" phenomenon is frequently observed in the anaerobic digestion (AD) process of nitrogen-rich substrates. Reconfiguring microbial ecosystems has proven to be an effective strategy for mitigating ammonia inhibition. In the current study, biochars were screened and targeted for modification. CO2 agitation combined with magnetized biochar was used to aid the semi-continuous AD systems with "ammonia inhibited steady-state." The results indicated that coconut shell biochar had the best stimulating effect on AD performance. The content of oxygen-containing functional groups (OCFGs), which had a positive correlation with the electron donating capacity (EDC), was targeted to be regulated. This strategy significantly increased the CH4 yield by 31.7 % (from 344 to 278 mL/g VS) (p < 0.05). Isotope tracing and KEGG gene annotation indicated that this strategy stimulated the efficiency of the hydrogenotrophic pathway. Simultaneously, it accelerated the attachment of microorganisms, which made the DIET pathway between bacteria and archaea efficient. Under CO2 agitation, the attachment of functional microorganisms to the biochar accelerated. Biochar weakened the synthesis of bioelectronic carriers (Cyt-c and chemosensory pili), while the electroactivity of the AD system was enhanced. This means that biochar replaced bioelectronic carriers and improved the DIET efficiency. In addition, the strategy had a positive effect on the colonization of simultaneous nitrification-denitrifying bacteria (Georgenia), which led to a decrease in ammonia nitrogen concentrations. This study revealed the mechanism by which this strategy alleviates ammonia inhibition and provided a promising strategy for the efficient AD of nitrogen-rich substrates.
Collapse
Affiliation(s)
- Jiadong Yu
- Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs P. R. China. Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing, 100081, China
| | - Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6 G 2W2, Canada
| | - Fan Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Franziska Schäfer
- Department of Biochemical Conversion, Deutsches Biomassforschungszentrum gemeinnützige GmbH, Torgauer Straße116, 04347 Leipzig, Germany
| | - Yuhan Shen
- Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Zehui Zheng
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Li Y, Yan X, Qin T, Gan Y, Li N, Zheng C. Applicability of blue algae as an activator for microbial enhanced coal bed methane technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123063. [PMID: 39461147 DOI: 10.1016/j.jenvman.2024.123063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
The blue algae can be used as a nitrogen agent for promoting biological coalbed methane, but its applicability and microbial mechanism in different microbial enhanced coalbed methane technologies kept unknown. This study evaluated the methanogenic efficiency of blue algae addition with a mass ratio of 10% under fermentative degradation and microbial electrolytic cell technologies, and studied the changes of coal microstructure, surface functional groups, organic components and microbiome. The results showed that the algae addition affected the micro-concave-convex structure, non-uniform distribution of micro-particles and micro-cracks of coals, and finally increased the methanogenic rate by 1.74-2.66 times. The algae addition mainly affected the coal organic components including hydroxyl structure, hydrocarbon structure, aliphatic oxygen-containing functional groups and aromatic structure, as well increased the humus acids and microbial metabolites in fermentation broth; among them, the increased metabolites showed great differences between different technologies. The algae addition mainly increased the genera belonging to phylum Bacillota (such as Bacillus and Clostridium) and methanogens (Methanosarcina and Methanoculleus). These Bacillota groups could degrade organic matter into acetate and methanol via pathways of glycolysis and benzoate degradation, which provided substrates for such methanogens. This study strengthened the effectiveness of blue algae in enhancing technologies for biological coalbed methane.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Xinyue Yan
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, China
| | - Tianqi Qin
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Ying Gan
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, 232001, China
| | - Na Li
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, China
| | - Chunshan Zheng
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, 232001, China
| |
Collapse
|
3
|
Hu F, Fu N, Wei Q, Wang X, Pan Z, Hu Y. The potential role of iron-carbon micro-electrolysis materials in curtailing lag-phase stimulates kitchen waste anaerobic digestion at different solid contents: Performance, synergistic effect and microbial response. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122733. [PMID: 39378805 DOI: 10.1016/j.jenvman.2024.122733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/19/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
High-solid anaerobic digestion (HSAD) of kitchen waste was generally faced to the common problems such as systemic acidification, prolonged lag-phase time and low methane production. Iron-carbon micro-electrolysis (ICME) materials exhibited advantages that porous structure, large specific surface area and excellent conductivity. It was beneficial for organic compounds to hydrolysis. Moreover, ICME materials could establish direct interspecies electron transfer (DIET) pathway between bacteria and methanogens. ICME materials were commonly used to enhance the AD of wastewater, but they were rarely applied to HSAD of kitchen waste. In this study, ICME materials were utilized to enhance HSAD of kitchen waste at different solid content conditions. The results showed that the highest cumulative biogas yield (705.23 mL/g VS) was obtained in the experimental group (TS = 10%), which was 94.15% higher than that of the control group. At the same time, the addiction of ICME could shorten lag-phase time. Electrochemical characteristics and XPS analysis showed that ICME materials promoted the release of Fe2+ in the AD system and acceleration of direct interspecies electron transfer between microorganisms. Microbial community analysis showed that ICME materials enriched electroactive bacteria (Proteiniphilum), Methanosarcina, Methanobrevibacter and Methanofollis. Functional gene prediction revealed that ICME materials increased the relative abundance of carbohydrate transport and metabolism and coenzyme transport and metabolism. It provided a potential measure to treat kitchen waste.
Collapse
Affiliation(s)
- Fengping Hu
- School of Civil Engineering and Architecture, East China JiaoTong University, Nanchang, 330013, China
| | - Ningxin Fu
- School of Civil Engineering and Architecture, East China JiaoTong University, Nanchang, 330013, China
| | - Qun Wei
- School of Civil Engineering and Architecture, East China JiaoTong University, Nanchang, 330013, China
| | - Xiaofan Wang
- School of Civil Engineering and Architecture, East China JiaoTong University, Nanchang, 330013, China
| | - Zhenni Pan
- School of Civil Engineering and Architecture, East China JiaoTong University, Nanchang, 330013, China
| | - Yuying Hu
- School of Civil Engineering and Architecture, East China JiaoTong University, Nanchang, 330013, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
4
|
Sun S, Wang X, Cheng S, Lei Y, Sun W, Wang K, Li Z. A review of volatile fatty acids production from organic wastes: Intensification techniques and separation methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121062. [PMID: 38735068 DOI: 10.1016/j.jenvman.2024.121062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
High value-added products from organic waste fermentation have garnered increasing concern in modern society. VFAs are short-chain fatty acids, produced as intermediate products during the anaerobic fermentation of organic matter. VFAs can serve as an essential organic carbon source to produce substitutable fuels, microbial fats and oils, and synthetic biodegradable plastics et al. Extracting VFAs from the fermentation broths is a challenging task as the composition of suspensions is rather complex. In this paper, a comprehensive review of methods for VFAs production, extraction and separation are provided. Firstly, the methods to enhance VFAs production and significant operating parameters are briefly reviewed. Secondly, the evaluation and detailed discussion of various VFAs extraction and separation technologies, including membrane separation, complex extraction, and adsorption methods, are presented, highlighting their specific advantages and limitations. Finally, the challenges encountered by different separation technologies and novel approaches to enhance process performance are highlighted, providing theoretical guidance for recycling VFAs from organic wastes efficiently.
Collapse
Affiliation(s)
- Shushuang Sun
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China.
| | - Xuemei Wang
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China.
| | - Shikun Cheng
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Yuxin Lei
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Wenjin Sun
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Kexin Wang
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Zifu Li
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China; International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|
5
|
He K, Liu Y, Tian L, He W, Cheng Q. Review in anaerobic digestion of food waste. Heliyon 2024; 10:e28200. [PMID: 38560199 PMCID: PMC10979283 DOI: 10.1016/j.heliyon.2024.e28200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Due to the special property of food waste (FW), anaerobic digestion of food waste is facing many challenges like foaming, acidification, ammonia nitrogen and (NH4+-N) inhibition which resulted in a low biogas yield. A better understanding on the problems exiting in the FW anaerobic digestion would enhance the bio-energy recovery and increase the stable operation. Meanwhile, to overcome the bottle necks, pretreatment, co-digestion and additives is proposed as well as the solutions to improve biogas yield in FW digestion system. At last, future research directions regarding FW anaerobic digestion were proposed.
Collapse
Affiliation(s)
- Kefang He
- School of Management, Wuhan Polytechnic University, China
| | - Ying Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, China
| | - Longjin Tian
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, China
| | - Wanyou He
- School of Management, Wuhan Polytechnic University, China
| | - Qunpeng Cheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, China
| |
Collapse
|
6
|
Sefeedpari P, Pishgar-Komleh SH, Aarnink AJA. Model Adaptation and Validation for Estimating Methane and Ammonia Emissions from Fattening Pig Houses: Effect of Manure Management System. Animals (Basel) 2024; 14:964. [PMID: 38540061 PMCID: PMC10967431 DOI: 10.3390/ani14060964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/09/2024] [Accepted: 03/08/2024] [Indexed: 04/29/2025] Open
Abstract
This paper describes a model for the prediction of methane and ammonia emissions from fattening pig houses. This model was validated with continuous and discrete measurements using a reference method from two manure management systems (MMS): long storage (LS) in deep pits and short storage (SS) by daily flushing of a shallow pit with sloped walls and partial manure dilution. The average calculated methane and ammonia emissions corresponded well with the measured values. Based on the calculated and measured results, the average calculated CH4 emission (18.5 and 4.3 kg yr-1 per pig place) was in between the means from the continuous data from sensors (15.9 and 5.6 kg yr-1 per pig place) and the means from the discrete measurements using the reference method (22.0 and 3.1 kg yr-1 per pig place) for the LS and SS systems, respectively. The average calculated NH3 emission (2.6 and 1.4 kg yr-1 per pig place) corresponded well with the continuous data (2.6 and 1.2 kg yr-1 per pig place) and the discrete measurements using the reference method (2.7 and 1.0 kg yr-1 per pig place) from LS and SS, respectively. This model was able to predict the reduction potential for methane and ammonia emissions by the application of mitigation options. Furthermore, this model can be utilized as a predictive tool, enabling timely actions to be taken based on the emission prediction. The upgraded model with robust calculation rules, extensive validations, and a simplified interface can be a useful tool to assess the current situation and the impact of mitigation measures at the farm level.
Collapse
Affiliation(s)
- Paria Sefeedpari
- Wageningen Livestock Research, Wageningen University and Research, P.O. Box 135, 6700 AC Wageningen, The Netherlands; (S.H.P.-K.); (A.J.A.A.)
| | | | | |
Collapse
|
7
|
Wang L, He Y, Zhu Y, Ping Q, Li Y. Insight into using hydrochar to alleviate ammonia nitrogen inhibition during anaerobic digestion of waste activated sludge: Performance, metagenomic and metabolomic signatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170196. [PMID: 38246376 DOI: 10.1016/j.scitotenv.2024.170196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
In this study, hydrochar (HCR) was used to alleviate high ammonia inhibition to the anaerobic digestion (AD) of waste activated sludge (WAS) and to elucidate the inner microorganism mechanism. After HCR addition, the cumulative methane yield increased by 73.6 % and 35.6 % under ammonia inhibition levels of 3000 and 6000 mg/L, respectively. Metagenomic analysis showed that HCR enriched the diversity of hydrogenotrophic methanotrophs, and the relative abundances of functional microorganisms with electron transfer capabilities (Geobacteraceae bacterium etc.) were 1.5-7.8 times higher than those without HCR addition. Metabolomics analysis implied that metabolites related to fatty acid degradation, such as glutaric acid and hexadecanal, were downregulated (2.9-15.7 %) under ammonia inhibition conditions and that HCR regulates metabolites in the methane metabolic pathway. Moreover, HCR changed the methanogenic pathway from hydrogenotrophic methanogenesis to multiple pathways under ammonia inhibition conditions, especially methanolic and methylotrophic methanogenesis, which facilitated the methane yield. This study provides valuable information for understanding the inner microbial mechanism of HCR addition on alleviating high ammonia inhibition to AD of WAS, and gives basic knowledge for the application of AD of WAS under ammonia inhibition conditions.
Collapse
Affiliation(s)
- Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Yunpeng He
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Yuting Zhu
- Tongji Architectural Design (Group) Co., Ltd., Environmental Engineering Branch, Shanghai 200092, People's Republic of China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China.
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| |
Collapse
|
8
|
Liu J, Ding Y, Qiu W, Cheng Q, Xu C, Fan G, Song G, Xiao B. Enhancing anaerobic digestion of sulphate wastewater by adding nano-zero valent iron. ENVIRONMENTAL TECHNOLOGY 2023; 44:3988-3996. [PMID: 35546259 DOI: 10.1080/09593330.2022.2077137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
In this paper, the effects of nano-zero valent iron (nZVI) on anaerobic digestion of sulphate wastewater with different SO 4 2 - /COD ratios, including the COD removal rate, methane yield, intermediate products and the change of microbial community structure, were investigated. The results showed that nZVI could effectively enhance the treatment efficiency and methane yield. Compared with the control group without nZVI, the methane yield increased from 348.6833 to 1007.05 mL CH4/gCODremoval with 4 g nZVI loading at SO 4 2 - /COD = 0.1. nZVI could make electron flow from sulphate reduction to methane production, which increased methane yield even at high sulphate concentration. The microbial community analysis showed that adding nZVI could increase the abundance of acetoclastic methanogens, which accelerated hydrolysis acidification.
Collapse
Affiliation(s)
- Jiacheng Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Yongyu Ding
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Wen Qiu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Qunpeng Cheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Chenxi Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Guozhi Fan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Guangsen Song
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Bo Xiao
- School of Environmental Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
9
|
Ngo T, Khudur LS, Krohn C, Hassan S, Jansriphibul K, Hakeem IG, Shah K, Surapaneni A, Ball AS. Wood biochar enhances methanogenesis in the anaerobic digestion of chicken manure under ammonia inhibition conditions. Heliyon 2023; 9:e21100. [PMID: 37920507 PMCID: PMC10618790 DOI: 10.1016/j.heliyon.2023.e21100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
The process of breaking down chicken manure through anaerobic digestion is an effective waste management technology. However, chicken manure can be a challenging feedstock, causing ammonia stress and digester instability. This study examined the impacts of adding wood biochar and acid-alkali-treated wood biochar to anaerobically digest chicken manure under conditions of ammonia inhibition. The results highlighted that only the addition of 5 % acid-alkali-treated wood biochar by volume can achieve cumulative methane production close to the typical methane potential range of chicken manure. The treated wood biochar also exhibited highest total ammonia nitrogen removal compared to the Control treatment. Scanning Electron Microscope revealed growing interactions between biochar and methanogens over time. Real-time polymerase chain reaction showed that treated wood biochar produced the highest number of bacterial biomass. In addition, 16S amplicon-based sequencing identified a more robust archaeal community from treated biochar addition. Overall, the acid-alkali treatment of biochar represents an effective method of modifying biochar to improve its performance in anaerobic digestion.
Collapse
Affiliation(s)
- Tien Ngo
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Leadin S. Khudur
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Christian Krohn
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Soulayma Hassan
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Kraiwut Jansriphibul
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Ibrahim Gbolahan Hakeem
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Kalpit Shah
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Aravind Surapaneni
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
- South East Water, 101 Wells Street, Frankston, VIC 3199, Australia
| | - Andrew S. Ball
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
10
|
Wang S, Wang Z, Usman M, Zheng Z, Zhao X, Meng X, Hu K, Shen X, Wang X, Cai Y. Two microbial consortia obtained through purposive acclimatization as biological additives to relieve ammonia inhibition in anaerobic digestion. WATER RESEARCH 2023; 230:119583. [PMID: 36638729 DOI: 10.1016/j.watres.2023.119583] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Ammonia inhibition is a challenging issue in the anaerobic digestion (AD) of nitrogen-rich substrates and hinders the energy recovery from organic wastes. Bioaugmentation is promising strategy to stabilize AD systems with high ammonia concentration. The composition of microbial consortia often determines their effectiveness in bioaugmentation. Up to now, the effect of various microbial consortia as biological additives on the AD systems is not fully understood. In this study, two microbial consortia (syntrophic microbial consortium, MC, and hydrogenotrophic methanogen consortium, SS) were obtained through two domestication methods, and were applied in a nitrogen-rich AD system. The results showed that the MC and SS treatments could restore AD performance within 21 days and 83 days, respectively. The recovery of digestion performance depended on the methanogenic archaea Methanospirillum, Methanothermobacter, and Methanoculleus in the early and later stages. Analysis of the 13C isotope indicated that both MC and SS enhanced the hydrogenotrophic pathway. The KEGG analysis showed that the MC not only promoted the key enzyme genes in the hydrogenotrophic pathway but also had a positive effect on the related enzyme genes of propionate and butyrate degradation, which was affected by the abundant short-chain fatty acids degrading bacteria, such as Syntrophomonas, Syntrophobacter, and Tissierella in the MC. After recovery of digestion performance, there was no significant difference (p > 0.05) in methane yield between the MS and SS treatments. Therefore, the best intervention period for bioaugmentation is when the digestion performance of the AD system is unstable.
Collapse
Affiliation(s)
- Shilei Wang
- School of Chemical Engineering, Zhengzhou University, Ke xue Dadao 100, Zhengzhou, 450001, China
| | - Zhi Wang
- School of Chemical Engineering, Zhengzhou University, Ke xue Dadao 100, Zhengzhou, 450001, China
| | - Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada
| | - Zehui Zheng
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing, 100193, China
| | - Xiaoling Zhao
- School of Chemical Engineering, Zhengzhou University, Ke xue Dadao 100, Zhengzhou, 450001, China
| | - Xingyao Meng
- Beijing Technology and Business University, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing, 100048, China
| | - Kai Hu
- Shenzhen Derun Biomass Investment Co., Ltd. Shenzhen, 518066, China
| | - Xia Shen
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Xiaofen Wang
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing, 100193, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, Ke xue Dadao 100, Zhengzhou, 450001, China.
| |
Collapse
|
11
|
Su J, Lv W, Ren L, Kong X, Luo L, Awasthi MK, Yan B. Effect of water regime on the dynamics of free ammonia during high solid anaerobic digestion of pig manure. CHEMOSPHERE 2023; 312:137328. [PMID: 36410500 DOI: 10.1016/j.chemosphere.2022.137328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Free ammonia (FAN) inhibition is commonly encountered during high solid anaerobic digestion (HSAD) of pig manure. The performance of HSAD is highly related to its operational water regime; however, little information is available regarding the dynamics of free ammonia with varied water regimes. In this work, four treatments were set with equal amount of water supply but varied addition frequencies, i.e. add once but at different times in treatments T1 and T2, add twice in T3 while it was three times in treatment T4. Results showed that the whole methanogenic process ran smoothly with the average methane gas production rate maintaining at 191.1 LCH4/kgVSadded. Although a higher methane gas production rate of 217.4 LCH4/kgVSadded was achieved in T1, one time water addition triggered a higher ammonia inhibition potential. Cumulative FAN release was 6.03 mgFAN/kgVSadded in T1 while the balance between FAN and ammonia tended to the fraction of FAN. In T4, cumulative FAN of 5.07 mgFAN/kgVSadded was evolved, which was lower than that in T1 but similar to the situation in T2. The lowest FAN was observed in T3, indicating that a moderate frequency of dilution might be conducive to alleviate free ammonia inhibition.
Collapse
Affiliation(s)
- Jian Su
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Wenjuan Lv
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Liheng Ren
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoliang Kong
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
12
|
Mlinar S, Weig AR, Freitag R. Influence of NH 3 and NH 4+ on anaerobic digestion and microbial population structure at increasing total ammonia nitrogen concentrations. BIORESOURCE TECHNOLOGY 2022; 361:127638. [PMID: 35853595 DOI: 10.1016/j.biortech.2022.127638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Despite the extensive research dedicated to ammonia inhibition, the effect of NH3 and NH4+ on each anaerobic digestion stage and the associated microorganisms is still not completely understood. In the past, the focus was mainly on methanogenesis and either on NH3 or total ammonia nitrogen (TAN). Here, anaerobic digestion of two defined substrates, namely starch/NH4Cl and casein, was investigated particularly regarding the effects of different NH3/NH4+ ratios on the involved microorganisms. TAN affected bacteria, primarily gram-positive ones, whereas archaea responded largely to the NH3 concentration. These sensitivity differences are attributed to differences in the corresponding cell-membrane structures. A TAN decrease via stripping performed in two full-scale agricultural biogas plants resulted in increased bacterial diversity, with a pronounced increase in the propionate acetogens' abundance. Based on these data, it is suggested that inhibition can be avoided and processes stabilized in biogas plants by adjusting the NH3/NH4+ ratio, when feeding nitrogen-rich substrates.
Collapse
Affiliation(s)
- Stanislava Mlinar
- Process Biotechnology and Center for Energy Technology (ZET), University of Bayreuth, 95447 Bayreuth, Germany
| | - Alfons R Weig
- Genomics & Bioinformatics, University of Bayreuth, 95447 Bayreuth, Germany
| | - Ruth Freitag
- Process Biotechnology and Center for Energy Technology (ZET), University of Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
13
|
Chairattanawat C, Yulisa A, Hwang S. Effect of fish waste augmentation on anaerobic co-digestion of sludge with food waste. BIORESOURCE TECHNOLOGY 2022; 361:127731. [PMID: 35934246 DOI: 10.1016/j.biortech.2022.127731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The effect of sudden augmentation with fish waste (FW) on an operating anaerobic digester was investigated. Fifteen repeated FW spikes (FWS) composed of 1% or 5% FW per working volume of digester were suddenly fed into semi-continuous operation of a mixture of sludge and food waste. Overall process efficiency was not inhibited by FW augmentation. The bacterial community were clustered differently in the 5% FWS treatment than in the control and 1% FWS. Protein-degrading bacteria (Porphyromonadacea, Family XI, and Family XII) were commonly found in the 5% FWS treatment. Their proportions positively correlated with numbers of other bacteria and dominant methanogens (Methanosaeta and Methanospirillum), showing their important role in FWS digestion. FWS caused a shift of bacteria community, but an increase in archaeal concentration. Therefore, sudden addition of an appropriate amount of FW to existing digesters did not provoke process failure. This result contributes an ecologically-benign method to process FW.
Collapse
Affiliation(s)
- Chayanee Chairattanawat
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Cheongam-ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Arma Yulisa
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Cheongam-ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seokhwan Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Cheongam-ro, Pohang, Gyeongbuk 37673, Republic of Korea; Yonsei University Institute for Convergence Research and Education in Advanced Technology (I-CREATE), 85, Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea.
| |
Collapse
|
14
|
Panigrahi S, Tiwari BR, Brar SK, Kumar Dubey B. Thermo-chemo-sonic pretreatment of lignocellulosic waste: Evaluating anaerobic biodegradability and environmental impacts. BIORESOURCE TECHNOLOGY 2022; 361:127675. [PMID: 35878767 DOI: 10.1016/j.biortech.2022.127675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
In the present study, yard waste was pretreated by thermo-chemo-sonic pretreatment prior to anaerobic digestion to improve its anaerobic biodegradability. First, the pretreatment conditions were optimized using Box-Behnken design based response surface methodology for the maximum organic matter solubilisation. Then, the possible mechanism of delignification by thermo-chemo-sonic pretreatment was discussed. Moreover, the anaerobic digestion performance of untreated yard waste (UYW) and pretreated yard waste (PYW) was compared. The optimum pretreatment condition based on the increase in soluble COD and volatile solids (VS) was: 2997 kJ/kgTS ultrasonic energy, 74 °C, and 10.1 pH. The highest methane yield of 374 ± 28 mL/gVSadded for the PYW at the optimum condition was achieved, which was 37.5 % higher than the UYW (272 ± 16 mL/gVSadded). Finally, the environmental impacts associated with anaerobic digestion of both UYW and PYW were compared. The life cycle assessment confirmed a positive environmental impact of pretreatment.
Collapse
Affiliation(s)
- Sagarika Panigrahi
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India; Department of Biological and Chemical Engineering, Aarhus University, Hangøvej 2, Denmark
| | - Bikash R Tiwari
- Institut National de la recherche scientifique - Centre Eau Terre Environnement, Université du Québec, Quebec City G1K9A9 Canada
| | - Satinder K Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto M3J1P3, Canada
| | - Brajesh Kumar Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India.
| |
Collapse
|
15
|
Ma J, Pan J, Zhang Y, Yao Z, Yu J, Luo J, Shen R, Awasthi MK, Zhao L. Alleviating "inhibited steady-state" in anaerobic digestion of poultry manure by bentonite amendment: Performance evaluation and microbial mechanism. BIORESOURCE TECHNOLOGY 2022; 360:127519. [PMID: 35760244 DOI: 10.1016/j.biortech.2022.127519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
This study systematically evaluated the effects of bentonite as a possible additive to alleviate the "inhibited steady-state" induced by ammonia and acid accumulation during anaerobic digestion. Continuous stirred tank reactors fed with poultry manure were operated at 35 ± 1 °C either with bentonite or not. The results demonstrate that bentonite amendment increased average specific methane production by 35% as suffered from steady-state at an organic loading rate of 6.25 g VS/L·d. 16S rRNA gene amplicon sequencing revealed that the relative abundance of electron-donating Sedimentibacter and Syntrophomonas, and electrophilic Methanosarcina was increased by 110%, 91%, and 49%, respectively. The genera were identified as crucial for alleviating "inhibited steady-state", through establishment of a more robust syntrophic pathway of methanogenic acetate degradation. The enhancement might result from the accelerated electron transfer by bentonite, which is qualified for serving as an exogenetic electron mediator due to containing abundant redox-active metal elements.
Collapse
Affiliation(s)
- Junyi Ma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yulei Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Zonglu Yao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jiadong Yu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Juan Luo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Ruixia Shen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Lixin Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
16
|
Duan H, He P, Zhang H, Shao L, Lü F. Metabolic Regulation of Mesophilic Methanosarcina barkeri to Ammonium Inhibition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8897-8907. [PMID: 35588324 DOI: 10.1021/acs.est.2c01212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Undesirable ammonium concentrations can lead to unstable anaerobic digestion processes, and Methanosarcina spp. are the representative methanogens under inhibition. However, no known work seems to exist for directly exploring the detailed metabolic regulation of pure cultured representative Methanosarcina spp. to ammonium inhibition. We used transcriptomics and proteomics to profile the metabolic regulation of Methanosarcina barkeri to 1, 4, and 7 g N/L of total ammoniacal nitrogen (TAN), where free ammonia concentrations were between 1.5 and 36.1 mg N/L. At the initial stages of ammonium inhibition, the genes participating in the acquisition and assimilation of reduced nitrogen sources showed significant upregulation where the minimal fold change of gene transcription was about 2. Apart from nitrogen metabolism, the transcription of some genes in methanogenesis also significantly increased at the initial stages. For example, the genes encoding alternative heterodisulfide reductase subunits (HdrAB), energy-converting hydrogenase subunit (EchC), and methanophenazine-dependent hydrogenase subunits (VhtAC) were significantly upregulated by at least 2.05 times. For the element translocation at the initial stages, the genes participating in the uptake of ferrous iron, potassium ion, and molybdate were significantly upregulated with a minimal fold change of 2.10. As the cultivation proceeded, the gene encoding the cell division protein subunit (FtsH) was significantly upregulated by 13.0 times at 7 g N/L of TAN; meanwhile, an increment in OD600 was observed at the terminal sampling point of 7 g N/L of TAN. The present study explored the metabolic regulation of M. barkeri in stress response, protein synthesis, signal transduction, nitrogen metabolism, methanogenesis, and element translocation. The results would contribute to the understanding of the metabolic effects of ammonium inhibition on methanogens and have significant practical implication in inhibited anaerobic digestion.
Collapse
Affiliation(s)
- Haowen Duan
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China
- Shanghai Multi-Source Solid Waste Collaborative Treatment and Energy Engineering Technology Research Center, Shanghai 200092, China
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China
| | - Fan Lü
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
17
|
Mercado JV, Koyama M, Nakasaki K. Short-term changes in the anaerobic digestion microbiome and biochemical pathways with changes in organic load. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152585. [PMID: 34953835 DOI: 10.1016/j.scitotenv.2021.152585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Fluctuations in organic loading rate are frequently experienced in practical-scale anaerobic digestion systems. These impose shocks to the microbiome leading to process instability and failure. This study elucidated the short-term changes in biochemical pathways and the contributions of microbial groups involved in anaerobic digestion with varying organic load shocks. A mixture of starch and hipolypeptone corresponding to a carbon-to‑nitrogen ratio of 25 was used as substrate. Batch vial reactors were run using acclimatized sludge fed with organic load varying from 0 to 5 g VS/L. Methane yield decreased with increasing organic load. The microbiome alpha diversity represented as the number of operational taxonomic units (OTUs) and the Shannon index both decreased with organic load indicating microbiome specialization. The biochemical pathways predicted using PICRUSt2 were analyzed along with the corresponding contributions of microbial groups leading to a proposed pathway of substrate utilization. Genus Trichococcus (order Lactobacillales) increased in contribution to starch degradation pathways with increase in organic load while genus Macellibacteroides (order Bacteroidales) was prominent in contribution to bacterial anaerobic digestion pathways. Strictly acetoclastic Methanosaeta increased in prominence over hydrogenotrophic Methanolinea with increase in organic load. Results from this study provide better understanding of how anaerobic digesters respond to organic load shocks.
Collapse
Affiliation(s)
- Jericho Victor Mercado
- School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Mitsuhiko Koyama
- School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kiyohiko Nakasaki
- School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
18
|
Li P, Zhao W, Yan L, Chen L, Chen Y, Gou W, You M, Cheng Q, Chen C. Inclusion of abandoned rhubarb stalk enhanced anaerobic fermentation of alfalfa on the Qinghai Tibetan Plateau. BIORESOURCE TECHNOLOGY 2022; 347:126347. [PMID: 34808318 DOI: 10.1016/j.biortech.2021.126347] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
To investigate the effects of lactic acid bacteria inoculant (LI) and abandoned rhubarb stalk (RS) on the anaerobic fermentation and bacterial community of alfalfa on the Qinghai Tibetan Plateau, the alfalfa was harvested and ensiled without (control) or with LI and RS at ambient temperature (5 ∼ 15℃) for 90 days. Addition of RS at ensiling increased (P < 0.05) lactate, acetate and propionate contents, and decreased (P < 0.05) the final pH value as compared with control. Addition of RS increased (P < 0.05) the bacterial alpha diversity indices, while inherent Lactococcus lactis and/or Lactobacillus sakei dominated the anaerobic fermentation. In particular, addition of RS restricted the growth of yeasts and Lactobacillales at the early stage of ensiling, but continuously stimulated anaerobic fermentation. These indicates that RS could be used as additive to facilitate anaerobic fermentation of alfalfa.
Collapse
Affiliation(s)
- Ping Li
- College of Animal Science, Guizhou University, Guiyang, PR China; Sichuan Academy of Grassland Sciences, Chengdu 611431, PR China
| | - Wenji Zhao
- Sichuan Academy of Grassland Sciences, Chengdu 611431, PR China
| | - Lijun Yan
- Sichuan Academy of Grassland Sciences, Chengdu 611431, PR China
| | - Liangyin Chen
- College of Animal Science, Guizhou University, Guiyang, PR China; Sichuan Academy of Grassland Sciences, Chengdu 611431, PR China
| | - Yulian Chen
- College of Animal Science, Guizhou University, Guiyang, PR China
| | - Wenlong Gou
- Sichuan Academy of Grassland Sciences, Chengdu 611431, PR China
| | - Minghong You
- Sichuan Academy of Grassland Sciences, Chengdu 611431, PR China
| | - Qiming Cheng
- College of Animal Science, Guizhou University, Guiyang, PR China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang, PR China.
| |
Collapse
|