1
|
Rui X, Gong H, Hu J, Yuan H, Wang Y, Yang L, Zhu N. Distribution, removal and potential factors affecting antibiotics occurrence in leachate from municipal solid waste incineration plants in China. WATER RESEARCH 2025; 275:123187. [PMID: 39889445 DOI: 10.1016/j.watres.2025.123187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/10/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Leachate from municipal solid waste (MSW) incineration harbors a plethora of contaminants, including antibiotics and antibiotic resistance genes (ARGs). However, the understanding of such leachate is markedly scant in comparison to that of landfill leachate. In this study, the distribution and removal of 8 sulfonamides (SAs), 4 quinolones (FQs), and 4 macrolides (MLs) antibiotics in leachate from 14 MSW incineration plants in representative cities across different regions of China were investigated. In addition, potential factors affecting the contamination levels of antibiotics and ARGs in fresh leachate were evaluated. The results showed that the total concentration of target antibiotics in fresh leachate ranged from 4406.1 to 14,930.6 ng/L. Notably, the antibiotic distribution in leachate exhibited regional disparities, influenced by economic status, climatic conditions, and waste separation policies. The absolute abundance of total ARGs ranged from 1.3 × 107-4.0 × 108 copies/mL, with the mobile genetic elements intl1 facilitates the dissemination of qnrS, sul1 and sul2. No distinct regional distribution of the ARGs was observed among different cities. Antibiotic and ARGs distributions were significantly correlated with total organic carbon, pH, ammonia nitrogen, heavy metals, and microbial communities. Moreover, SAs were identified as contributors to the proliferation and spread of corresponding ARGs. Fourteen typical "anaerobic-anoxic/aerobic-anoxic/aerobic-ultrafiltration-nanofiltration " treatment processes removed the target antibiotics effectively (76.1 %-97.0 %). Biodegradation was considered to be the dominant antibiotic removal pathway, removing 62.0 %-90.9 % of antibiotics, while sludge adsorption removed only 1.0 %-11.7 %. This research furnishes valuable insights into the fate of antibiotics in MSW incineration leachate.
Collapse
Affiliation(s)
- Xuan Rui
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Hangzhou Environmental Protection Scientific Research and Design Co., Ltd., Hangzhou 310014, PR China
| | - Huabo Gong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jinwen Hu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Haiping Yuan
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Lixia Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle (Nanchang Hangkong University), Nanchang 330063, Jiangxi, PR China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
2
|
Wang N, He Y, Zhang X, Wang Y, Peng H, Zhang J, Zhao X, Chen A, Qi R, Dan Wan, Luo L, He L. Assessment of the combined response of heavy metals and human pathogens to different additives during composting of black soldier fly manure. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138347. [PMID: 40286653 DOI: 10.1016/j.jhazmat.2025.138347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/08/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
The bioconversion of black soldier fly (BSF) is a new model of livestock manure resourcing. However, the biochemical properties of BSF manure are unstable and direct application can be harmful to crops. Therefore, the effect of additives (biochar, humic acid and tea residue) on the removal of heavy metals and pathogens from BSF compost was investigated. Biochar inhibited the availability of Zn (58.9 %) and As (51.7 %) more significantly. Humic acid and tea residue significantly reduced the availability of Zn (60.8 %) and As (42.5 %) respectively. Humic acid and tea residue inhibited the bioavailability index of heavy metals more than biochar. At the end of composting, the total number of pathogenic bacteria was reduced by 80.1-96.0 % and pathogenic fungi by 41.4-99.9 %. Humic acid and biochar are more helpful in inhibiting the growth of pathogens. The abundance of dominant pathogenic genera was reduced by additive modulation. OM, EC, and temperature were the most key factors affecting the pathogenic bacteria. OM, pH, EC, Cu, Zn, and Cr also responded significantly to the pathogenic fungi. This study promotes the efficient conversion of livestock manure via BSF and provided theoretical guidance for the removal of pollutants in compost.
Collapse
Affiliation(s)
- Nanyi Wang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410028, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan 410000, China
| | - Yong He
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410028, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan 410000, China
| | - Xiaobing Zhang
- Hunan Yirun Biotechnology Co., LTD, Changsha, Hunan 410133, China
| | - Ying Wang
- Hunan Yirun Biotechnology Co., LTD, Changsha, Hunan 410133, China
| | - Hua Peng
- Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan 410000, China; Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410028, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan 410000, China; Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, Hunan 410000, China.
| | - Xichen Zhao
- Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan 410000, China; Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, Hunan 410000, China; National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410028, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan 410000, China
| | - Renli Qi
- National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Dan Wan
- Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan 410000, China; Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, Hunan 410000, China; National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Lin Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410028, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan 410000, China
| | - Liuqin He
- Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan 410000, China; Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, Hunan 410000, China; National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Sciences, Chongqing 402460, China.
| |
Collapse
|
3
|
Zhang Y, Lin B, Hao Y, Lu M, Ding D, Niu S, Xiang H, Huang Z, Li J. Two-stage inoculation with lignocellulose-degrading microorganisms in composting: Enhanced humification efficiency and underlying mechanisms. ENVIRONMENTAL RESEARCH 2025; 271:120906. [PMID: 39947380 DOI: 10.1016/j.envres.2025.120906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/19/2025]
Abstract
In this study, lignocellulose-degrading microbes were added to cattle manure and bagasse co-compost through initial- and two-stage inoculations. A comparison was made between the effects of the two inoculations on compost humification parameters, and an investigation was conducted into the dynamic succession of the microbial community, microbial interactions, and amino acid metabolism to uncover the underlying mechanisms. The results showed that two-stage inoculation increased the humus (HS) and humic acid (HA) contents to 86.59 mg/g and 25.80 mg/g, respectively, and achieved a germination index (GI) of 128.77%. At the genus level, it stimulated the growth of Corynebacterium, Thermobifida, and Aspergillus during the high-temperature period, and Luteimonas, Pseudomonas, Actinomadura, and Rhizopus during the maturity period. Two-stage inoculation increased the stability of the bacterial network and microbial cooperation within the fungal network. Additionally, from the cooling to the maturity period, it boosted ten amino acid synthesis pathways. In conclusion, two-stage inoculation is an effective method to promote the maturation and stabilization of co-compost.
Collapse
Affiliation(s)
- Yu Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Binfeng Lin
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yuhao Hao
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Mengling Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - De Ding
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Shiyuan Niu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Hongquan Xiang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Zhi Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
4
|
Wang W, He H, Zhang P, Yan J, He H, Chen X, Wang H, Zhu W, Cui Z, Yuan X. Industrial-scale aerobic composting with the addition of Paenibacillus mucilaginosus: Improving product quality and removing antibiotic resistance genes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124187. [PMID: 39929121 DOI: 10.1016/j.jenvman.2025.124187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025]
Abstract
This study comprehensively investigated the effects of adding Paenibacillus mucilaginosus to industrial-scale compost on compost quality, microbial community dynamics, and antibiotic resistance genes (ARGs). The results of this investigation unequivocally demonstrated that the inclusion of Paenibacillus mucilaginosus prolonged the thermophilic phase of composting, thereby enhancing organic matter decomposition and facilitating nitrogen fraction conversion. Moreover, the inoculation of Paenibacillus mucilaginosus altered the microbial community structure during the rapid heating and thermophilic stages. Significantly, the removal rates of tetM, tetR, and sul1 were 99.84%, 99.68%, and 97.61%, respectively, with inoculation increasing these rates by 8.94%, 9.85%, and 9.34%, respectively, compared to the control (P < 0.05). These findings highlighted the efficacy of incorporating Paenibacillus mucilaginosus into industrial-scale compost as a potent strategy to enhance nutrient transformation processes and mitigate ARG activity.
Collapse
Affiliation(s)
- Weiwei Wang
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Huiban He
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Peng Zhang
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jing Yan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Haoxing He
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiaotian Chen
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hongliang Wang
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wanbin Zhu
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zongjun Cui
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xufeng Yuan
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Liu M, Xu L, Yin Z, He D, Zhang Y, Liu C. Harnessing the potential of exogenous microbial agents: a comprehensive review on enhancing lignocellulose degradation in agricultural waste composting. Arch Microbiol 2025; 207:51. [PMID: 39893606 DOI: 10.1007/s00203-025-04247-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
Composting converts organic agricultural wastes into value-added products, yet the presence of significant non-biodegradable lignocelluloses hinders its efficiency. The introduction of various exogenous microbial agents has been shown to effectively addresses this challenge. In this context, basing on the microbial enzymatic mechanism for lignocellulose degradation, this paper synthesizes the latest research advancements and practical applications of exogenous microbial agents in agricultural waste composting. Given that the effectiveness of lignocellulose degradation is highly dependent on the waste's inherent characteristics, it is crucial to carefully consider the composition of fungi and bacteria, the dosage of microbial agents, and the composting process operation, tailored to the specific type of agricultural waste. Moreover, the combination of additives with exogenous microbial agents can further enhance the degradation of lignocelluloses and the humification of organic matters. Furthermore, insights into the future research and application trends of exogenous microbial agents in agricultural waste composting was prospected.
Collapse
Affiliation(s)
- Meng Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, People's Republic of China
| | - Luxin Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, People's Republic of China
| | - Zhixuan Yin
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, People's Republic of China.
| | - Deming He
- Shanghai Chengtou Shangjing Ecological Restoration Technology Co., Shanghai, 200120, People's Republic of China
| | - Yujia Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, People's Republic of China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, People's Republic of China
| |
Collapse
|
6
|
Liu X, Kong L, Tong L, Zackariah GSK, Zhu R, Li Z, Lv Y. Inoculation with effective microorganisms agent enhanced fungal diversity in the secondary fermentation process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123985. [PMID: 39752954 DOI: 10.1016/j.jenvman.2024.123985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025]
Abstract
Microbial inoculations have emerged as a key approach to address the low natural microbial activity of traditional composting technologies. It is crucial for successfully promoting manure composting to understand the influences of microbial inoculations on fungal communities and its mechanisms. To investigate the effects of microbial inoculation on diversity characteristics, tropic mode, and co-occurrence network of fungal communities during composting, an aerobic composting experiment of chicken manure inoculated with microbial agents was performed. The results showed that microbial inoculations enhanced fungal richness and diversity during the secondary fermentation, promoted beneficial fungi, and restrained pathogenic microbes. Microbial inoculation facilitated saprophytic fungi and symbiotic fungi, augmented fungal network complexity and cooperation during the first fermentation, concurrently impeding fungal network complexity and cooperation during the secondary fermentation. These results provide technical guidance for composting process optimization and compost product quality improving, which was beneficial to promote soil quality and mitigating agricultural non-point source pollution.
Collapse
Affiliation(s)
- Xiayan Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China; Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lingyu Kong
- Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lihong Tong
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China
| | - G S K Zackariah
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rongsheng Zhu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Zhaojun Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.
| | - Yizhong Lv
- Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
7
|
Gu X, Xu G, Liang C, Mektrirat R, Wang L, Zhang K, Meng B, Tang X, Wang X, Egide H, Liu J, Chen H, Zhang M, Zhang J, Wang X, Li J. Optimization of Fermentation Process of Zanthoxylum bungeanum Seeds and Evaluation of Acute Toxicity of Protein Extract in Mice. Foods 2024; 13:4004. [PMID: 39766947 PMCID: PMC11726766 DOI: 10.3390/foods13244004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/15/2025] Open
Abstract
The seeds of Zanthoxylum bungeanum seeds, a high-quality vegetable protein source, encounter application limitations due to their high molecular weight and anti-nutritional factors. This study focused on optimizing the fermentation process by investigating key parameters such as inoculation amount, inoculation ratio, material-to-liquid ratio, fermentation temperature, and fermentation time. Both single-factor experiments and response surface methodology were used to determine the optimal conditions. The effects of fermentation on particle size, surface morphology (scanning electron microscopy), water holding capacity, oil holding capacity, solubility, and emulsification properties of Zanthoxylum bungeanum seed protein were analyzed. In addition, acute toxicity was investigated at doses of 1.5 g/kg, 3 g/kg, 6 g/kg, and 12 g/kg. The results showed that the optimal fermentation conditions were an inoculum concentration of 10%, a ratio of Bacillus subtilis to Lactobacillus plantarum of 1:1, a material-to-liquid ratio of 0.8:1, a temperature of 35 °C, and a fermentation period of 4 days. Under these optimized conditions, the soluble protein content reached 153.1 mg/g. After fermentation, the functional properties of Zanthoxylum bungeanum seed protein improved significantly: the water holding capacity increased by 89%, the oil holding capacity by 68%, while the emulsifying activity and stability indices improved by 6% and 17%, respectively. The macromolecular proteins in the seeds of Zanthoxylum bungeanum were effectively broken down into smaller fragments during fermentation, resulting in a more folded and porous surface structure. In acute toxicity tests, all mice treated with fermented Zanthoxum seed protein survived for more than 7 days after injection, and there were no significant differences in body weight, organ index, and hematological tests between groups, but FZBSP of 1.5 g/kg~12 g/kg caused varying degrees of steatosis and inflammatory damage in the heart and liver. In conclusion, this study confirms that follow-up pilot studies using 1.5 g/kg FZBSP have the potential for further development and utilization.
Collapse
Affiliation(s)
- Xueyan Gu
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| | - Guowei Xu
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| | - Chunhua Liang
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| | - Raktham Mektrirat
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Lei Wang
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| | - Kang Zhang
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| | - Bingbing Meng
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| | - Xi Tang
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| | - Xiaoya Wang
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| | - Hanyurwumutima Egide
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| | - Jiahui Liu
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| | - Haiyu Chen
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| | - Mingxi Zhang
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| | - Jingyan Zhang
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| | - Xuezhi Wang
- Lanzhou Veterinary Research lnstitute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China
| | - Jianxi Li
- Chinese-Thai Traditional Chinese Veterinary Medicine and Techniques Cooperation Laboratory, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (G.X.); (C.L.); (L.W.); (K.Z.); (B.M.); (X.T.); (X.W.); (H.E.); (J.L.); (H.C.); (M.Z.); (J.L.)
| |
Collapse
|
8
|
Yan M, Wang W, Jin L, Deng G, Han X, Yu X, Tang J, Han X, Ma M, Ji L, Zhao K, Zou L. Emerging antibiotic and heavy metal resistance in spore-forming bacteria from pig manure, manure slurry and fertilized soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123270. [PMID: 39541816 DOI: 10.1016/j.jenvman.2024.123270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Spore-forming bacteria (SFB), like Bacillus, are the gram-positive bacteria with broad-spectrum activity that is one of the commonly used strains of probiotics. However, these bacteria also have significant resistance. In this study, we systematically investigated pig manure, manure slurry and soil by 16S rRNA high-throughput sequencing and traditional culture techniques. We found the SFB was widespread in manure, manure slurry and soil, Firmicutes was one of the main dominant phyla in pig manure, manure slurry and soil, the relative abundance of Bacillus were 0.98%, 0.01%, and 2.57%, respectively, and metals such as copper have complex relationships with bacteria. We isolated 504 SFB from 369 samples, with the highest number identified as Bacillus subtilis. SFB strains showed varying degrees of antibiotic resistance; the greatest against erythromycin, followed by imipenem. The MICs of SFB varied greatly against different heavy metals; with high (est) resistance against Zn2+, followed by Cu2+. Second-generation whole genome sequencing (WGS) revealed that nine Bacillus strains carried different subtypes of vancomycin resistance genes, among which vanRM had the highest frequency. The strain W129 included the vanRA-vanRM-vanSA-vanZF cluster. The nine Bacillus strains also contained antibiotic genes such as aminoglycoside (ant(9)-Ia), β-lactam (bcII), and macrolide (msrE). Twenty-six Bacillus isolates carried copper resistance clusters, including csoR-copZ, copA-copZ-csoR, and copZ-copA. WGS showed that strain W166 carried 11 vancomycin resistance genes and 11 copper resistance genes. There were 4 vancomycin resistance genes and 14 copper resistance genes on the W129 chromosome. Strain W129 also harbors the plasmid pLKYM01 that contains an intact transposon consisting of insertion sequence and vancomycin resistance genes vanYF and vanRA. This study explores the potential risks of using pig manure and fertilized soil to inform safe and effective use of probiotics in agriculture. It highlights scientific evidence for concern over the safe utilization and control of animal waste products.
Collapse
Affiliation(s)
- Min Yan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lei Jin
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Guoyou Deng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xinfeng Han
- College of Veterinary Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Junni Tang
- College of Food Sciences and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lin Ji
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
9
|
Liu T, Tong D, Chen S, Ning C, Zhang X, Filimonenko E, Aloufi AS, Cai W, Farooq A, Liu G, Kuzyakov Y, Yan W. Fertilization shapes microbial life strategies, carbon and nitrogen metabolic functions in Camellia oleifera soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122896. [PMID: 39423612 DOI: 10.1016/j.jenvman.2024.122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/13/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Mineral and organic fertilizers as well as microbial inoculations are crucial to maintain and to improve soil health and quality, ecosystem functions, and fruit yield in Camellia oleifera plantations. However, how these fertilizers shape the life strategies and functions of microbial communities in soil is unclear. Here, we conducted a one-year field experiment with three types of fertilizers: mineral (NPK), manure (Man), and microbial (MicrF), and analyzed soil properties, bacterial and fungal communities to assess microbial life strategies, functional traits and their determinants. The application of MicrF strongly increased the diversity of both soil bacterial (by 6.4%) and fungal communities (by 23%). Organic matter inputs from Man and MicrF had greater effects on the life strategies of bacteria than fungi: the dominant r-strategy bacteria (Proteobacteria, Bacteroidetes, and Actinobacteria) increased with Man and MicrF, but K-strategists (Acidobacteria) decreased. Conversely, the abundance of r-strategy fungi (Ascomycota) decreased, but that of K-fungi (Basidiomycota) increased. Predictions of the functions indicated that microbial fertilization accelerated the bacterial carbohydrates, carbon and nitrogen metabolism, while also increasing the prevalence of wood saprotrophic fungi. The changes in the taxonomic and functional characteristics of the microbial communities induced priming effects by co-metabolism, which were mainly regulated by contents of soil organic carbon, available phosphorus, and ammonium nitrogen, as well as carbon to nitrogen ratio. The application of MicrF is an effective approach to increase the diversity and multifunctionality of soil microbial communities in Camellia oleifera plantations, including organic matter decomposition, carbon and nitrogen metabolism. These findings provide valuable insights into the fertilizer regimes based on microbial ecological strategies and functional profiles in Camellia oleifera plantations.
Collapse
Affiliation(s)
- Ting Liu
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; Lutou National Station for Scientific Observation and Research of Forest Ecosystems, Yueyang, 414000, Hunan, China.
| | - Dandan Tong
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Shu Chen
- School of Earth Systems and Sustainability, Southern Illinois University Carbondale, Carbondale, IL, 62901, United States
| | - Chen Ning
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Xuyuan Zhang
- Lutou National Station for Scientific Observation and Research of Forest Ecosystems, Yueyang, 414000, Hunan, China
| | - Ekaterina Filimonenko
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, 625003, Russia
| | - Abeer S Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Wenyan Cai
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Asma Farooq
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Gaoqiang Liu
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Yakov Kuzyakov
- Peoples Friendship University of Russia (RUDN University), Moscow, 117198, Russia; Institute of Environmental Sciences, Kazan Federal University, Kazan, 420049, Russia; Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, Göttingen, 37077, Germany
| | - Wende Yan
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; Lutou National Station for Scientific Observation and Research of Forest Ecosystems, Yueyang, 414000, Hunan, China.
| |
Collapse
|
10
|
Huang B, Chen Y, Cao Y, Liu D, Fang H, Zhou C, Wang D, Wang J. The structure and function of rhizosphere bacterial communities: impact of chemical vs. bio-organic fertilizers on root disease, quality, and yield of Codonopsis pilosula. Front Microbiol 2024; 15:1484727. [PMID: 39498142 PMCID: PMC11532114 DOI: 10.3389/fmicb.2024.1484727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/04/2024] [Indexed: 11/07/2024] Open
Abstract
Introduction Long-term use of chemical fertilizers (CFs) can cause soil compaction and acidification. In recent years, bio-organic fertilizers (BOFs) have begun to replace CFs in some vegetables and cash crops, but the application of CFs or BOFs has resulted in crop quality and disease occurrence. Methods This study aimed to analyze the microbial mechanism of differences between CFs and BOFs in root disease, quality, and yield of tuber Chinese herbal medicine. We studied the effects of CFs, organic fertilizers, commercial BOFs, biocontrol bacteria BOFs, and biocontrol fungi BOFs on rhizosphere microbial community structure and function, root rot, quality, and yield of Codonopsis pilosula at different periods after application and analyzed the correlation. Results and discussion Compared to CFs, the emergence rate and yield in BOF treatments were increased by 21.12 and 33.65%, respectively, and the ash content, water content, and disease index in the BOF treatments were decreased by 17.87, 8.19, and 76.60%, respectively. The structural equation model showed that CFs promoted the quality and yield of C. pilosula by influencing soil environmental factors, while BOFs directly drove soil bacterial community to reduce disease index and improve the quality and yield of C. pilosula. There was a stronger interaction and stability of soil microbial networks after BOF treatments. Microlunatus, Rubrobacter, Luteitalea, Nakamurella, and Pedomicrobium were identified as effector bacteria, which were related to disease prevention and yield and quality increase of C. pilosula. Microbial functional analysis indicated that the signal transduction and amino acid metabolism of soil bacteria might play a major role in improving the quality and yield of C. pilosula in the early and middle growth stages. In conclusion, compared to CFs, BOFs obtained a lower disease index of root rot and a higher quality and yield of C. pilosula by changing the structure and function of the rhizosphere bacterial community.
Collapse
Affiliation(s)
- Bin Huang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yuxuan Chen
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yi Cao
- Guizhou Academy of Tobacco Science, Guiyang, China
| | - Dongyang Liu
- Institute and Enterprise Joint Creation of Tobacco Technology Center, Sichuan Provincial Tobacco Company Liangshanzhou Company, Liangshanzhou, China
| | - Hua Fang
- Shandong Hezhong Kangyuan Biotechnology Co., Ltd, Zibo, Shandong, China
| | - Changchun Zhou
- Shandong Hezhong Kangyuan Biotechnology Co., Ltd, Zibo, Shandong, China
| | - Dong Wang
- Department of Vector Biology and Contro, Jinan Center for Disease Control and Prevention, Jinan, China
| | - Jie Wang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
11
|
He J, Jiang X, Qiu Q, Miruka AC, Xu X, Zhang A, Li X, Gao P, Liu Y. Ionic liquid coupled plasma promotes acetic acid production during anaerobic fermentation of waste activated sludge: Breaking the restrictions of low bioavailable substrates and altering the metabolic activities of anaerobes. WATER RESEARCH 2024; 261:122048. [PMID: 38981353 DOI: 10.1016/j.watres.2024.122048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
This study explored the potential application of plasma coupling ionic liquid on disintegration of waste activated sludge and enhanced production of short-chain fatty acids (SCFAs) in anaerobic fermentation. Under optimal conditions (dosage of ionic liquid [Emim]OTf = 0.1 g/g VSS (volatile suspended solids) and discharge power of dielectric barrier discharge plasma (DBD) = 75.2 W), the [Emim]OTf/DBD pretreatment increased SCFA production by 302 % and acetic acid ratio by 53 % compared to the control. Mechanistic investigations revealed that the [Emim]OTf/DBD combination motivated the generation of various reactive species (such as H2O2, O3, •OH, 1O2, ONOO-, and •O2-) and enhanced the utilization of physical energies (such as heat). The coupling effects of [Emim]OTf/DBD synergistically improved the disintegration of sludge and biodegradability of dissolved organic matter, promoting the sludge anaerobic fermentation process. Moreover, the [Emim]OTf/DBD pretreatment enriched hydrolysis and SCFAs-forming bacteria while inhibiting SCFAs-consuming bacteria. The net effect was pronounced expression of genes encoding key enzymes (such as alpha-glucosidase, endoglucanase, beta-glucosidase, l-lactate/D-lactate dehydrogenase, and butyrate kinase) involved in the SCFA-producing pathway, enhancing the production of SCFAs from sludge anaerobic fermentation. In addition, [Emim]OTf/DBD pretreatment facilitated sludge dewatering and heavy metal removal. Therefore, [Emim]OTf/DBD pretreatment is a promising approach to advancing sludge reduction, recyclability, and valuable resource recovery.
Collapse
Affiliation(s)
- Jinling He
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xinyuan Jiang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Qi Qiu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Andere Clement Miruka
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; School of Chemistry and Material Science, Technical University of Kenya, Nairobi 52428-00200, Kenya
| | - Xianbao Xu
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, Gdansk 80-233, Poland
| | - Ai Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai institute of pollution control and ecological security, Shanghai 200092, China; National Circular Economy Engineering Laboratory, Shanghai 201620, China.
| | - Xiang Li
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai institute of pollution control and ecological security, Shanghai 200092, China; National Circular Economy Engineering Laboratory, Shanghai 201620, China
| |
Collapse
|
12
|
Xu X, Wang Q, Yang L, Chen Z, Zhou Y, Feng H, Zhang P, Wang J. Effects of Exocellobiohydrolase CBHA on Fermentation of Tobacco Leaves. J Microbiol Biotechnol 2024; 34:1727-1737. [PMID: 39049482 PMCID: PMC11380505 DOI: 10.4014/jmb.2404.04028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
The quality of tobacco is directly affected by macromolecular content, fermentation is an effective method to improve biochemical properties. In this study, we utilized CBHA (cellobiohydrolase A) glycosylase, which was expressed by Pichia pastoris, as an additive for fermentation. The contents of main chemical components of tobacco leaves after fermentation were determined, and the changes of microbial community structure and abundance in tobacco leaves during fermentation were analyzed. The relationship between chemical composition and changes in microbial composition was investigated, and the function of bacteria and fungi in fermentation was predicted to identify possible metabolic pathways. After 48 h of CBHA fermentation, the contents of starch, cellulose and total nitrogen in tobacco leaf decreased by 17.60%, 28.91% and 16.05%, respectively. The microbial community structure changed significantly, with Aspergillus abundance decreasing significantly, while Filobasidum, Cladosporium, Bullera, Komagataella, etc., increased in CBHA treated group. Soluble sugar was most affected by microbial community in tobacco leaves, which was negatively correlated with starch, cellulose and total nitrogen. During the fermentation process, the relative abundance of metabolism-related functional genes increased, and the expressions of cellulase and endopeptidase also increased. The results showed that the changes of bacterial community and dominant microbial community on tobacco leaves affected the content of chemical components in tobacco leaves, and adding CBHA for fermentation had a positive effect on improving the quality of tobacco leaves.
Collapse
Affiliation(s)
- Xueqin Xu
- China Tobacco Guangxi Industrial Co., Ltd., P.R. China
| | - Qianqian Wang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P. R. China
| | - Longyan Yang
- China Tobacco Guangxi Industrial Co., Ltd., P.R. China
| | - Zhiyan Chen
- China Tobacco Guangxi Industrial Co., Ltd., P.R. China
| | - Yun Zhou
- China Tobacco Guangxi Industrial Co., Ltd., P.R. China
| | - Hui Feng
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P. R. China
| | - Peng Zhang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P. R. China
| | - Jie Wang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P. R. China
| |
Collapse
|
13
|
Liu J, Sun P, Chen Y, Guo J, Liu L, Zhao X, Xin J, Liu X. The regulation pathways of biochar and microorganism in soil-plant system by multiple statistical methods: The forms of carbon participation in coastal wetlands. CHEMOSPHERE 2024; 362:142918. [PMID: 39043273 DOI: 10.1016/j.chemosphere.2024.142918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/25/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
Coastal wetlands possess significant carbon storage capabilities. However, in coastal soil-plant systems augmented with biochar and microorganisms, the mechanisms of these amendments and carbon participation remain unclear. This study utilized pot experiments to explore how Enteromorpha prolifera biochar and Arbuscular mycorrhizal fungi (AMF) affect soil organic carbon (SOC), carbon-related microbes, photosynthetic and osmotic system of Suaeda salsa. The results showed biochar reduced exchangeable sodium percentage by 6.9% through adsorption and ion exchange, and increased SOC content by 34.4%. The abundance of carbon-related microorganisms (Bacteroidota and Chloroflexi) was increased and carbon metabolizing enzyme (cellulase and sucrase) activity in the soil was enhanced. AMF significantly improved plant growth compared with CK, as evidenced by the enhanced dry weight by 2.34 times. A partial least squares pathway model (PLS-PM) and correlation analysis suggested that the combined effect of biochar and AMF could be outlined as two pathways: soil and plant. Biochar increased SOC, improved the growth of soil carbon metabolizing microorganisms, and further promoted the activity of carbon-related enzymes. Additionally, AMF facilitated nutrient absorption by plants through root symbiosis, with biochar further enhancing this process by acting as a nutrient adsorber. These combined effects of biochar and AMF at soil and plant level enhanced the photosynthetic process of Suaeda salsa. The transport of photosynthetic products to the roots can increase the carbon storage in the soil. This study provides quantitative evidence supporting the increase of carbon storage in coastal wetland soil-plant systems through a combined application of biochar and AMF.
Collapse
Affiliation(s)
- Jiaxin Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Ping Sun
- Key Laboratory of Geological Safety of Coastal Urban Underground Space (Qingdao Geo-Engineering Surveying Institute), Qingdao, 266101, China
| | - Youyuan Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Jiameng Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Lecheng Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xinyue Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jia Xin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaoli Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
14
|
Cen Q, Fan J, Zhang R, Chen H, Hui F, Li J, Zeng X, Qin L. Impact of Ganoderma lucidum fermentation on the nutritional composition, structural characterization, metabolites, and antioxidant activity of Soybean, sweet potato and Zanthoxylum pericarpium residues. Food Chem X 2024; 21:101078. [PMID: 38205161 PMCID: PMC10776642 DOI: 10.1016/j.fochx.2023.101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
One of the major issues in the food sector is the lack of resource utilization and the contamination of the environment caused by by-products. This study aimed to investigate the effects of Ganoderma lucidum (GL) fermentation on the nutritional components, structural characterization, metabolites, and antioxidant activity of soybean residue (SR), sweet potato residue (SPR), and zanthoxylum pericarpium residue (ZPR). The results showed that the nutrient contents of SR, SPR and ZPR increased. The active substances, amino acids (umami, aromatic and basic), metabolites and antioxidant activity (DPPH, ABTS, FRAP) (SR and SPR increased by 11.43, 32.64, 40.19 μmol Trolox/100 g and 19.29, 17.7, 32.35 μmol Trolox/100 g, respectively) of SR and SPR were increased. However, the results of ZPR showed a decrease in the content of bioactive substances, amino acids, and antioxidant activity. The results show that using GL fermentation can provide novel ideas and theoretical basis for improving SR and SPR to obtain new raw materials for antioxidant products.
Collapse
Affiliation(s)
- Qin Cen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Jin Fan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Rui Zhang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Hongyan Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Fuyi Hui
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Jiamin Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Xuefeng Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| | - Likang Qin
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550000, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang 550000, China
| |
Collapse
|
15
|
Ohore OE, Zhang J, Ifon BE, Kumwimba MN, Mu X, Kuang D, Wang Z, Gu JD, Yang G. Microbial phylogenetic divergence between surface-water and sedimentary ecosystems drove the resistome profiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170122. [PMID: 38232840 DOI: 10.1016/j.scitotenv.2024.170122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Antibiotic pollution and the evolution of antibiotic resistance genes (ARGs) are increasingly viewed as major threats to both ecosystem security and human health, and have drawn attention. This study investigated the fate of antibiotics in aqueous and sedimentary substrates and the impact of ecosystem shifts between water and sedimentary phases on resistome profiles. The findings indicated notable variations in the concentration and distribution patterns of antibiotics across various environmental phases. Based on the partition coefficient (Kd), the total antibiotic concentration was significantly greater in the surface water (1405.45 ng/L; 49.5 %) compared to the suspended particulate matter (Kd = 0.64; 892.59 ng/g; 31.4 %) and sediment (Kd = 0.4; 542.64 ng/g; 19.1 %). However, the relative abundance of ARGs in surface water and sediment was disproportionate to the abundance of antibiotics concentration, and sediments were the predominant ARGs reservoirs. Phylogenetic divergence of the microbial communities between the surface water and the sedimentary ecosystems potentially played important roles in driving the ARGs profiles between the two distinctive ecosystems. ARGs of Clinical importance; including blaGES, MCR-7.1, ermB, tet(34), tet36, tetG-01, and sul2 were significantly increased in the surface water, while blaCTX-M-01, blaTEM, blaOXA10-01, blaVIM, tet(W/N/W), tetM02, and ermX were amplified in the sediments. cfxA was an endemic ARG in surface-water ecosystems while the endemic ARGs of the sedimentary ecosystems included aacC4, aadA9-02, blaCTX-M-04, blaIMP-01, blaIMP-02, bla-L1, penA, erm(36), ermC, ermT-01, msrA-01, pikR2, vgb-01, mexA, oprD, ttgB, and aac. These findings offer a valuable information for the identification of ARGs-specific high-risk reservoirs.
Collapse
Affiliation(s)
- Okugbe Ebiotubo Ohore
- Key Laboratory of Tropical Diseases Control, National Health Commission, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China.
| | - Jingli Zhang
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Binessi Edouard Ifon
- Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China; Laboratory of Physical Chemistry, University of Abomey-Calavi, Cotonou 01 BP 4521, Benin
| | - Mathieu Nsenga Kumwimba
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoying Mu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dai Kuang
- Key Laboratory of Tropical Diseases Control, National Health Commission, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Zhen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Ji-Dong Gu
- Environmental Science and Engineering Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Jinping District, Shantou, Guangdong 515063, China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Jinping District, Shantou, Guangdong 515063, China
| | - Guojing Yang
- Key Laboratory of Tropical Diseases Control, National Health Commission, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China; The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
16
|
Liu N, Liu Z, Wang K, Zhao J, Fang J, Liu G, Yao H, Pan J. Comparison analysis of microbial agent and different compost material on microbial community and nitrogen transformation genes dynamic changes during pig manure compost. BIORESOURCE TECHNOLOGY 2024; 395:130359. [PMID: 38272144 DOI: 10.1016/j.biortech.2024.130359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
This study aimed to assess the impact of microbial agent and different compost material, on physicochemical parameters dynamic change, nitrogen-transfer gene/bacterial community interaction network during the pig manure composting. Incorporating a microbial agent into rice straw-mushroom compost reduced the NH3 and total ammonia emissions by 25.52 % and 14.41 %, respectively. Notably, rice straw-mushroom with a microbial agent reduced the total ammonia emissions by 37.67 %. NH4+-N and pH emerged as primary factors of phylum-level and genus-level microorganisms. Microbial agent increased the expression of narG, nirK, and nosZ genes. Rice straw-mushroom elevated the content of amoA, nirK, nirS, and nosZ genes. Alcanivorax, Luteimonas, Pusillimonas, Lactobacillus, Aequorivita, Clostridium, Moheibacter and Truepera were identified as eight core microbial genera during the nitrogen conversion process. This study provides a strategy for reducing ammonia emissions and analyzes the potential mechanisms underlying compost processes.
Collapse
Affiliation(s)
- Naiyuan Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
| | - Zhuangzhuang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
| | - Keyu Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
| | - Jinfeng Zhao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China.
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
| | - Hao Yao
- Changsha IMADEK Intelligent Technology Co., LTD, China
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
17
|
Huang B, Lv X, Zheng H, Yu H, Zhang Y, Zhang C, Wang J. Microbial organic fertilizer prepared by co-composting of Trichoderma dregs mitigates dissemination of resistance, virulence genes, and bacterial pathogens in soil and rhizosphere. ENVIRONMENTAL RESEARCH 2024; 241:117718. [PMID: 37995998 DOI: 10.1016/j.envres.2023.117718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
The use of manure, mycelium dregs and other waste as organic fertilizer is the main source of antibiotic resistance genes (ARGs) and pathogens in farmland. Composting of waste may effectively remove ARGs and pathogens. However, the profiles and drivers of changes in metal resistance genes (MRGs), biocide resistance genes (BRGs), and virulence genes (VGs) in soil-crop rhizosphere systems after compost application remain largely unknown. Here, we prepared two kinds of microbial organic fertilizers (MOF) by using Trichoderma dregs (TDs) and organic fertilizer mixing method (MOF1) and TDs co-composting method (MOF2). The effects of different types and doses of MOF on resistance genes, VGs and pathogens in soil-rhizosphere system and their potential mechanisms were studied. The results showed that co-composting of TDs promoted the decomposition of organic carbon and decreased the absolute abundance of ARGs and mobile genetic elements (MGEs) by 53.4-65.0%. MOF1 application significantly increased the abundance and diversity of soil ARGs, BRGs, and VGs, while low and medium doses of MOF2 significantly decreased their abundance and diversity in soil and rhizosphere. Patterns of positive co-occurrence between MGEs and VGs/MRGs/BRGs/ARGs were observed through statistical analysis and gene arrangements. ARGs/MRGs reductions in MOF2 soil were directly driven by weakened horizontal gene transfer triggered by MGEs. Furthermore, MOF2 reduced soil BRGs/VGs levels by shifting bacterial communities (e.g., reduced bacterial host) or improving soil property. Our study provided new insights into the rational use of waste to minimize the spread of resistomes and VGs in soil.
Collapse
Affiliation(s)
- Bin Huang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiaolin Lv
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Haitao Yu
- Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Yu Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Chengsheng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Jie Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
18
|
Xu P, Shu L, Yang Y, Kumar S, Tripathi P, Mishra S, Qiu C, Li Y, Wu Y, Yang Z. Microbial agents obtained from tomato straw composting effectively promote tomato straw compost maturation and improve compost quality. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115884. [PMID: 38154152 DOI: 10.1016/j.ecoenv.2023.115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Appropriate management of agricultural organic waste (AOW) presents a significant obstacle in the endeavor to attain sustainable agricultural development. The proper management of AOW is a necessity for sustainable agricultural development. This can be done skillfully by incorporating microbial agents in the composting procedure. In this study, we isolated relevant bacteria strains from tomato straw AOW, which demonstrated efficient degradation of lignocellulose without any antagonistic effects in them. These strains were then combined to create a composite microbial agent called Zyco Shield (ZS). The performance of ZS was compared with a commercially effective microorganism (EM) and a control CK. The results indicate that the ZS treatment significantly prolonged the elevated temperature phase of the tomato straw pile, showing considerable degradation of lignocellulosic material. This substantial degradation did not happen in the EM and CK treatments. Moreover, there was a temperature rise of 4-6 ℃ in 2 days of thermophilic phase, which was not the case in the EM and CK treatments. Furthermore, the inoculation of ZS substantially enhanced the degradation of organic waste derived from tomato straw. This method increased the nutrient content of the resulting compost and elevated the enzymatic activity of lignocellulose-degrading enzymes, while reducing the urease enzyme activity within the pile. The concentrations of NH4+-N and NO3--N showed increases of (2.13% and 47.51%), (14.81% and 32.17%) respectively, which is again very different from the results of the EM and CK treatments. To some extent, the alterations observed in the microbial community and the abundance of functional microorganisms provide indirect evidence supporting the fact that the addition of ZS microbial agent facilitates the composting process of tomato straw. Moreover, we confirmed the degradation process of tomato straw through X-ray diffraction, Fourier infrared spectroscopy, and by scanning electron microscopy to analyze the role of ZS microbial inoculum composting. Consequently, reinoculation compost strains improves agricultural waste composting efficiency and enhances product quality.
Collapse
Affiliation(s)
- Peng Xu
- School of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luolin Shu
- School of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanyuan Yang
- School of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sunil Kumar
- Colleges of Sciences and Engineering, University of Tasmania, Launceston Campus, Private Bag 51, Hobart, TAS 7001, Australia
| | - Priyanka Tripathi
- Colleges of Sciences and Engineering, University of Tasmania, Launceston Campus, Private Bag 51, Hobart, TAS 7001, Australia
| | - Sita Mishra
- Colleges of Sciences and Engineering, University of Tasmania, Launceston Campus, Private Bag 51, Hobart, TAS 7001, Australia
| | - Chun Qiu
- School of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Li
- School of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongjun Wu
- School of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenchao Yang
- School of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
19
|
Pino-Hurtado MS, Fernández-Fernández R, Torres C, Robredo B. Searching for Antimicrobial-Producing Bacteria from Soils through an Educational Project and Their Evaluation as Potential Biocontrol Agents. Antibiotics (Basel) 2023; 13:29. [PMID: 38247588 PMCID: PMC10812812 DOI: 10.3390/antibiotics13010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
Antimicrobial resistance (AMR) is a serious threat to public health due to the lack of effective drugs to combat infectious diseases, which generates the need to search for new antimicrobial substances. In this study, the potential of soil as a source of antimicrobial-producing bacteria (APB) was investigated and the importance of the connection between education and science was emphasized, using service-learning methodologies. Sixty-one soil samples were collected, and 1220 bacterial isolates were recovered. Eighteen of these isolates showed antimicrobial activity against at least 1 of the 12 indicator bacteria tested (including multidrug-resistant and relevant pathogens). The 18 APB were identified by MALDI-TOF and 6 different genera (Bacillus, Brevibacillus, Lysinobacillus, Peribacillus, Streptomyces, and Advenella) and 10 species were identified. The 18 APB were tested for antifungal activity against four phytopathogenic fungi (Botritis cynerea, Lecanicillium fungicola, Trichoderma harzianum, and Cladobotryum mycophilum). Moreover, the antibiotic susceptibility of APB was tested using the disk-diffusion method as well as their β-hemolytic activity (important safety criteria for potential future applications). A total of 10 of the 18 APB were able to inhibit at least 50% of indicator bacteria tested, including methicillin-resistant Staphylococcus aureus (MRSA), among others. A total of 4 of the 18 APB (3 Bacillus pumilus and 1 Bacillus altitudinis) showed inhibitory activity against two of the four fungal pathogens tested (B. cinerea and L. fungicola), as well as against 5-7 of the 12 bacterial pathogen indicators; these 4 isolates showed susceptibility to the antibiotics tested and lacked β-hemolytic activity and were considered promising APB for use as potential biocontrol agents. In addition, one Brevibacillus laterosporus strain had activity against 83% of indicator bacteria tested including Escherichia coli, MRSA and other methicillin-resistant staphylococci, as well as vancomycin-resistant enterococci (but not against fungi). These results show that soil is a source of APB with relevant antibacterial and antifungal activities, and also emphasize the importance of education and science to raise public awareness of the AMR problem and the strategies to control it.
Collapse
Affiliation(s)
- Mario Sergio Pino-Hurtado
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (M.S.P.-H.); (R.F.-F.); (C.T.)
| | - Rosa Fernández-Fernández
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (M.S.P.-H.); (R.F.-F.); (C.T.)
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (M.S.P.-H.); (R.F.-F.); (C.T.)
| | - Beatriz Robredo
- Area of Didactic of Experimental Sciences, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain
| |
Collapse
|
20
|
Shang XC, Zhang M, Zhang Y, Hou X, Yang L. Waste seaweed compost and rhizosphere bacteria Pseudomonas koreensis promote tomato seedlings growth by benefiting properties, enzyme activities and rhizosphere bacterial community in coastal saline soil of Yellow River Delta, China. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 172:33-42. [PMID: 37708810 DOI: 10.1016/j.wasman.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 08/17/2023] [Accepted: 09/02/2023] [Indexed: 09/16/2023]
Abstract
This study investigated the effects of waste seaweed compost and rhizosphere bacteria Pseudomonas koreensis HCH2-3 on the tomato seedlings growth in coastal saline soils and chemical properties, enzyme activities, microbial communities of rhizosphere soil. Microcosmic experiment showed that the seaweed compost and rhizosphere bacteria (SC + HCH2-3) significantly alleviated the negative effects of salinity on the growth of tomato seedlings. SC + HCH2-3 amendment significantly increased the plant height and root fresh biomass of tomato seedling by 105.59% and 55.60% in the coastal saline soils, respectively. The soil properties and enzyme activities were also dramatically increased, indicating that the nutrient status of coastal saline soil was improved by SC + HCH2-3 amendment. In addition, Proteobacteria, Actinobacteriota and Firmicutes were the dominant phyla in the rhizosphere soil after adding seaweed compost and rhizosphere bacteria P. koreensis HCH2-3. The relative abundances of Massilia, Azospira, Pseudomonas and Bacillus increased in treatment SC + HCH2-3. Especially, the beneficial bacteria genera, such as Pseudomonas, Bacillus and Azospira, were significantly correlated with the increases of contents of total nitrogen, nitrate nitrogen and ammonium nitrogen in tomato rhizosphere soil samples. Consequently, adding waste seaweed compost and rhizosphere bacteria P. koreensis HCH2-3 into coastal saline soil was suggested as an effective method to relieve salt stress of tomato plants.
Collapse
Affiliation(s)
- Xian-Chao Shang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Taian 271018, China
| | - Manman Zhang
- Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Yuqin Zhang
- Weihai Academy of Agricultural Sciences, Weihai 264200, China
| | - Xin Hou
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Taian 271018, China.
| | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
21
|
Shang XC, Zhang M, Zhang Y, Li Y, Hou X, Yang L. Combinations of waste seaweed liquid fertilizer and biochar on tomato (Solanum lycopersicum L.) seedling growth in an acid-affected soil of Jiaodong Peninsula, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115075. [PMID: 37267778 DOI: 10.1016/j.ecoenv.2023.115075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/25/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Biochar application is an effective strategy for improving soil degradation and productivity. However, the effects of the combination of biochar and other fertilizers to improve seedling growth in abiotic stress-affected soils remains unknown. We investigate the effect of biochar derived from reed straw (RBC) and waste seaweed liquid fertilizer (SLF) on tomato (Solanum lycopersicum L.) seedling growth in an acid-affected soil of Jiaodong Peninsula, China. The results revealed RBC, SLF, and the combination of RBC with SLF (RBC+SLF) significantly elevated the dry weight of tomatoes by 23.33 %, 29.93 %, and 63.66 %, respectively. The malondialdehyde content in the tomato seedling roots, stems, and leaves was significantly lower in the RBC+SLF treatment, which might be related to the enhanced contents of proline, soluble sugar, and soluble protein. The synthesis and accumulation of zeatin riboside, indole-3-acetic acid, and gibberellic acid 3 in tomato under RBC+SLF amendment may be attributed to the enhanced plant growth. Moreover, RBC, SLF, and RBC+SLF improved the soil status (including ammonium nitrogen, nitrate nitrogen, laccase, and urease) in the acid-affected soil. Biochar and waste seaweed liquid fertilizer significantly increased the relative abundance of Pseudomonas and Azospira (beneficial bacteria) in tomato rhizosphere. The microbial amino acid metabolism was associated with changes in soil properties and enzyme activities. Consequently, biochar and waste seaweed liquid fertilizer are viable soil conditioners for acid-affected soil.
Collapse
Affiliation(s)
- Xian-Chao Shang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Taian 271018, China
| | - Manman Zhang
- Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Yuqin Zhang
- Weihai Academy of Agricultural Sciences, Weihai 264200, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xin Hou
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Taian 271018, China.
| | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
22
|
Chen Y, Lv X, Qin Y, Zhang D, Zhang C, Song Z, Liu D, Jiang L, Huang B, Wang J. Effects of different botanical oil meal mixed with cow manure organic fertilizers on soil microbial community and function and tobacco yield and quality. Front Microbiol 2023; 14:1191059. [PMID: 37303792 PMCID: PMC10248155 DOI: 10.3389/fmicb.2023.1191059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction The continuous application of cow manure in soil for many years leads to the accumulation of heavy metals, pathogenic microorganisms, and antibiotic resistance genes. Therefore, in recent years, cow manure has often been mixed with botanical oil meal as organic fertilizer applied to farmland to improve soil and crop quality. However, the effects of various botanical oil meal and cow manure mixed organic fertilizers on soil microbial composition, community structure, and function, tobacco yield, and quality remain unclear. Methods Therefore, we prepared organic manure via solid fermentation by mixing cow manure with different oil meals (soybean meal, rape meal, peanut bran, sesame meal). Then, we studied its effects on soil microbial community structure and function, physicochemical properties, enzyme activities, tobacco yield and quality; then we analyzed the correlations between these factors. Results and discussion Compared with cow manure alone, the four kinds of mixed botanical oil meal and cow manure improved the yield and quality of flue-cured tobacco to different degrees. Peanut bran, which significantly improved the soil available phosphorus, available potassium, and NO3--N, was the best addition. Compared with cow manure alone, soil fungal diversity was significantly decreased when rape meal or peanut bran was combined with cow manure, while soil bacterial and fungal abundance was significantly increased when rape meal was added compared with soybean meal or peanut bran. The addition of different botanical oil meals significantly enriched the subgroup_7 and Spingomonas bacteria and Chaetomium and Penicillium fungi in the soil. The relative abundances of functional genes of xenobiotics biodegradation and metabolism, soil endophytic fungi, and wood saprotroph functional groups increased. In addition, alkaline phosphatase had the greatest effect on soil microorganisms, while NO3--N had the least effect on soil microorganisms. In conclusion, the mixed application of cow manure and botanical oil meal increased the available phosphorus and potassium contents in soil; enriched beneficial microorganisms; promoted the metabolic function of soil microorganisms; increased the yield and quality of tobacco; and improved the soil microecology.
Collapse
Affiliation(s)
- Yuxuan Chen
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiaolin Lv
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yanmin Qin
- Jiangxi Provincial Tobacco Company, Fuzhou, China
| | - Deping Zhang
- Guangxi Provincial Tobacco Company, Nanning, China
| | | | | | - Dongyang Liu
- Sichuan Provincial Tobacco Company Liangshanzhou Company, Liangshanzhou, China
| | - Lianqiang Jiang
- Sichuan Provincial Tobacco Company Liangshanzhou Company, Liangshanzhou, China
| | - Bin Huang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jie Wang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
23
|
Wang L, Sun K, Pan S, Wang S, Yan Z, Zhu L, Yang X. Exogenous microbial antagonism affects the bioaugmentation of humus formation under different inoculation using Trichoderma reesei and Phanerochaete chrysosporium. BIORESOURCE TECHNOLOGY 2023; 373:128717. [PMID: 36773812 DOI: 10.1016/j.biortech.2023.128717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
This study was aimed at exploring the effect of antagonism of Trichoderma reesei (T.r) and Phanerochaete chrysosporium (P.c) on humification during fermentation of rice (RS) and canola straw (CS). Results showed that exogeneous fungi accelerated straw degradation and enzyme activities of CMCase, xylanase and LiP. P.c inhibited the activity of LiP when co-existing with T.r beginning, it promoted the degradation of lignin and further increased the production of humus-like substances (HLS) and humic-like acid (HLA) in later fermentation when nutrients were insufficient. The HLS of RTP was 54.9 g/kg RS, higher than the other treatments, and displayed more complex structure and higher thermostability. Brucella and Bacillus were the main HLA bacterial producers. P.c was the HLA fungal producer, while T.r assisted FLA and polyphenol transformation. Therefore, RTP was recommended to advance technologies converting crop straw into humus resources.
Collapse
Affiliation(s)
- Lili Wang
- School of Life Science, Anhui University 230601, China.
| | - Kai Sun
- School of Life Science, Anhui University 230601, China
| | - Shuai Pan
- School of Life Science, Anhui University 230601, China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhongkang Yan
- Institute of Physical Science and Information Technology, Anhui University 230601, China
| | - Lianlian Zhu
- School of Life Science, Anhui University 230601, China
| | - Xingyuan Yang
- Institute of Physical Science and Information Technology, Anhui University 230601, China
| |
Collapse
|
24
|
He Y, Yin X, Li F, Wu B, Zhu L, Ge D, Wang N, Chen A, Zhang L, Yan B, Huang H, Luo L, Wu G, Zhang J. Response characteristics of antibiotic resistance genes and bacterial communities during agricultural waste composting: Focusing on biogas residue combined with biochar amendments. BIORESOURCE TECHNOLOGY 2023; 372:128636. [PMID: 36657587 DOI: 10.1016/j.biortech.2023.128636] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
This research investigated biogas residue and biochar addition on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and changes in bacterial community during agricultural waste composting. Sequencing technique investigated bacterial community structure and ARGs, MGEs changes. Correlations among physicochemical factors, ARGs, MGEs, and bacterial community structure were determined using redundancy analysis. Results confirmed that biochar and biogas residue amendments effectively lowered the contents of ARGs and MGEs. The main ARGs detected was sul1. Proteobacteria and Firmicutes were the main host bacteria strongly associated with the dissemination of ARGs. The dynamic characteristics of the bacterial community were strongly correlated with pile temperature and pH (P < 0.05). Redundancy and network analysis revealed that nitrate, intI1, and Firmicutes mainly affected the in ARGs changes. Therefore, regulating these key variables would effectively suppress the ARGs spread and risk of compost use.
Collapse
Affiliation(s)
- Yuewei He
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Xiaowei Yin
- POWERCHINA Zhongnan Engineering Corporation Limited, Changsha 410014, Hunan, China
| | - Fanghong Li
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China; South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Bo Wu
- POWERCHINA Zhongnan Engineering Corporation Limited, Changsha 410014, Hunan, China
| | - Ling Zhu
- POWERCHINA Zhongnan Engineering Corporation Limited, Changsha 410014, Hunan, China
| | - Dabing Ge
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Nanyi Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Lihua Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Hongli Huang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Genyi Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China; POWERCHINA Zhongnan Engineering Corporation Limited, Changsha 410014, Hunan, China; Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha 410000, Hunan, China.
| |
Collapse
|
25
|
Jia P, Wang X, Liu S, Hua Y, Zhou S, Jiang Z. Combined use of biochar and microbial agent can promote lignocellulose degradation and humic acid formation during sewage sludge-reed straw composting. BIORESOURCE TECHNOLOGY 2023; 370:128525. [PMID: 36572158 DOI: 10.1016/j.biortech.2022.128525] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
This study investigated the effects of corn straw biochar (CSB) and effective microorganisms (EM) added individually or combinedly on lignocellulose degradation, compost humification, and microbial communities during sewage sludge-reed straw composting process. All the additive practices were found to significantly elevate the humification degree of compost products. The degradation rates of cellulose, hemicellulose, and lignin in different additive treatments were 20.8-31.2 %, 36.2-44.8 %, and 19.9-25.7 %, respectively, which were greatly higher than those of the control. Compared with the single uses of CSB or EM, the combined use of CSB and EM generated greater promotions in lignin and hemicellulose degradations and increase in humic acid content. By comparing the differences in microbial communities among different treatments, the CSB-EM demonstrated greater increases in activity and diversity of lignocellulose degradation-related microbes, especially for fungus. Lastly, the combined use of CSB and EM was highly recommended as a high-efficient improvement strategy for organic compost production.
Collapse
Affiliation(s)
- Peiyin Jia
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Xin Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Shuming Liu
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Yuting Hua
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Shunxi Zhou
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhixiang Jiang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.
| |
Collapse
|
26
|
Wang C, Wang Y, Yan S, Li Y, Zhang P, Ren P, Wang M, Kuang S. Biochar-amended composting of lincomycin fermentation dregs promoted microbial metabolism and reduced antibiotic resistance genes. BIORESOURCE TECHNOLOGY 2023; 367:128253. [PMID: 36334868 DOI: 10.1016/j.biortech.2022.128253] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Improper disposal of antibiotic fermentation dregs poses a risk of releasing antibiotics and antibiotic resistant bacteria to the environment. Therefore, this study evaluated the effects of biochar addition to lincomycin fermentation dregs (LFDs) composting. Biochar increased compost temperature and enhanced organic matter decomposition and residual antibiotics removal. Moreover, a 1.5- to 17.0-fold reduction in antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) was observed. Adding biochar also reduced the abundances of persistent ARGs hosts (e.g., Streptomyces, Pseudomonas) and ARG-related metabolic pathways and genes (e.g., ATP-binding cassette type-2 transport, signal transduction and multidrug efflux pump genes). By contrast, compost decomposition improved due to enhanced metabolism of carbohydrates and amino acids. Overall, adding biochar into LFDs compost reduced the proliferation of ARGs and enhanced microbial community metabolism. These results demonstrate that adding biochar to LFDs compost is a simple and efficient way to decrease risks associated with LFDs composting.
Collapse
Affiliation(s)
- Chenhao Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yafei Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shen Yan
- Staff Development Institute of China National Tobacco Corporation, Zhengzhou 450000, China
| | - Yingchun Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Peng Zhang
- Heilongjiang Lianshun Biotechnology Co. Ltd., Qitaihe 154264, China
| | - Peng Ren
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
| | - Mengmeng Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
27
|
Wang B, Sun H, Yang W, Gao M, Zhong X, Zhang L, Chen Z, Xu H. Potential utilization of vitamin C industrial effluents in agriculture: Soil fertility and bacterial community composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158253. [PMID: 36037898 DOI: 10.1016/j.scitotenv.2022.158253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/05/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The potential of industrial effluents from vitamin C (VC) production was assessed for agricultural applications by monitoring plant growth, soil properties, and microbial community structure. The results demonstrated that two types of effluents-residue after evaporation (RAE) and concentrated bacterial solution after ultrafiltration (CBS)-had positive effects on the yield and VC content of pak choi. The highest yield and VC content were achieved with a combined RAE-CBS treatment (55.82 % and 265.01 % increase, respectively). The soil fertility was also enhanced by the application of RAE and CBS. Nitrate nitrogen and organic carbon contents in the soil were positively correlated with the RAE addition, while ammonium nitrogen and available phosphorus were positively correlated with the CBS addition. The diversity of bulk and rhizosphere soil bacterial communities increased significantly after the addition of RAE-CBS. The abundance of Sphingomonas and Rhizobium significantly increased after the RAE-CBS treatment, which affected aromatic compound hydrolysis and nitrogen fixation positively. Changes in plant growth and soil fertility were closely related to the upregulation of functional gene expression related to C, N, and P cycling. RAE and CBS application exerted various positive synergistic effects on plant growth, soil fertility, and bacterial community structure. Consequently, the study results confirmed the potential of RAE and CBS application in agriculture. This study provides an innovative solution for utilizing VC industrial wastewater in agriculture in a resourceful and economically beneficial manner while alleviating the corresponding environmental burden.
Collapse
Affiliation(s)
- Bing Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Sun
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; CAS Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Weichao Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; CAS Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Mingfu Gao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; CAS Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xin Zhong
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenyu Chen
- Affairs Service Center of Ecological Environment of Liaoning Province, Shenyang 110036, China
| | - Hui Xu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; CAS Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
28
|
Zhou Y, Zhang Z, Awasthi MK. Exploring the impact of biochar supplement on the dynamics of antibiotic resistant fungi during pig manure composting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120235. [PMID: 36165829 DOI: 10.1016/j.envpol.2022.120235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The purpose of this study was to investigate antibiotic resistant fungal (ARF) communities in pig manure (PM) composting employing two different biochar (coconut shell-CSB and bamboo biochar-BB) as amendment. Three treatments (Control, 10% CSB and 10% BB) were designed and indicated with T1 to T3. Experimental results declared that the fungal abundance significantly reduced among the both biochar applied treatments but three dominant phyla Ascomycota, Basidiomycota and Mucoromycota were still relatively greater abundance present. There were significant differences (p < 0.05) in the relative abundance and diversity of fungi among all three treatments. Interestingly, biochar addition regulated the overall fungal community in final compost. Compared with the control group, the abundance of fungi was positively mobilized, and especially CSB showed a better effect. Conclusively, biochar has potential to inhibit and reduce the ARGs population and mobility in compost. Thus, these findings offer new insight to understand the succession of ARFs during PM composting.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
29
|
Wang N, Zhao K, Li F, Peng H, Lu Y, Zhang L, Pan J, Jiang S, Chen A, Yan B, Luo L, Huang H, Li H, Wu G, Zhang J. Characteristics of carbon, nitrogen, phosphorus and sulfur cycling genes, microbial community metabolism and key influencing factors during composting process supplemented with biochar and biogas residue. BIORESOURCE TECHNOLOGY 2022; 366:128224. [PMID: 36328174 DOI: 10.1016/j.biortech.2022.128224] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) cycling functional genes and bacterial and fungal communities during composting with biochar and biogas residue amendments were studied. Correlations between microbial community structure, functional genes and physicochemical properties were investigated by network analysis and redundancy analysis. It was shown that the gene of acsA abundance accounted for about 50% of the C-related genes. Biogas residue significantly decreased the abundance of denitrification gene nirK. Biogas residues can better promote the diversity of bacteria and fungi during composting. Biochar significantly increased the abundance of Humicola. Redundancy analysis indicated that pile temperature, pH, EC were the main physicochemical factors affecting the microbial community. WSC and NO3--N have significant correlation with C, N, P, S functional genes. The research provides a theoretical basis for clarifying the metabolic characteristics of microbial communities during composting and for the application of biochar and biogas residues in composting.
Collapse
Affiliation(s)
- Nanyi Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Keqi Zhao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Fanghong Li
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Hua Peng
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China
| | - Yaoxiong Lu
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China
| | - Lihua Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shilin Jiang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410029, China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Hongli Huang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Hui Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Genyi Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China.
| |
Collapse
|
30
|
Tang M, Wu Z, Li W, Shoaib M, Aqib AI, Shang R, Yang Z, Pu W. Effects of different composting methods on antibiotic-resistant bacteria, antibiotic resistance genes, and microbial diversity in dairy cattle manures. J Dairy Sci 2022; 106:257-273. [DOI: 10.3168/jds.2022-22193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022]
|
31
|
Lv Y, Bao J, Li S, Liu D, Dai D, Qv M, Zhu L. Biochar amendment of aerobic composting for the effective biodegradation of heavy oil and succession of bacterial community. BIORESOURCE TECHNOLOGY 2022; 362:127820. [PMID: 36028051 DOI: 10.1016/j.biortech.2022.127820] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Soil pollution caused by petroleum pollutants from production trade activities in petroleum-related factories contributes serious threat to the environment and human health. Composting is technically-feasible and cost-effective in the biodegradation of heavy oil pollutants. This composting experiment was developed with four rice husk biochar (RHB) concentrations of 0 wt% (CK), 5 wt% (S1), 10 wt% (S2) and 15 wt% (S3) for the degradation of heavy oil. The results showed that RHB amendment could strengthen the degradation performance of heavy oil, and the degradation efficiencies for CK, S1, S2 and S3 were 59.67%, 65.00%, 73.29% and 74.82%, respectively. Microbial community succession process was investigated through high-throughput sequencing technology, and the RHB addition regulated bacterial community succession and further effectively facilitated the biodegradation of heavy oil in composting. This study substantiated that biochar materials-amended aerobic composting would be a promising strategy for the biodegradation of petroleum pollutants.
Collapse
Affiliation(s)
- Yuanfei Lv
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Jianfeng Bao
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Dongyang Liu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Dian Dai
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Mingxiang Qv
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China.
| |
Collapse
|
32
|
Geng S, Xu G, You Y, Xia M, Zhu Y, Ding A, Fan F, Dou J. Occurrence of polycyclic aromatic compounds and interdomain microbial communities in oilfield soils. ENVIRONMENTAL RESEARCH 2022; 212:113191. [PMID: 35351456 DOI: 10.1016/j.envres.2022.113191] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Soil polycyclic aromatic compound (PAC) pollution as a result of petroleum exploitation has caused serious environmental problems. The unclear assembly and functional patterns of microorganisms in oilfield soils limits the understanding of microbial mechanisms for PAC elimination and health risk reduction. This study investigated the polycyclic aromatic hydrocarbons (PAHs) and substituted PAHs (SPAHs) occurrence, and their impact on the bacteria-archaea-fungi community diversity, co-occurrence network and functionality in the soil of an abandoned oilfield. The results showed that the PAC content in the oilfield ranged from 3429.03 μg kg-1 to 6070.89 μg kg-1, and risk assessment results suggested a potential cancer risk to children and adults. High molecular weight PAHs (98.9%) and SPAHs (1.0%) contributed to 99.9% of the toxic equivalent concentration. For microbial analysis, the abundantly detected degraders and unigenes indicated the microbial potential to mitigate pollutants and reduce health risks. Microbial abundance and diversity were found to be negatively correlated with health risk. The co-occurrence network analysis revealed nonrandom assembly patterns of the interdomain microbial communities, and species in the network exhibited strong positive connections (59%). The network demonstrated strong ecological linkages and was divided into five smaller coherent modules, in which the functional microbes were mainly involved in organic substance and mineral component degradation, biological electron transfer and nutrient cycle processes. The keystone species for maintaining microbial ecological functions included Marinobacter of bacteria and Neocosmospora of fungi. Additionally, benzo [g,h,i]pyrene, dibenz [a,h]anthracene, indeno [1,2,3-cd]perylene and total phosphorus were the key environmental factors driving the assembly and functional patterns of microbial communities under pollution stress. This work improves the knowledge of the functional pattern and environmental adaptation mechanisms of interdomain microbes, and provides valuable guidance for the further bioremediation of PAC-contaminated soils in oilfields.
Collapse
Affiliation(s)
- Shuying Geng
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Guangming Xu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Yue You
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Meng Xia
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Yi Zhu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Aizhong Ding
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Fuqiang Fan
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, PR China.
| | - Junfeng Dou
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
33
|
He Y, Zhang Y, Huang X, Xu J, Zhang H, Dai X, Xie L. Deciphering the internal driving mechanism of microbial community for carbon conversion and nitrogen fixation during food waste composting with multifunctional microbial inoculation. BIORESOURCE TECHNOLOGY 2022; 360:127623. [PMID: 35850391 DOI: 10.1016/j.biortech.2022.127623] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
In this study, the effects of multifunctional microbial inoculation on food waste composting based on the synergistic property between organic matter degradation and nitrogen fixation were investigated. The results showed that inoculation simultaneously strengthened organic matter degradation by 9.9% and improved the nitrogen content by 20.6% compared with that of the control group. Additionally, spectral analysis demonstrated that inoculation was conducive to the enhanced humification, which was supported by the improvement in polyphenol oxidase activity. Microbial analysis showed that most of the introduced microorganisms (Bacillus, Streptomyces, Saccharomonospora) successfully colonized, and stimulated the growth of other indigenous microorganisms (Enterobacter, Paenibacillus). Meanwhile, the change in microbial community structure was accompanied by the enhanced tricarboxylic acid cycle and amino acid metabolism. Furthermore, network analysis and structural equation model revealed that the enhanced cooperation of microorganisms, in which more carbon sources could be provided by cellulose decomposition for nitrogen fixation.
Collapse
Affiliation(s)
- Yingying He
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yidie Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xia Huang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jun Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Hongning Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xiaohu Dai
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
34
|
Bianco F, Race M, Papirio S, Oleszczuk P, Esposito G. Coupling of desorption of phenanthrene from marine sediments and biodegradation of the sediment washing solution in a novel biochar immobilized-cell reactor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119621. [PMID: 35709914 DOI: 10.1016/j.envpol.2022.119621] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/03/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The recurrent dredging of marine sediments needs the use of ex-situ technologies such as sediment washing (SW) to effectively remove polycyclic aromatic hydrocarbons. Notwithstanding, the large volumes of generated spent SW effluents require adequate treatment by employing highly-efficient, inexpensive and environmentally-friendly solutions. This study proposes the phenanthrene (PHE) desorption from sediments using Tween® 80 (TW80) as extracting agent and the treatment of the resulting spent SW solution in a biochar (BC) immobilized-cell bioreactor. The SW process reached the highest PHE removal of about 91% using a surfactant solution containing 10,800 mg L-1 of TW80. The generated amount of spent PHE-polluted SW solution can be controlled by keeping a solid to liquid ratio of 1:4. A PHE degradation of up to 96% was subsequently achieved after 43 days of continuous reactor operation, aerobically treating the TW80 solution in the BC immobilized-cell bioreactor with a hydraulic retention time of 3.5 days. Brevundimonas, Chryseobacterium, Dysgonomonas, Nubsella, and both uncultured Weeksellaceae and Xanthobacteraceae genera were mainly involved in PHE biodegradation. A rough economic study showed a total cost of 342.60 € ton-1 of sediment, including the SW operations, TW80 and BC supply and the biological treatment of the SW solution.
Collapse
Affiliation(s)
- Francesco Bianco
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy.
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20031, Lublin, Poland
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| |
Collapse
|
35
|
Wang J, Fan H, Xia S, Shao J, Tang T, Chen L, Bai X, Sun W, Jia X, Chen S, Lai S. Microbiome, Transcriptome, and Metabolomic Analyses Revealed the Mechanism of Immune Response to Diarrhea in Rabbits Fed Antibiotic-Free Diets. Front Microbiol 2022; 13:888984. [PMID: 35875568 PMCID: PMC9298518 DOI: 10.3389/fmicb.2022.888984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, diarrhea was induced in rabbits by feeding them antibiotic-free feed. The gut provides important defense against the barriers of the body, of which the duodenum is an important part to help digest food and absorb nutrients. However, the mechanisms underlying the roles of the gut microbiome and fecal metabolome in rabbit diarrhea caused by feeding an antibiotic-free diet have not been characterized. Recently, only a single study has been conducted to further characterize the antibiotic-free feed additives that caused diarrhea in weaned rabbits. The multi-omics techniques, including 16S rRNA sequencing, transcriptome sequencing, and LC-MS analysis, were combined to analyze the gut microbial compositions and functions. They also determined the fecal metabolomic profiles of diarrhea in rabbits caused by feeding antibiotic-free feed. The results showed that the liver, duodenal, and sacculus rotundus tissues of diarrhea rabbits were diseased, the composition of intestinal microbes was significantly changed, the diversity of intestinal microbes was decreased, and the distribution of intestinal microbe groups was changed. Functional analysis based on the cluster of GO and KEGG annotations suggested that two functional GO categories belonged to the metabolism cluster, and five KEGG pathways related to the metabolic pathways were significantly enriched in diarrhea rabbits. Moreover, real-time quantitative PCR (RT-qPCR) was used to verify the significant expression of genes related to diarrhea. Metabolomics profiling identified 432 significantly differently abundant metabolites in diarrhea rabbits, including amino acids and their derivatives. These amino acids were enriched in the tryptophan metabolic pathway. In addition, the functional correlation analysis showed that some altered gut microbiota families, such as Parasutterella, significantly correlated with alterations in fecal metabolites. Collectively, the results suggested that altered gut microbiota was associated with diarrhea caused by antibiotic-free feed additives in weaned rabbit pathogenesis.
Collapse
|
36
|
Xu C, Kong L, Gao H, Cheng X, Wang X. A Review of Current Bacterial Resistance to Antibiotics in Food Animals. Front Microbiol 2022; 13:822689. [PMID: 35633728 PMCID: PMC9133924 DOI: 10.3389/fmicb.2022.822689] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/04/2022] [Indexed: 12/29/2022] Open
Abstract
The overuse of antibiotics in food animals has led to the development of bacterial resistance and the widespread of resistant bacteria in the world. Antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in food animals are currently considered emerging contaminants, which are a serious threat to public health globally. The current situation of ARB and ARGs from food animal farms, manure, and the wastewater was firstly covered in this review. Potential risks to public health were also highlighted, as well as strategies (including novel technologies, alternatives, and administration) to fight against bacterial resistance. This review can provide an avenue for further research, development, and application of novel antibacterial agents to reduce the adverse effects of antibiotic resistance in food animal farms.
Collapse
Affiliation(s)
- Chunming Xu
- School of Light Industry, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Lingqiang Kong
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Hanfang Gao
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Xiyu Cheng
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
37
|
Sha G, Zhang L, Wu X, Chen T, Tao X, Li X, Shen J, Chen G, Wang L. Integrated meta-omics study on rapid tylosin removal mechanism and dynamics of antibiotic resistance genes during aerobic thermophilic fermentation of tylosin mycelial dregs. BIORESOURCE TECHNOLOGY 2022; 351:127010. [PMID: 35307520 DOI: 10.1016/j.biortech.2022.127010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
For efficient treatment of tylosin mycelial dregs (TMDs), rapid tylosin removal mechanism and dynamics of ARGs during TMDs fermentation were investigated using integrated meta-omics (genomics, metaproteomics and metabolomics) and qPCR approaches. The results showed that over 86% of tylosin was degraded on day 7 regardless of the type of bulking agents. The rapid removal of tylosin was mainly attributed to de-mycarose reaction (GH3) and esterase hydrolysis (C7MYQ7) of Saccharomonospora, and catalase-peroxidase oxidation of Bacillus (A0A077JB13). In addition, the moisture content and mobile genetic elements were vital to control the rebound of ARGs. The removal efficiency of antibiotic resistant bacteria (Streptomyces, Pseudomonas, norank_f__Sphingobacteriaceae, and Paenalcaligenes) and Intl1 (98.8%) in fermentation treatment TC21 with corncob as the bulking agent was significantly higher than that in other three treatments (88.3%). Thus, appropriate bulking agents could constrain the abundance of antibiotic resistant bacteria and Intl1, which is crucial to effectively reduce the resistance.
Collapse
Affiliation(s)
- Guomeng Sha
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Lili Zhang
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiuyun Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Tong Chen
- Neutralization and Environmental Protection of Lukang Industrial Group Company, Jining, Shandong 272000, China
| | - Xiaohong Tao
- Neutralization and Environmental Protection of Lukang Industrial Group Company, Jining, Shandong 272000, China
| | - Xin Li
- Neutralization and Environmental Protection of Lukang Industrial Group Company, Jining, Shandong 272000, China
| | - JianGuo Shen
- Neutralization and Environmental Protection of Lukang Industrial Group Company, Jining, Shandong 272000, China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
38
|
Huang B, Wang J, Han X, Gou J, Pei Z, Lu G, Wang J, Zhang C. The relationship between material transformation, microbial community and amino acids and alkaloid metabolites in the mushroom residue-prickly ash seed oil meal composting with biocontrol agent addition. BIORESOURCE TECHNOLOGY 2022; 350:126913. [PMID: 35231600 DOI: 10.1016/j.biortech.2022.126913] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the effects of adding biocontrol microbes on metabolites and pathogenic microorganisms during mushroom residue composting and the relationships of metabolite changes with microbes and material transformation. The results showed that the addition of Bacillus subtilis (BS) and Trichoderma harzianum (TH) with mushroom residue promoted the conversion of organic carbon and nitrogen. The abundance of pathogenic microbes was increased in biocontrol microbial treatments. BS or TH treatments increased the levels of amino acids, carbohydrates, and bacteriostatic alkaloid metabolites. Network analysis revealed that the main microorganisms significantly related to alkaloid metabolites were Rhabdanaerobium, Atopostipes, Planifilum and Ureibacillus. The increased bacterial abundance and decreased NO3--N and TOC were closely related to the increases in amino acid and alkaloid metabolites after biocontrol agent treatments. Generally, adding biocontrol microbes is an effective way to increase the levels of antibacterial metabolites, but there is a risk of increasing the abundance of pathogenic microbes.
Collapse
Affiliation(s)
- Bin Huang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China
| | - Jie Wang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China
| | - Xiaobin Han
- Biological Organic Fertilizer Engineering Technology Center of China Tobacco, Zunyi 563000, PR China
| | - Jianyu Gou
- Biological Organic Fertilizer Engineering Technology Center of China Tobacco, Zunyi 563000, PR China
| | - Zhouyang Pei
- Xuancheng Modern Agricultural Industrial Park, Xuancheng 242099, PR China
| | - Guangmei Lu
- Agricultural and Rural Development Service Center of Changqing District, Jinan 250399, PR China
| | - Jing Wang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China
| | - Chengsheng Zhang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China.
| |
Collapse
|