1
|
Rodríguez-Rebelo F, Rodríguez-Martínez B, Del-Río PG, Collins MN, Gullón B. Multiproduct biorefinery of Paulownia wood by synergy of hydrothermal and deep eutectic solvents (DES) pretreatments for polymers isolation and various cellulose applications. Int J Biol Macromol 2025; 313:144385. [PMID: 40394783 DOI: 10.1016/j.ijbiomac.2025.144385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/29/2025] [Accepted: 05/18/2025] [Indexed: 05/22/2025]
Abstract
This study highlights the efficiency of using coupled pretreatments to fractionate Paulownia wood (PW) into separated streams of high-added value products, including hemicelluloses, lignin, phenolic compounds, bioethanol, succinic acid, and cellulose nanocrystals (CNCs), following a green biorefinery approach. The sequential process began with a hydrothermal treatment (at 203 °C under non-isothermal regime), enabling the solubilization of the hemicellulosic fraction and achieving a high recovery of xylooligosaccharides (66.5 %). Subsequently, deep eutectic solvents (DES) were applied, resulting in a cellulose-enriched solid (81 %) and high-purity lignin recovery (85 %) under optimized conditions (130 °C, 1 h, choline chloride:lactic acid, 1:9 molar ratio, 8 mL/g liquid-to-solid ratio). The DES treatment also yielded a lignin-free black liquor rich in residual carbohydrates and phenolic compounds (2.70 g/100 g initial PW). The autohydrolyzed and DES-delignified PW was then subjected to three different types of valorizations: (i) bioethanol production, reaching 41.79 g/L (80 % yield), (ii) succinic acid production, achieving 32.02 g/L (0.76 g of succinic acid per g of glucose), and (iii) CNCs with an average aspect ratio of 17.71 (length: 90-558 nm, width: 11-23 nm), demonstrating the potential of coupling hydrothermal and DES pretreatments to produce high-value products from lignocellulosic biomass.
Collapse
Affiliation(s)
- Fernando Rodríguez-Rebelo
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Campus Auga, 32004 Ourense, Spain
| | - Beatriz Rodríguez-Martínez
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Campus Auga, 32004 Ourense, Spain
| | - Pablo G Del-Río
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Campus Auga, 32004 Ourense, Spain; Stokes Laboratories, School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.
| | - Maurice N Collins
- Stokes Laboratories, School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland; Advanced Materials and BioEngineering Research Centre (AMBER), University of Limerick, Ireland
| | - Beatriz Gullón
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Campus Auga, 32004 Ourense, Spain
| |
Collapse
|
2
|
Song K, Yu L, Yang S, Cao Y, Li L, Wu Z, Shi H, Ma Q. Insights into the Chemical Structure and Antioxidant Activity of Lignin Extracted from Bamboo by Acidic Deep Eutectic Solvents. ACS OMEGA 2024; 9:40956-40969. [PMID: 39371967 PMCID: PMC11447903 DOI: 10.1021/acsomega.4c06259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024]
Abstract
Deep eutectic solvents (DESs) composed of choline chloride as hydrogen bond acceptors (HBAs) and six organic acids as hydrogen bond donors (HBDs) were used to extract lignin from bamboo (Phyllostachys edulis (Carrière) J. Houz.). The structures of the DES-extracted lignin samples were analyzed by Fourier-transform infrared spectroscopy (FT-IR), UV-visible spectroscopy (UV-vis), thermogravimetric analysis (TG), and gel permeation chromatography (GPC) to investigate the relationship between the chemical structure of lignin and its antioxidant activity. The results showed that DES treatment removed a large portion of the lignin (73.37-86.38%) from bamboo, and the chemical structure of lignin was changed due to the use of different types of HBDs. The extracted lignin exhibited good UV-vis light shielding properties, thermal stability, and antioxidant activity. Moreover, the total phenolic hydroxyl content of lignins was positively correlated with their antioxidant activity, while the molecular weight of lignins was negatively correlated with their antioxidant activity. Notably, lignin extracted with choline chloride-p-toluenesulfonic acid had the highest phenolic hydroxyl content and lower molecular weight, showing the strongest antioxidant activity (IC50 DPPH = 417.69 μg/mL, IC50 ABTS = 58.62 μg/mL). This study confirms the high thermal stability, excellent antioxidant activity, and UV shielding properties of lignin extracted with choline chloride-organic acid DESs, suggesting its potential application in the fields of antioxidants and material modifiers.
Collapse
Affiliation(s)
- Kaiqin Song
- College
of Forestry, Guizhou University, Guiyang 550025, China
| | - Liping Yu
- College
of Forestry, Guizhou University, Guiyang 550025, China
| | - Shoulu Yang
- Guizhou
Academy of Forestry, Guiyang 550025, China
| | - Yan Cao
- School
of Materials Science and Engineering, Guizhou
Minzu University, Guiyang 550025, China
| | - Lifen Li
- College
of Forestry, Guizhou University, Guiyang 550025, China
- International
Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Zhigang Wu
- College
of Forestry, Guizhou University, Guiyang 550025, China
| | - Hongtao Shi
- College
of Forestry, Guizhou University, Guiyang 550025, China
| | - Qiaorun Ma
- College
of Forestry, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Tang Z, Yang D, Tang W, Ma C, He YC. Combined sulfuric acid and choline chloride/glycerol pretreatment for efficiently enhancing enzymatic saccharification of reed stalk. BIORESOURCE TECHNOLOGY 2023; 387:129554. [PMID: 37499922 DOI: 10.1016/j.biortech.2023.129554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
In this study, an efficient combination of pretreatment solvents involving Choline chloride/Glycerol (ChCl/Gly) and H2SO4 was firstly developed to assess the pretreatment performance and determine optimal pretreatment conditions. The results illustrated that the H2SO4-[ChCl/Gly] combination efficiently removed lignin (52.6%) and xylan (80.5%) from the pretreated reed stalk, and subsequent enzymatic hydrolysis yielded 91.1% of glucose. Furthermore, several characterizations were conducted to examine the structural and morphological changes of the reed stalk, revealing apparently enhanced accessibility (128.4 to 522.6 mg/g), reduced lignin surface area (357.9 to 229.5 m2/g), and substantial changes on biomass surface. Based on the aforementioned study, possible mechanisms for the H2SO4-[ChCl/Gly] pretreatment of reed stalks were proposed. The comprehensive understanding of combined H2SO4-[ChCl/Gly] pretreatment system for enhancing the saccharification of the reed stalk was interpreted in this work. Overall, this novel approach could be efficiently applied to pretreat and saccharify reed stalks, empowering the biomass refining industry.
Collapse
Affiliation(s)
- Zhengyu Tang
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Dong Yang
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Wei Tang
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, PR China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
4
|
Zhu L, Tang W, Ma C, He YC. Efficient co-production of reducing sugars and xylooligosaccharides via clean hydrothermal pretreatment of rape straw. BIORESOURCE TECHNOLOGY 2023; 388:129727. [PMID: 37683707 DOI: 10.1016/j.biortech.2023.129727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/19/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Hydrothermal treatment was applied to pretreat rape straw for the efficient co-production of reducing sugars and xylooligosaccharides. It was observed that hydrothermal treatment using water as solvent and catalyst destructed the compact structure of rape straw and increased its enzymatic digestion efficiency from 24.6% to 92.0%. Xylooligosaccharide (3.3 g/L) was acquired after the treatment under 200 °C for 60 min (severity factor Log Ro = 4.7). With increasing pretreatment intensity from 3.1 to 5.4, the hemicellulose removal increased from 14.4% to 100%, and the delignification was raised from 12% to 44%. Various characterization proved that the surface morphology of treated material showed a porous shape, while the cellulose accessibility, lignin surface area and lignin hydrophobicity were greatly improved. Consequently, hydrothermal pretreatment played a vital role in the sustainable transformation of biomass to valuable biobased compounds, and had a wide range of application prospects in lignocellulosic biorefining.
Collapse
Affiliation(s)
- Lili Zhu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, China
| | - Wei Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
| |
Collapse
|
5
|
Chen Y, Yang D, Tang W, Ma C, He YC. Improved enzymatic saccharification of bulrush via an efficient combination pretreatment. BIORESOURCE TECHNOLOGY 2023; 385:129369. [PMID: 37343793 DOI: 10.1016/j.biortech.2023.129369] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Glycerol (Gly) was selected as hydrogen-bond-donor for preparing ChCl-based DES (ChCl:Gly), and the mixture of ChCl:Gly (20 wt%) and NaOH (4 wt%) was utilized for combination pretreatment of bulrush at 100 °C for 60 min (severity factor LogRo = 1.78). The effects of DES pretreatment on the chemical composition, microstructure, crystal structure, and cellulase hydrolysis were explored. NaOH-ChCl:Gly could remove lignin (80.1%) and xylan (66.8%), and the enzymatic digestibility of cellulose reached 87.9%. The accessibility of bulrush was apparently increased to 645.2 mg/g after NaOH-ChCl:Gly pretreatment. The hydrophobicity and lignin surface area were reduced to 1.56 L/g and 417 m2/g, respectively. The crystallinity of cellulose was increased from 20.8% to 55.6%, and great changes in surface morphology were observed, which explained the improvement of enzymatic hydrolysis efficiency. Overall, DES combined with alkali treatment could effectively promote the removal of lignin and xylan in bulrush, thus the relative saccharification activity was greatly affected.
Collapse
Affiliation(s)
- Ying Chen
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Dong Yang
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Wei Tang
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, PR China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
6
|
Li L, Ma C, Chai H, He YC. Biological valorization of lignin-derived vanillin to vanillylamine by recombinant E. coli expressing ω-transaminase and alanine dehydrogenase in a petroleum ether-water system. BIORESOURCE TECHNOLOGY 2023:129453. [PMID: 37406835 DOI: 10.1016/j.biortech.2023.129453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Vanillylamine, as an important drug precursor and fine chemical intermediate, has great economic value. By constructing a strategy of double enzyme co-expression, one newly constructed recombinant E. coli HNIQLE-AlaDH expressing ω-transaminase from Aspergillus terreus and alanine dehydrogenase from Bacillus subtilis was firstly used aminate lignin-derived vanillin to vanillylamine by using a relatively low dosage of amine donors (vanillin:L-alanine:isopropylamine = 1:1:1, mol/mol/mol). In addition, in a two-phase system (water:petroleum ether = 80:20 v/v), the bioconversion of vanillin to vanillylamine was catalyzed by HNIQLE-AlaDH cell under the ambient condition, and the vanillylamine yield was 71.5%, respectively. This double-enzyme HNIQLE-AlaDH catalytic strategy was applied to catalyze the bioamination of furfural and 5-hydroxymethylfurfural with high amination efficiency. It showed that the double-enzyme catalytic strategy in this study promoted L-alanine to replace D-Alanine to participate in bioamination of vanillin and its derivatives, showing a great prospect in the green biosynthesis of biobased chemicals from biomass.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, Hubei Province, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, Hubei Province, PR China
| | - Haoyu Chai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, Hubei Province, PR China
| | - Yu-Cai He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, Hubei Province, PR China; School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China.
| |
Collapse
|
7
|
Tang Z, Wu C, Tang W, Huang M, Ma C, He YC. Enhancing enzymatic saccharification of sunflower straw through optimal tartaric acid hydrothermal pretreatment. BIORESOURCE TECHNOLOGY 2023:129279. [PMID: 37321308 DOI: 10.1016/j.biortech.2023.129279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Sunflower straw, a usually neglected and abundant agricultural waste, has great potential for contributing to environmental protection realizing its high-value of valorization if utilizing properly. Because hemicellulose contains amorphous polysaccharide chains, relatively mild organic acid pretreatment can effectively reduce its resistance. Through hydrothermal pretreatment, sunflower straw was pretreated in tartaric acid (1 wt%) at 180 oC for 60 min to enhance its reducing sugar recovery. After tartaric acid-assisted hydrothermal pretreatment, 39.9% of lignin and 90.2% of hemicellulose were eliminated. The reducing sugar recovery increased threefold, while the solution could be effectively reused for four cycles. The properties of more porous surface, improved accessibility, and decreased surface lignin area of sunflower straw were observed through various characterizations, which explained the improved saccharide recovery and provided a basis for the mechanism of tartaric acid-assisted hydrothermal pretreatment. Overall, this tartaric acid hydrothermal pretreatment strategy greatly provided new impetus for the biomass refinery.
Collapse
Affiliation(s)
- Zhengyu Tang
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China
| | - Changqing Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China
| | - Wei Tang
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China
| | - Menghan Huang
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China
| | - Yu-Cai He
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China
| |
Collapse
|
8
|
Zhu L, Di J, Li Q, He YC, Ma C. Enhanced conversion of corncob into furfurylamine via chemoenzymatic cascade catalysis in a toluene–water medium. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
9
|
Yang Q, Tang W, Li L, Huang M, Ma C, He YC. Enhancing enzymatic hydrolysis of waste sunflower straw by clean hydrothermal pretreatment. BIORESOURCE TECHNOLOGY 2023:129236. [PMID: 37244309 DOI: 10.1016/j.biortech.2023.129236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
Hydrothermal pretreatment is an effective way to change the lignocellulose structure and improve its saccharification. An efficient hydrothermal pretreatment of sunflower straw was conducted when the severity factor (LogR0) was 4.1. 60.4% of xylan and 36.5% of lignin were removed at 180 ℃ for 120 minutes with a solid-to-liquid ratio of 1:15. A series of characterizations (such as X-ray diffraction, Fourier Transform infrared spectroscopy, scanning electron microscopy, chemical component analysis, cellulase accessibility) proved that hydrothermal pretreatment destroyed sunflower straw surface structure, enlarged its pores, and enhanced the accessibility to cellulase (371.2 mg/g). After the enzymatic saccharification of treated sunflower straw for 72 h, 68.0% yield of reducing sugar and 61.8% yield of glucose were achieved, and 4.0 g/L xylo-oligosaccharide was obtained in the filtrate. Overall, this easy-to-operate and green hydrothermal pretreatment could effectively destroy the surface barrier of lignocellulose, help remove lignin and xylan, and increase the enzymatic hydrolysis efficiency.
Collapse
Affiliation(s)
- Qizhen Yang
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China
| | - Wei Tang
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China
| | - Lei Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China
| | - Menghan Huang
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China
| | - Yu-Cai He
- School of Pharmacy, Changzhou University, Changzhou 213164, PR China.
| |
Collapse
|
10
|
Xu D, Ma C, Wu M, Deng Y, He YC. Improved production of adipic acid from a high loading of corn stover via an efficient and mild combination pretreatment. BIORESOURCE TECHNOLOGY 2023; 382:129196. [PMID: 37207697 DOI: 10.1016/j.biortech.2023.129196] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Adipic acid is one kind of important organic dibasic acid, which has crucial role in manufacturing plastics, lubricants, resins, fibers, etc. Using lignocellulose as feedstock for producing adipic acid can reduce production cost and improve bioresource utilization. After pretreated in the mixture of 7 wt% NaOH and 8 wt% ChCl-PEG10000 at 25 oC for 10 min, the surface of corn stover became loose and rough. The specific surface area was increased after the removal of lignin. A high loading of pretreated corn stover was enzymatically hydrolyzed by cellulase (20 FPU/g substrate) and xylanase (15 U/g substrate), and the yield of reducing sugars was as high as 75%. Biomass-hydrolysates obtained by enzymatic hydrolysis were efficiently fermented to produce adipic acid, and the yield was 0.45 g adipic acid per g reducing sugar. A sustainable approach for manufacturing adipic acid from lignocellulose via a room temperature pretreatment has great potential in future.
Collapse
Affiliation(s)
- Daozhu Xu
- School of Pharmacy, Changzhou University, Changzhou, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, PR China
| | - Mengjia Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, PR China
| | - Yu Deng
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, PR China
| | - Yu-Cai He
- School of Pharmacy, Changzhou University, Changzhou, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, PR China.
| |
Collapse
|
11
|
Tang Z, Wu C, Tang W, Ma C, He YC. A novel cetyltrimethylammonium bromide-based deep eutectic solvent pretreatment of rice husk to efficiently enhance its enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2023; 376:128806. [PMID: 36858123 DOI: 10.1016/j.biortech.2023.128806] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Deep eutectic solvent (DES) has caught widely attention of researchers in biomass pretreatment. As a highly efficient surfactant, cetyltrimethylammonium bromide (CTAB) was expected to be used for synthesizing new DESs with additional functions in pretreatment. In this work, an efficient pretreatment method using a mixture of CTAB and lactic acid (LA) as a novel functional DES was established to improve enzymatic digestion efficiency of rice husk (RH). The results showed that DES CTAB:LA effectively removed lignin (51.5%) and xylan (79.9%) and the enzymatic hydrolysis activity of CTAB:LA-treated RH was 5 times that of RH. Then, a series of characterization demonstrated that a substantial accessibility increased, a hydrophobicity and lignin surface area decreased, and great surface morphology alternation were observed on the treated RH, which explained the increase in enzymatic hydrolysis efficiency. Overall, the discovery of more functional DESs might be motivated and biorefinery pretreatment processes might be greatly promoted.
Collapse
Affiliation(s)
- Zhengyu Tang
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, Jiangsu Province, PR China
| | - Changqing Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, PR China
| | - Wei Tang
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, Jiangsu Province, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, PR China
| | - Yu-Cai He
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, Jiangsu Province, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, PR China.
| |
Collapse
|
12
|
Shukla A, Kumar D, Girdhar M, Kumar A, Goyal A, Malik T, Mohan A. Strategies of pretreatment of feedstocks for optimized bioethanol production: distinct and integrated approaches. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:44. [PMID: 36915167 PMCID: PMC10012730 DOI: 10.1186/s13068-023-02295-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
Bioethanol is recognized as a valuable substitute for renewable energy sources to meet the fuel and energy demand of the nation, considered an environmentally friendly resource obtained from agricultural residues such as sugarcane bagasse, rice straw, husk, wheat straw and corn stover. The energy demand is sustained using lignocellulosic biomass to produce bioethanol. Lignocellulosic biomass (LCBs) is the point of attention in replacing the dependence on fossil fuels. The recalcitrant structure of the lignocellulosic biomass is disrupted using effective pretreatment techniques that separate complex interlinked structures among cellulose, hemicellulose, and lignin. Pretreatment of biomass involves various physical, chemical, biological, and physiochemical protocols which are of importance, dependent upon their individual or combined dissolution effect. Physical pretreatment involves a reduction in the size of the biomass using mechanical, extrusion, irradiation, and sonification methods while chemical pretreatment involves the breaking of various bonds present in the LCB structure. This can be obtained by using an acidic, alkaline, ionic liquid, and organosolvent methods. Biological pretreatment is considered an environment-friendly and safe process involving various bacterial and fungal microorganisms. Distinct pretreatment methods, when combined and utilized in synchronization lead to more effective disruption of LCB, making biomass more accessible for further processing. These could be utilized in terms of their effectiveness for a particular type of cellulosic fiber and are namely steam explosion, liquid hot water, ammonia fibre explosion, CO2 explosion, and wet air oxidation methods. The present review encircles various distinct and integrated pretreatment processes developed till now and their advancement according to the current trend and future aspects to make lignocellulosic biomass available for further hydrolysis and fermentation.
Collapse
Affiliation(s)
- Akanksha Shukla
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Deepak Kumar
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Madhuri Girdhar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Abhineet Goyal
- SAGE School of Science, SAGE University Bhopal, Sahara Bypass Road Katara Hills, Extension, Bhopal, Madhya Pradesh, 462022, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia.
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
13
|
Mohanakrishna G, Modestra JA. Value addition through biohydrogen production and integrated processes from hydrothermal pretreatment of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2023; 369:128386. [PMID: 36423757 DOI: 10.1016/j.biortech.2022.128386] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Bioenergy production is the most sought-after topics at the crunch of energy demand, climate change and waste generation. In view of this, lignocellulosic biomass (LCB) rich in complex organic content has the potential to produce bioenergy in several forms following the pretreatment. Hydrothermal pretreatment that employs high temperatures and pressures is gaining momentum for organics recovery from LCB which can attain value-addition. Diverse bioprocesses such as dark fermentation, anaerobic digestion etc. can be utilized following the pretreatment of LCB which can result in biohydrogen and biomethane production. Besides, integration approaches for LCB utilization that enhance process efficiency and additional products such as biohythane production as well as application of solid residue obtained after LCB pretreatment were discussed. Importance of hydrothermal pretreatment as one of the suitable strategies for LCB utilization is emphasized suggesting its future potential in large scale energy recovery.
Collapse
Affiliation(s)
- Gunda Mohanakrishna
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India.
| | - J Annie Modestra
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden
| |
Collapse
|
14
|
Chen X, Zhou Y, Li J, Pillai SC, Bolan N, He J, Li N, Xu S, Chen X, Lin Q, Wang H. Activated peroxydisulfate by sorghum straw-based biochar for enhanced tartrazine degradation: Roles of adsorption and radical/nonradical processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120665. [PMID: 36395910 DOI: 10.1016/j.envpol.2022.120665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/29/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Biochar obtained from biomass waste through pyrolysis has significant potential in wastewater treatment due to its large specific surface area and multi-functional active sites. In current study, sorghum straw (SS) was pyrolyzed to prepare various biochar under nitrogen atmosphere. Adsorption kinetics of prepared biochar toward tartrazine (TTZ) was systematically investigated, and the biochar was also characterized by using multiple techniques to explore the contribution of physicochemical properties to adsorption. Then, the biochar with optimum TTZ adsorption performance, was also applied as a catalyst for peroxydisulfate (PDS) activation to degrade TTZ. Factors including PDS concentration, solution pH, and reaction temperature were examined. The optimized degradation rate constant of TTZ (1.1627 min-1) was achieved under the conditions at 2 mM PDS, pH of 3, and 23 °C. In addition, the free radical trapping experiments and EPR spectra revealed that the reactive substances of electron (e-), 1O2, SO4•-, O2•-, and •OH contributed to TTZ degradation. Density Functional Theory (DFT) also concluded that the atoms C(6), O(12), N(16), N(17), C(18) and N(22) in TTZ molecule showed larger f0 values which are vulnerable to radical attack. Therefore, the synergistic mechanism embodying adsorption and radical/non-radical processes were proposed. Besides, the degradation pathways of TTZ were identified with the aid of HPLC/MS technique, indicating that multiple reaction processes containing the symmetrical cleavage of azo bonds, the asymmetrical cleavage of C-N, desulfonation, and benzene-like structure cracking were involved. Therefore, this study provides a simple and effective catalytic system for TTZ degradation, and also realizes the resource utilization of solid waste.
Collapse
Affiliation(s)
| | - Yu Zhou
- Foshan University, Foshan, 528225, China
| | - Jiesen Li
- Foshan University, Foshan, 528225, China; Department of Research and Development, Guangzhou Ginpie Technology Co., Ltd., Guangzhou, 510670, China
| | - Suresh C Pillai
- Nanotechnology and Bio-Engineering Research Group and the Health and Biomedical (HEAL) Research Centre, Atlantic Technological University, ATU Sligo, Ash Lane, Sligo, F91 YW50, Ireland
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, 6001, Perth, WA, Australia; The UWA Institute of Agriculture, The University of Western Australia, 6001, Perth, WA, Australia
| | - Juhua He
- Foshan University, Foshan, 528225, China
| | - Ning Li
- Foshan University, Foshan, 528225, China.
| | - Song Xu
- Foshan University, Foshan, 528225, China
| | - Xin Chen
- Foshan University, Foshan, 528225, China
| | | | | |
Collapse
|
15
|
Wang H, Cao L, Li Q, Wijayawardene NN, Zhao J, Cheng M, Li QR, Li X, Promputtha I, Kang YQ. Overexpressing GRE3 in Saccharomyces cerevisiae enables high ethanol production from different lignocellulose hydrolysates. Front Microbiol 2022; 13:1085114. [PMID: 36601405 PMCID: PMC9807136 DOI: 10.3389/fmicb.2022.1085114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
The efficiently renewable bioethanol can help to alleviate energy crisis and environmental pollution. Genetically modified strains for efficient use of xylose and developing lignocellulosic hydrolysates play an essential role in facilitating cellulosic ethanol production. Here we present a promising strain GRE3OE via GRE3 overexpressed in a previously reported Saccharomyces cerevisiae strain WXY70. A comprehensive evaluation of the fermentation level of GRE3OE in alkaline-distilled sweet sorghum bagasse, sorghum straw and xylose mother liquor hydrolysate. Under simulated corn stover hydrolysate, GRE3OE produced 53.39 g/L ethanol within 48 h. GRE3OE produced about 0.498 g/g total sugar in sorghum straw hydrolysate solution. Moreover, GRE3OE consumed more xylose than WXY70 in the high-concentration xylose mother liquor. Taken together, GRE3OE could be a candidate strain for industrial ethanol development, which is due to its remarkable fermentation efficiency during different lignocellulosic hydrolysates.
Collapse
Affiliation(s)
- Haijie Wang
- Key Laboratory of Medical Microbiology and Parasitology & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Limin Cao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Qi Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Nalin N. Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China,Section of Genetics, Institute for Research and Development in Health and Social Care, Battaramulla, Sri Lanka,National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Jian Zhao
- State key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Min Cheng
- Key Laboratory of Medical Microbiology and Parasitology & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China,Department of Hospital Infection Management, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Qi-Rui Li
- Key Laboratory of Medical Microbiology and Parasitology & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaobin Li
- Chishui Riverside Jiangi-Flavour Baijiu Research Center, Guizhou Sunveen Liquor Co., Ltd, Guiyang, China
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand,Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Ying-Qian Kang
- Key Laboratory of Medical Microbiology and Parasitology & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China,*Correspondence: Ying-Qian Kang,
| |
Collapse
|
16
|
Allegretti C, Bellinetto E, D’Arrigo P, Ferro M, Griffini G, Rossato LAM, Ruffini E, Schiavi L, Serra S, Strini A, Turri S. Fractionation of Raw and Parboiled Rice Husks with Deep Eutectic Solvents and Characterization of the Extracted Lignins towards a Circular Economy Perspective. Molecules 2022; 27:8879. [PMID: 36558011 PMCID: PMC9785053 DOI: 10.3390/molecules27248879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
In the present work, rice husks (RHs), which, worldwide, represent one of the most abundant agricultural wastes in terms of their quantity, have been treated and fractionated in order to allow for their complete valorization. RHs coming from the raw and parboiled rice production have been submitted at first to a hydrothermal pretreatment followed by a deep eutectic solvent fractionation, allowing for the separation of the different components by means of an environmentally friendly process. The lignins obtained from raw and parboiled RHs have been thoroughly characterized and showed similar physico-chemical characteristics, indicating that the parboiling process does not introduce obvious lignin alterations. In addition, a preliminary evaluation of the potentiality of such lignin fractions as precursors of cement water reducers has provided encouraging results. A fermentation-based optional preprocess has also been investigated. However, both raw and parboiled RHs demonstrated a poor performance as a microbiological growth substrate, even in submerged fermentation using cellulose-degrading fungi. The described methodology appears to be a promising strategy for the valorization of these important waste biomasses coming from the rice industry towards a circular economy perspective.
Collapse
Affiliation(s)
- Chiara Allegretti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| | - Emanuela Bellinetto
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| | - Paola D’Arrigo
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche (SCITEC-CNR), Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Monica Ferro
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| | - Gianmarco Griffini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| | - Letizia Anna Maria Rossato
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| | - Eleonora Ruffini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| | - Luca Schiavi
- Istituto per le Tecnologie della Costruzione, Consiglio Nazionale delle Ricerche (ITC-CNR), Via Lombardia 49, 20098 San Giuliano Milanese, Italy
| | - Stefano Serra
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche (SCITEC-CNR), Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Alberto Strini
- Istituto per le Tecnologie della Costruzione, Consiglio Nazionale delle Ricerche (ITC-CNR), Via Lombardia 49, 20098 San Giuliano Milanese, Italy
| | - Stefano Turri
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
17
|
Patel A, Divecha J, Shah A. A sustainable process for co-production of xylooligosaccharides and ethanol from alkali treated sugarcane bagasse: A strategy towards waste management. Prep Biochem Biotechnol 2022:1-11. [PMID: 36129679 DOI: 10.1080/10826068.2022.2119575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Present study aims at sustainable utilization of sugarcane bagasse (SCB) for production of valuable prebiotic xylooligosaccharides (XOS) along with second generation ethanol. Fractionation of SCB into hemicellulose rich liquid fraction and cellulose rich solid residue was achieved using alkaline treatment. Carbohydrate rich precipitate obtained from liquid fraction was utilized for XOS production using inhouse produced endoxylanase. XOS production from SCB xylan was optimized by employing response surface methodology. Under optimized conditions, maximum XOS yield was 227.72 mg/g of carbohydrate rich precipitates. The solid residue obtained after alkaline pretreatment was used for ethanol fermentation by prehydrolysis and simultaneous saccharification and fermentation (P-SSF) process using cellulolytic enzyme cocktail and Saccharomyces cerevisiae SM1. Maximum ethanol concentration, productivity and yield were 79.76 ± 0.16 g/L, 0.83 g/L/h and 69.38%, respectively by employing P-SSF process. Based on the experimental data it can be predicted that bioconversion of 100 g raw SCB can yield 6.26 g of XOS (DP 2-DP 5), 15.95 g ethanol and 1.44 g of xylitol. Present investigation reports an integrated process for effective bioconversion of SCB into value added products by maximum utilization of cellulosic and hemicellulosic fractions simultaneously using indigenously produced fungal enzymes.
Collapse
Affiliation(s)
- Amisha Patel
- P. G. Department of Biosciences, Sardar Patel University, Anand, Gujarat, India
| | - Jyoti Divecha
- Department of Statistics, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Amita Shah
- P. G. Department of Biosciences, Sardar Patel University, Anand, Gujarat, India
| |
Collapse
|
18
|
Enhanced Enzymatic Saccharification of Tomato Stalk by Combination Pretreatment with NaOH and ChCl:Urea-Thioure in One-Pot Manner. Processes (Basel) 2022. [DOI: 10.3390/pr10101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, the mixture of NaOH and deep eutectic solvent (DES) ChCl:UA-TA was firstly used to pretreat waste tomato stalk (TS). The effects of pretreatment time, pretreatment temperature, NaOH dosage, and DES dose were investigated, and the synergistic effects of dilute NaOH and DES combination pretreatment were tested on the influence of enzymatic saccharification. It was found that the relationship between delignification and saccharification rate had a significant linear correction. When TS was pretreated with NaOH (7 wt%)–ChCl:UA-TA (8 wt%) in a solid-to-liquid ratio of 1:10 (wt:wt) at 75 °C for 60 min, the delignification reached 82.1%. The highest yield of reducing sugars from NaOH–ChCl:UA-TA-treated TS could reach 62.5% in an acetate buffer (50 mM, pH 4.8) system containing cellulase (10.0 FPU/g TS) and xylanase (30.0 CBU/g TS) at 50 °C. In summary, effective enzymatic saccharification of TS was developed by a combination pretreatment with dilute NaOH and ChCl:UA-TA, which has potential application in the future.
Collapse
|
19
|
Efficient Synthesis of Furfuryl Alcohol from Corncob in a Deep Eutectic Solvent System. Processes (Basel) 2022. [DOI: 10.3390/pr10091873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
As a versatile and valuable intermediate, furfuryl alcohol (FOL) has been widely used in manufacturing resins, vitamin C, perfumes, lubricants, plasticizers, fuel additives, biofuels, and other furan-based chemicals. This work developed an efficient hybrid strategy for the valorization of lignocellulosic biomass to FOL. Corncob (75 g/L) was catalyzed with heterogenous catalyst Sn-SSXR (2 wt%) to generate FAL (65.4% yield) in a deep eutectic solvent ChCl:LA–water system (30:70, v/v; 180 °C) after 15 min. Subsequently, the obtained FAL liquor containing FAL and formate could be biologically reduced to FOL by recombinant E. coli CF containing aldehyde reductase and formate dehydrogenase at pH 6.5 and 35 °C, achieving the FOL productivity of 0.66 g FOL/(g xylan in corncob). The formed formate could be used as a cosubstrate for the bioreduction of FAL into FOL. In addition, other biomasses (e.g., sugarcane bagasse and rice straw) could be converted into FOL at a high yield. Overall, this hybrid strategy that combines chemocatalysis and biocatalysis can be utilized to efficiently valorize lignocellulosic materials into valuable biofurans.
Collapse
|
20
|
Wang Y, Wu B, Ma T, Mi Y, Jiang H, Yan H, Zhao P, Zhang S, Wu L, Chen L, Zang H, Li C. Efficient conversion of hemicellulose into 2, 3-butanediol by engineered psychrotrophic Raoultella terrigena: mechanism and efficiency. BIORESOURCE TECHNOLOGY 2022; 359:127453. [PMID: 35700903 DOI: 10.1016/j.biortech.2022.127453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Low-temperature biorefineries inhibit the multiplication of undesired microorganisms, improve product purity and reduce economic costs. Herein, to improve the 2,3-butanediol (2,3-BD) bioconversion efficiency from hemicellulose, a psychrotrophic hemicellulose-degrading strain Raoultella terrigena HC6 with high β-xylosidase activity 1520 U/mL was isolated and genetically modified. Xylan (hemicellulose replacement) was depolymerized into xylooligosaccharides (XOS) and xylose by HC6, which were further converted into 2,3-BD. Transcriptomic analysis revealed that β-xylosidase gene (xynB) and xylose isomerase gene (xylA), which are beneficial for increasing the carbon flux from xylan to 2,3-BD, were significantly upregulated 56.9-fold and 234-fold, respectively. A recombinant strain was constructed by overexpressing xynB in HC6, which obtained 0.389 g/g yield of 2,3-BD from hemicellulose extracted from corn straw at 15 °C. This study proposed a promised strategy for the bioconversion of agricultural waste into 2,3-BD at low temperatures and provides a basis for future efforts in the achievement of carbon neutrality.
Collapse
Affiliation(s)
- Yue Wang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bowen Wu
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tian Ma
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yaozu Mi
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Hanyi Jiang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Haohao Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Peichao Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuo Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Linxuan Wu
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lei Chen
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Hailian Zang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Chunyan Li
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
21
|
Integrated Bioprocess for Cellulosic Ethanol Production from Wheat Straw: New Ternary Deep-Eutectic-Solvent Pretreatment, Enzymatic Saccharification, and Fermentation. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wheat straw (WS) is an excellent raw material for biofuel ethanol production. However, the recalcitrance of WS prevents its efficient utilization. In this study, a novel ternary deep eutectic solvent (DES) was developed for enhancing component separation and enzymatic saccharification of WS. Without any detoxification and sterilization, the DES-treated WS hydrolysate was successfully used to produce ethanol. Overall, this research evaluated the effect of ternary DES pretreatment on WS at various temperatures and adjusted the enzyme load, substrate concentration, and fermentation method of treated WS. The results suggested that the cellulose recovery of treated WS after DES pretreatment (120 °C, 1 h) was 94.73 ± 0.22%, while the removal of xylan and lignin reached 89.53 ± 0.36% and 80.05 ± 0.62%, respectively. Importantly, at enzyme loading of 11.4 filter paper unit (FPU)/g WS with 16% fermentation substrate concentration, 91.15 ± 1.07% of cellulose was hydrolyzed, and the glucose yield was 71.58 ± 1.34%. The maximum ethanol yield of DES-treated WS was 81.40 ± 0.01%.
Collapse
|
22
|
Hong S, Li HY, Shen XJ, Sun SN, Sun Z, Yuan TQ. Unveiling the Migration and Transformation Mechanism of Lignin in Eucalyptus During Deep Eutectic Solvent Pretreatment. CHEMSUSCHEM 2022; 15:e202200553. [PMID: 35593890 DOI: 10.1002/cssc.202200553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Deep eutectic solvents (DESs) have unique advantages in biomass conversion. However, the migration and transformation mechanism of lignin in the cell wall during the DES pretreatment is still elusive. In this work, Eucalyptus blocks were pretreated in choline chloride/lactic acid DES to reveal the lignin migration. Meanwhile, the remaining lignin in the pretreated residue, the regenerated DES lignin, and the solubilized degraded lignin in the recovered DES were investigated to decipher the lignin transformation. Results showed that the DES pretreatment resulted in the penetration of DES from the cell lumen to the cell wall, and lignin in the secondary wall was more easily dissolved than that in the cell corner middle lamella. The syringyl unit of lignin was better stabilized in the DES than the guaiacyl unit of lignin. The condensed lignin fraction mainly remained in the pretreated residue, while the solubilized degraded lignin fraction was monomeric aromatic ketone compounds. This study elucidates the fate of lignin during the DES pretreatment, which could also promote the development of a modern lignocellulosic pretreatment technique.
Collapse
Affiliation(s)
- Si Hong
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Han-Yin Li
- College of Forestry, Henan Agricultural University, Zhengzhou, Agricultural Road No. 63, 450002, P. R. China
| | - Xiao-Jun Shen
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian, 116023, P. R. China
| | - Shao-Ni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Zhuohua Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| |
Collapse
|
23
|
Nawaz A, Huang R, Junaid F, Feng Y, Haq IU, Mukhtar H, Jiang K. Sustainable Production of Bioethanol Using Levulinic Acid Pretreated Sawdust. Front Bioeng Biotechnol 2022; 10:937838. [PMID: 35845396 PMCID: PMC9280707 DOI: 10.3389/fbioe.2022.937838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
The sustainability and economic viability of the bioethanol production process from lignocellulosic biomass depend on efficient and effective pretreatment of biomass. Traditional pretreatment strategies implicating the use of mineral acids, alkalis, and organic solvents release toxic effluents and the formation of inhibitory compounds posing detrimental effects on the environment and interfering with the enzymatic saccharification process, respectively. Ionic liquids (ILs) as green solvents were used to overcome this issue, but the deep eutectic solvent as an emerging class of ionic liquids performed better in terms of making the process environmentally and economically viable. The green solvent-based pretreatment strategy applied in the current research was levulinic, acid-based natural deep eutectic solvent (NADES). Three different hydrogen bond acceptors (HBAs)—acetamide, betaine, and choline chloride—in combination with levulinic acid as hydrogen bond donor (HBD) in (HBD: HBA) molar ratio 2:1, were screened for biomass pretreatment. The best deep eutectic solvent was levulinic acid: choline chloride in an optimized molar ratio of 1:0.5, resulting in 91% delignification. The physicochemical parametric optimization of saccharification exhibited maximum enzymatic hydrolysis of 25.87% with 125 mg of pretreated sawdust via simultaneous addition of three thermostable cellulases [i.e., endo-1,4-β-D-glucanase (240 U), exo-1,4-β-D-glucanase (180 U), and β-glucosidase (320 U)] for 5 h of incubation at 75°C. The reducing sugar slurry obtained from the saccharified biomass was then added to a fermentation medium for bioethanol production, and a maximum of 11.82% of production was obtained at 30°C, 72 h, and 180 rpm using a 2.5% 24 h old Saccharomyces cerevisiae seed culture. The current study revealed that the levulinic-based deep eutectic solvent exhibited remarkable delignification, which led to the efficient enzymatic hydrolysis of sawdust and hence bioethanol production. Furthermore, it will prospect new avenues in bioethanol production using a deep eutectic solvent. Deep eutectic solvent overcame the issues posed by ionic liquids: toxicity, expensive and complex preparation, and non-biodegradability.
Collapse
Affiliation(s)
- Ali Nawaz
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
- *Correspondence: Ali Nawaz, ; Kankan Jiang,
| | - Rong Huang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Farah Junaid
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Yiwei Feng
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Kankan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Ali Nawaz, ; Kankan Jiang,
| |
Collapse
|
24
|
Lian Z, Zhang Q, Xu Y, Zhou X, Jiang K. Biorefinery Cascade Processing for Converting Corncob to Xylooligosaccharides and Glucose by Maleic Acid Pretreatment. Appl Biochem Biotechnol 2022; 194:4946-4958. [PMID: 35674923 DOI: 10.1007/s12010-022-03985-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 01/07/2023]
Abstract
Corncob as an abundant and low-cost waste resource has received increasing attention to produce value-added chemicals, it is rich in xylan and regarded as the most preferable feedstock for preparing high value added xylooligosaccharides. The use of xylooligosaccharides as core products can cut costs and improve the economic efficiency in biorefinery. In this study, maleic acid, as a non-toxic and edible acidic catalyst, was employed to pretreat corncob and produce xylooligosaccharides. Firstly, the response surface methodology experimental procedure was employed to maximize the yield of the xylooligosaccharides; a yield of 52.9% (w/v) was achieved with 0.5% maleic acid (w/v) at 155 °C for 26 min. In addition, maleic acid pretreatment was also beneficial to enhance the enzymatic hydrolysis efficiency, resulting in an enzymatic glucose yield of 85.4% (w/v) with a total of 10% solids loading. Finally, a total of 160 g of xylooligosaccharides and 275 g glucose could be produced from 1000 g corncob starting from the maleic acid pretreatment. Overall, a cascade processing for converting corncob to xylooligosaccharides and glucose by sequential maleic acid pretreatment and enzymatic hydrolysis was successfully designed for the corncob wastes utilization.
Collapse
Affiliation(s)
- Zhina Lian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, People's Republic of China
| | - Qibo Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, People's Republic of China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, People's Republic of China
| | - Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, People's Republic of China.
| | - Kankan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, 310053, Hangzhou, People's Republic of China
| |
Collapse
|
25
|
Enzymatic Production of Lauroyl and Stearoyl Monoesters of d-Xylose, l-Arabinose, and d-Glucose as Potential Lignocellulosic-Derived Products, and Their Evaluation as Antimicrobial Agents. Catalysts 2022. [DOI: 10.3390/catal12060610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Forestry and agricultural industries constitute highly relevant economic activities globally. They generate large amounts of residues rich in lignocellulose that have the potential to be valorized and used in different industrial processes. Producing renewable fuels and high-value-added compounds from lignocellulosic biomass is a key aspect of sustainable strategies and is central to the biorefinery concept. In this study, the use of biomass-derived monosaccharides for the enzymatic synthesis of sugar fatty acid esters (SFAEs) with antimicrobial activity was investigated to valorize these agro-industrial residues. With the aim to evaluate if lignocellulosic monosaccharides could be substrates for the synthesis of SFAEs, d-xylose, l-arabinose, and d-glucose, lauroyl and stearoyl monoesters were synthetized by transesterification reactions catalyzed by Lipozyme RM IM as biocatalyst. The reactions were performed using commercial d-xylose, l-arabinose, and d-glucose separately as substrates, and a 74:13:13 mixture of these sugars. The proportion of monosaccharides in the latter mixture corresponds to the composition found in hemicellulose from sugarcane bagasse and switchgrass, as previously described in the literature. Products were characterized using nuclear magnetic resonance (NMR) spectroscopy and showed that only the primary hydroxyl group of these monosaccharides is involved in the esterification reaction. Antimicrobial activity assay using several microorganisms showed that 5-O-lauroyl-d-xylofuranose and 5-O-lauroyl-l-arabinofuranose have the ability to inhibit the growth of Gram-positive bacteria separately and in the products mix. Furthermore, 5-O-lauroyl-l-arabinofuranose was the only product that exhibited activity against Candida albicans yeast, and the four tested filamentous fungi. These results suggest that sugar fatty acid esters obtained from sustainable and renewable resources and produced by green methods are promising antimicrobial agents.
Collapse
|
26
|
Gong L, Zha J, Pan L, Ma C, He YC. Highly efficient conversion of sunflower stalk-hydrolysate to furfural by sunflower stalk residue-derived carbonaceous solid acid in deep eutectic solvent/organic solvent system. BIORESOURCE TECHNOLOGY 2022; 351:126945. [PMID: 35247562 DOI: 10.1016/j.biortech.2022.126945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Sunflower stalk was utilized as a source of raw material and catalyst for furfural production, and efficient conversion of xylose-rich hydrolysate into furfural was developed in an aqueous deep eutectic solvent/organic solvent medium by carbonaceous solid acid catalyst SO42-/SnO2-SSXR. The structural characteristics of SO42-/SnO2-SSXR was characterized by Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM), Fourier-transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Pyridine Adsorption Fourier-transform Infrared (Py-IR) and Raman. Under the optimum catalytic conditions, furfural (110.1 mM) yield reached 82.6% in a ChCl-MAA/toluene medium at 180 °C in 15 min by 3.6 wt% SO42-/SnO2-SSXR. Additionally, quite importantly, SO42-/SnO2-SSXR, ChCl-MAA and toluene had good recyclability for furfural production. The potential catalytic path of xylose dehydration into furfural was proposed by co-catalysis with SO42-/SnO2-SSXR and ChCl-MAA. This study revealed high potential sustainable application of furfural production.
Collapse
Affiliation(s)
- Lei Gong
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Jingjian Zha
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Lei Pan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Yu-Cai He
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China.
| |
Collapse
|
27
|
Han L, Jiang B, Wang W, Wang G, Tan Y, Niu K, Fang X. Alleviating Nonproductive Adsorption of Lignin on CBM through the Addition of Cationic Additives for Lignocellulosic Hydrolysis. ACS APPLIED BIO MATERIALS 2022; 5:2253-2261. [PMID: 35404566 DOI: 10.1021/acsabm.2c00112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nonproductive adsorption of cellulase onto lignin significantly inhibited the enzymatic hydrolysis of lignocellulosic biomass. In this study, we constructed a rapid fluorescence detection (RFD) system, and using this system, we demonstrated that the addition of cationic additives DTAB or polyDADMAC greatly increased the partition coefficients of cellulose/lignin, reduced nonproductive adsorption, and enhanced the hydrolysis efficiency of lignocellulose compared to those of Tweens or PEGs. Moreover, the addition of polyDADMAC and DTAB increased the glucose yield released from the mixture of Avicel and AICS-lignin (MCL) by 16.9 and 20.6%, respectively, and reduced the inhibition rate of lignin by 16.9 and 20.7%, respectively. Interestingly, polyDADMAC or DTAB treatment performed more effectively for the enzymatic hydrolysis of pretreated lignocellulosic biomass, compared with MCL. We confirmed that the reduced hydrophobicity and increased zeta potential of lignin cocontribute to the dampening nonproductive adsorption of lignin. In particular, the zeta potential values of lignin and the partition coefficients of Avicel/lignin with the addition of additives showed a good correlation, suggesting that electrostatic force also plays a crucial role in the adsorbing of cellulase on lignin. This work will be conducive to decreasing the nonproductive binding of cellulase onto lignin and enhancing cellulose conversion.
Collapse
Affiliation(s)
- Lijuan Han
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.,Rongcheng Huihai Chuangda Biotechnology CO., LTD, Weihai, Shandong 264309, China
| | - Baojie Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.,College of Science and Technology, Hebei Agricultural University, Cangzhou 061100, China
| | - Wei Wang
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Gaosheng Wang
- TianJin Key Laboratory of Pulp and Paper, TianJin University of Science and Technology, TianJin 300457, China
| | - Yinshuang Tan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Kangle Niu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.,National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China.,Rongcheng Huihai Chuangda Biotechnology CO., LTD, Weihai, Shandong 264309, China
| |
Collapse
|
28
|
Yankov D. Fermentative Lactic Acid Production From Lignocellulosic Feedstocks: From Source to Purified Product. Front Chem 2022; 10:823005. [PMID: 35308791 PMCID: PMC8931288 DOI: 10.3389/fchem.2022.823005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/21/2022] [Indexed: 01/10/2023] Open
Abstract
The second (lignocellulosic biomass and industrial wastes) and third (algal biomass) generation feedstocks gained substantial interest as a source of various value-added chemicals, produced by fermentation. Lactic acid is a valuable platform chemical with both traditional and newer applications in many industries. The successful fractionation, separation, and hydrolysis of lignocellulosic biomass result in sugars' rich raw material for lactic acid fermentation. This review paper aims to summarize the investigations and progress in the last 5 years in lactic acid production from inexpensive and renewable resources. Different aspects are discussed-the type of raw materials, pretreatment and detoxification methods, lactic acid-producers (bacteria, fungi, and yeasts), use of genetically manipulated microorganisms, separation techniques, different approaches of process organization, as well as main challenges, and possible solutions for process optimization.
Collapse
Affiliation(s)
- Dragomir Yankov
- Chemical and Biochemical Reactors Laboratory, Institute of Chemical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
29
|
Enhanced Saccharification of Purple Alfalfa via Sequential Pretreatment with Acidified Ethylene Glycol and Urea/NaOH. Processes (Basel) 2021. [DOI: 10.3390/pr10010061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purple Alfalfa is an inexpensive, abundant, readily available lignocellulosic material. This work was attempted to develop an efficient combination pretreatment by sequential HClO4–ethyl glycol–H2O (1.2:88.8:10, w/w/w) extraction at 130 °C in 0.5 h and urea/NaOH (urea 12 wt%, NaOH 7 wt%) soaking at −20 °C for 0.5 h for the pretreatment of purple alfalfa. The porosity, morphology, and crystallinity of pretreated purple alfalfa were characterized with SEM, FM, XRD, and FTIR. This combination pretreatment had a significant influence on hemicellulose removal and delignification. The above changes could enhance cellulose accessibility to enzymes and improve the enzymatic digestibility of cellulose. High yields of reducing sugars from pretreated purple alfalfa were obtained at 93.4%. In summary, this combination pretreatment has high potential application in the future.
Collapse
|