1
|
Ban L, Wu D, Sun D, Zhou H, Wang H, Zhang H, Charles Xu C, Yang S. Sustainable Production of Biofuels from Biomass Feedstocks Using Modified Montmorillonite Catalysts. CHEMSUSCHEM 2025; 18:e202401025. [PMID: 38984900 DOI: 10.1002/cssc.202401025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
The rampant exploitation of fossil fuels has led to the significant energy scarcity and environmental disruption, affecting the sound momentum of development and progress of human civilization. To build a closed-loop anthropogenic carbon cycle, development of biofuels employing sustainable biomass feedstocks stands at the forefront of advancing carbon neutrality, yet its widespread adoption is mainly hampered by the high production costs. Montmorillonite, however, has garnered considerable attention serving as an efficient heterogeneous catalyst of ideal economic feasibility for biofuel production, primarily due to its affordability, accessibility, stability, and excellent plasticity. Up to now, nevertheless, it has merely received finite concerns and interests in production of various biofuels using montmorillonite-based catalysts. There is no timely and comprehensive review that addresses this latest relevant progress. This review fills the gap by providing a systematically review and summary in controllable synthesis, performance enhancement, and applications related to different kinds of biofuels including biodiesel, biohydrogenated diesel, levulinate, γ-valerolactone, 5-ethoxymethylfurfural, gaseous biofuels (CO, H2), and cycloalkane, by using montmorillonite catalysts and its modified forms. Particularly, this review critically depicts the design strategies for montmorillonite, illustrates the relevant reaction mechanisms, and assesses their economic viability, realizing sustainable biofuels production via efficient biomass valorization. Overall, this may offer valuable insights into cost-effective biofuel production and proposes strategic recommendations for advancement of montmorillonite applications and future biofuel development.
Collapse
Affiliation(s)
- Lin Ban
- State Key Laboratory of Green Pesticide, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Deyu Wu
- State Key Laboratory of Green Pesticide, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Dalin Sun
- State Key Laboratory of Green Pesticide, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Heng Zhou
- State Key Laboratory of Green Pesticide, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hao Wang
- State Key Laboratory of Green Pesticide, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Heng Zhang
- State Key Laboratory of Green Pesticide, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Chunbao Charles Xu
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, 999077, China
| | - Song Yang
- State Key Laboratory of Green Pesticide, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
2
|
Bisio C, Brendlé J, Cahen S, Feng Y, Hwang SJ, Nocchetti M, O'Hare D, Rabu P, Melanova K, Leroux F. Recent advances and perspectives for intercalation layered compounds. Part 2: applications in the field of catalysis, environment and health. Dalton Trans 2024; 53:14551-14581. [PMID: 39046465 DOI: 10.1039/d4dt00757c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Intercalation compounds represent a unique class of materials that can be anisotropic (1D and 2D-based topology) or isotropic (3D) through their guest/host superlattice repetitive organisation. Intercalation refers to the reversible introduction of guest species with variable natures into a crystalline host lattice. Different host lattice structures have been used for the preparation of intercalation compounds, and many examples are produced by exploiting the flexibility and the ability of 2D-based hosts to accommodate different guest species, ranging from ions to complex molecules. This reaction is then carried out to allow systematic control and fine tuning of the final properties of the derived compounds, thus allowing them to be used for various applications. This review mainly focuses on the recent applications of intercalation layered compounds (ILCs) based on layered clays, zirconium phosphates, layered double hydroxides and graphene as heterogeneous catalysts, for environmental and health purposes, aiming at collecting and discussing how intercalation processes can be exploited for the selected applications.
Collapse
Affiliation(s)
- Chiara Bisio
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, AL, Italy.
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Via C. Golgi 19, 20133 Milano, MI, Italy
| | - Jocelyne Brendlé
- Institut de Science des Matériaux de Mulhouse CNRS UMR 7361, Université de Haute-Alsace, Université de Strasbourg, 3b rue Alfred Werner, 68093 Mulhouse CEDEX, France.
| | - Sébastien Cahen
- Institut Jean Lamour - UMR 7198 CNRS-Université de Lorraine, Groupe Matériaux Carbonés, Campus ARTEM - 2 Allée André Guinier, B.P. 50840, F54011, NancyCedex, France
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing, 100029, China
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Morena Nocchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | - Dermot O'Hare
- Chemistry Research Laboratory, University of Oxford Department of Chemistry, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Pierre Rabu
- Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS - Université de Strasbourg, UMR7504, 23 rue du Loess, BP43, 67034 Strasbourg cedex 2, France
| | - Klara Melanova
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 532 10 Pardubice, Czech Republic.
| | - Fabrice Leroux
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, UMR CNRS 6296, Clermont Auvergne INP, 24 av Blaise Pascal, BP 80026, 63171 Aubière cedex, France.
| |
Collapse
|
3
|
Vickram S, Manikandan S, Deena SR, Mundike J, Subbaiya R, Karmegam N, Jones S, Kumar Yadav K, Chang SW, Ravindran B, Kumar Awasthi M. Advanced biofuel production, policy and technological implementation of nano-additives for sustainable environmental management - A critical review. BIORESOURCE TECHNOLOGY 2023; 387:129660. [PMID: 37573978 DOI: 10.1016/j.biortech.2023.129660] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
This review article critically evaluates the significance of adopting advanced biofuel production techniques that employ lignocellulosic materials, waste biomass, and cutting-edge technology, to achieve sustainable environmental stewardship. Through the analysis of conducted research and development initiatives, the study highlights the potential of these techniques in addressing the challenges of feedstock supply and environmental impact and implementation policies that have historically plagued the conventional biofuel industry. The integration of state-of-the-art technologies, such as nanotechnology, pre-treatments and enzymatic processes, has shown considerable promise in enhancing the productivity, quality, and environmental performance of biofuel production. These developments have improved conversion methods, feedstock efficiency, and reduced environmental impacts. They aid in creating a greener and sustainable future by encouraging the adoption of sustainable feedstocks, mitigating greenhouse gas emissions, and accelerating the shift to cleaner energy sources. To realize the full potential of these techniques, continued collaboration between academia, industry representatives, and policymakers remains essential.
Collapse
Affiliation(s)
- Sundaram Vickram
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105. Tamil Nadu, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105. Tamil Nadu, India
| | - S R Deena
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Jhonnah Mundike
- Department of Environmental Engineering, School of Mines & Mineral Sciences, The Copperbelt University, Riverside Jambo Drive, PO Box 21692, Kitwe, Zambia
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem 636007, Tamil Nadu, India
| | - Sumathi Jones
- Department of Pharmacology and Therapeutics, Sree Balaji Dental College and Hospital, BIHER, Chennai, India
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea; Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
4
|
Alsaiari M, Dawood S, Ahmad M, Alsaiari RA, Rizk MA, Asif S. Methyl esters synthesis from Luffa cylindrica seeds oil using green copper oxide nanoparticle catalyst in membrane reactor. CHEMOSPHERE 2023; 338:139349. [PMID: 37385480 DOI: 10.1016/j.chemosphere.2023.139349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
This study investigates the potential role of Juglans sp. root extract-mediated copper oxide nanoparticles of Luffa cylindrica seed oil (LCSO) into methyl esters. The synthesized green nanoparticle was characterized by Energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), and Scanning electron microscopy (SEM) spectroscopies to find out the crystalline size (40 nm), surface morphology (rod shape), particle size (80-85 nm), and chemical composition (Cu = 80.25% & O = 19.75%), accordingly. The optimized protocol for the transesterification reaction was adjusted as oil to methanol molar ratio (1:7), copper oxide nano-catalyst concentration (0.2 wt %), and temperature (90 °C) corresponding to the maximum methyl esters yield of 95%. The synthesized methyl esters were characterized by GC-MS, 1H NMR, 13C NMR, and FT-IR studies to know and identify the chemical composition of newly synthesized Lufa biodiesel. The fuel properties of Luffa cylindrica seed oil biofuel were checked and compared with the American Biodiesel standards (ASTM) (D6751-10). Finally, it is commendable to use biodiesel made from wild, uncultivated, and non-edible Lufa cylindrica to promote and adopt a cleaner and sustainable energy method. The acceptance and implementation of the green energy method may result in favourable environmental effects, which in turn may lead to better societal and economic development.
Collapse
Affiliation(s)
- Mabkhoot Alsaiari
- Science and Engineering Research Center, Empty Quarter Research Unit, Chemistry Department, Faculty of Science and Art at Sharurah, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Sumreen Dawood
- Department of Botany, University of Mianwali, Mianwali, Punjab, Pakistan
| | - Mushtaq Ahmad
- Biofuel & Biodiversity Lab., Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Raiedhah A Alsaiari
- Science and Engineering Research Center, Empty Quarter Research Unit, Chemistry Department, Faculty of Science and Art at Sharurah, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Moustafa A Rizk
- Science and Engineering Research Center, Empty Quarter Research Unit, Chemistry Department, Faculty of Science and Art at Sharurah, Najran University, Najran, 11001, Kingdom of Saudi Arabia; Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Saira Asif
- Faculty of Sciences, Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, 46300, Pakistan.
| |
Collapse
|
5
|
Gul T, Aslam MM, Khan AS, Iqbal T, Ullah F, Eldesoky GE, Aljuwayid AM, Akhtar MS. Phytotoxic responses of wheat to an imidazolium based ionic liquid in absence and presence of biochar. CHEMOSPHERE 2023; 322:138080. [PMID: 36781001 DOI: 10.1016/j.chemosphere.2023.138080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/21/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Research on ionic liquids (ILs) and biochars (BCs) is a novel site of scientific interest. An experiment was designed to assess the effect of 1-propanenitrile imidazolium trifluoro methane sulfonate ([C2NIM][CF3SO3]) ionic liquid (IL) and IL-BC combination on the wheat plant. Three working standards of the IL; 50, 250, 500 and 1000 mg/L, prepared in deionized water, were tested in the absence and presence of BC on wheat seedling. Results indicated significant decrease in seed germination (%), length, fresh weight, chlorophyll a, b and carotenoid contents of wheat seedlings at 250, 500 and 1000 mg/L of the IL. An admirable increase in phenolic and 2,2-diphenyl-1-picrylhydrazyl (DPPH) contents of wheat seedlings was noted at 250, 500 and 1000 mg/L of the IL. The application of BC significantly ameliorated the negative effects of IL on the selected parameters of wheat. It is inferred that the undesirable effects of the IL on wheat growth can be positively restored by addition of BC.
Collapse
Affiliation(s)
- Taza Gul
- Department of Botany, University of Science and Technology Bannu, Pakistan
| | | | - Amir Sada Khan
- Department of Chemistry, University of Science and Technology Bannu, Pakistan
| | - Tahir Iqbal
- Department of Botany, University of Science and Technology Bannu, Pakistan
| | - Faizan Ullah
- Department of Botany, University of Science and Technology Bannu, Pakistan
| | - Gaber E Eldesoky
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed Muteb Aljuwayid
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea.
| |
Collapse
|
6
|
Rozina, Ahmad M, Zafar M, Bokhari A, Akhtar MS, Alshgari RA, Karami AM, Asif S. Membrane reactor for production of biodiesel from nonedible seed oil of Trachyspermum ammi using heterogenous green nanocatalyst of manganese oxide. CHEMOSPHERE 2023; 322:138078. [PMID: 36754302 DOI: 10.1016/j.chemosphere.2023.138078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/21/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Conventional homogeneous-based catalyzed transesterification for the production of biodiesel can be replaced with a membrane reactor that has an immobilized heterogeneous catalyst. Combining reaction with separation while utilizing membranes with a certain pore size might boost conversion process. this investigation to study the effectiveness of membrane reactor in combination with heterogeneous green nano catalysis of MnO2. Techniques such as XRD, EDX, FTIR, SEM, and TGA were used to characterize the synthesized MnO2 nano catalyst. The highest conversion of around 94% Trachyspermum ammi oil was obtained by MnO2. The optimum process variables for maximum conversion were catalyst loading of 0.26 (wt.%), 8:1 M ratio, 90 °C reaction temperature, and time 120 min. The green nano catalyst of MnO2 was reusable up to five cycles with minimum loss in conversion rate of about 75% in the fifth cycle. Nuclear magnetic resonance validated the synthesis of methyl esters. It was concluded that membrane reactor a promising technique to efficiently transesterify triglycerides into methyl esters and enable process intensification uses MnO2 as a catalyst.
Collapse
Affiliation(s)
- Rozina
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Zafar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Awais Bokhari
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, 54000, Lahore, Punjab, Pakistan; Sustainable Process Integration Laboratory, SPIL, NETME Centra, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, Brno, 616 00, Czech Republic.
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea.
| | - Razan A Alshgari
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | - Saira Asif
- Faculty of Sciences, Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, 46300, Pakistan.
| |
Collapse
|
7
|
Aziz T, Haq F, Farid A, Kiran M, Faisal S, Ullah A, Ullah N, Bokhari A, Mubashir M, Chuah LF, Show PL. Challenges associated with cellulose composite material: Facet engineering and prospective. ENVIRONMENTAL RESEARCH 2023; 223:115429. [PMID: 36746207 DOI: 10.1016/j.envres.2023.115429] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/04/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Cellulose is the most abundant polysaccharide on earth. It has a large number of desirable properties. Its low toxicity makes it more useful for a variety of applications. Nowadays, its composites are used in most engineering fields. Composite consists of a polymer matrix and use as a reinforcing material. By reducing the cost of traditional fibers, it has an increasing demand for environment-friendly purposes. The use of these types of composites is inherent in moisture absorption with hindered natural fibers. This determines the reduction of polymer composite material. By appropriate chemical surface treatment of cellulose composite materials, the effect could be diminished. The most modern and advanced techniques and methods for the preparation of cellulose and polymer composites are discussed here. Cellulosic composites show a reinforcing effect on the polymer matrix as pointed out by mechanical characterization. Researchers tried their hard work to study different ways of converting various agricultural by-products into useful eco-friendly polymer composites for sustainable production. Cellulose plays building blocks, that are critical for polymer products and their engineering applications. The most common method used to prepare composites is in-situ polymerization. This help to increase the yields of cellulosic composites with a significant enhancement in thermal stability and mechanical properties. Recently, cellulose composites used as enhancing the incorporation of inorganic materials in multi-functional properties. Furthermore, we have summarized in this review the potential applications of cellulose composites in different fields like packaging, aerogels, hydrogels, and fibers.
Collapse
Affiliation(s)
- Tariq Aziz
- Westlake University, School of Engineering, Hangzhou, China
| | - Fazal Haq
- Institute of Chemical Sciences, Gomal University, D. I. Khan, 29050, Pakistan.
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D. I. Khan, 29050, Pakistan
| | - Mehwish Kiran
- Department of Horticulture, Faculty of Agriculture, Gomal University, D. I. Khan, 29050, Pakistan
| | - Shah Faisal
- Chemistry Department, University of Science and Technology Bannu, Pakistan
| | - Asmat Ullah
- Zhejiang Provincial Key Laboratory of Cancer, Life Science Institute, Zhejiang University, Hangzhou, 310058, China
| | - Naveed Ullah
- Institute of Chemical Sciences, Gomal University, D. I. Khan, 29050, Pakistan
| | - Awais Bokhari
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Muhammad Mubashir
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Lai Fatt Chuah
- Faculty of Maritime Studies, Universiti Malaysia Terengganu, Terengganu, Malaysia.
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; Department of Chemical Engineering, Khalifa University, Shakhbout Bin Sultan St - Zone 1, Abu Dhabi, United Arab Emirates; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
8
|
Aziz T, Farid A, Chinnam S, Haq F, Kiran M, Wani AW, Alothman ZA, Aljuwayid AM, Habila MA, Akhtar MS. Synthesis, characterization and adsorption behavior of modified cellulose nanocrystals towards different cationic dyes. CHEMOSPHERE 2023; 321:137999. [PMID: 36724850 DOI: 10.1016/j.chemosphere.2023.137999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/09/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Green and efficient removal of polluted materials are essential for the sustainability of a clean and green environment. Nanomaterials, particularly cellulose nanocrystals (CNCs), are abundant in nature and can be extracted from various sources, including cotton, rice, wheat, and plants. CNCs are renewable biomass materials with a high concentration of polar functional groups. This study used succinic anhydride to modify the surface of native cellulose nanocrystals (NCNCs). Succinic anhydride has been frequently used in adhesives and sealant chemicals for a long time, and here, it is evaluated for dye removal performance. The morphology and modification of CNCs studied using FTIR, TGA & DTG, XRD, SEM, AFM, and TEM. The ability of modified cellulose nanocrystals (MCNCs) to adsorb cationic golden yellow dye and methylene blue dye was investigated. The MCNCs exhibited high adsorption affinity for the two different cationic dyes. The maximum adsorption efficiency of NCNCs and MCNCs towards the cationic dye was 0.009 and 0.156 wt%. The investigation for adhesive properties is based on the strength and toughness of MCNCs. MCNCs demonstrated improved tensile strength (2350 MPa) and modulus (13.9 MPa) using E-51 epoxy system and a curing agent compared to 3 wt% composites. This research lays the groundwork for environmentally friendly fabrication and consumption in the industrial sector.
Collapse
Affiliation(s)
- Tariq Aziz
- Westlake University, School of Engineering, Hangzhou, China
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D. I. Khan, 29050, Pakistan.
| | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka, 560054, India
| | - Fazal Haq
- Institute of Chemical Sciences, Gomal University, D. I. Khan, 29050, Pakistan
| | - Mehwish Kiran
- Department of Horticulture, Faculty of Agriculture, Gomal University, D. I. Khan, 29050, Pakistan
| | - Ab Waheed Wani
- Department of Horticulture, Lovely Professional University, Punjab, 144411, India
| | - Zeid A Alothman
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed Muteb Aljuwayid
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed A Habila
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea.
| |
Collapse
|
9
|
Haq F, Kiran M, Chinnam S, Farid A, Khan RU, Ullah G, Aljuwayid AM, Habila MA, Mubashir M. Synthesis of bioinspired sorbent and their exploitation for methylene blue remediation. CHEMOSPHERE 2023; 321:138000. [PMID: 36724851 DOI: 10.1016/j.chemosphere.2023.138000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/08/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
In this research article, novel starch phosphate grafted polyvinyl imidazole (StP-g-PIMDZs) was synthesized. Firstly, a phosphate group was attached to starch polymer via a phosphorylation reaction. Next, 1-vinyl imidazole (VIMDZ) was grafted on the backbone of starch phosphate (StP) through a free radical polymerization reaction. The synthesis of these modified starches was confirmed by 1H NMR, 31P NMR and FT-IR techniques. The grafting of vinyl imidazole onto StP diminished the crystallinity. Due to the insertion of the aromatic imidazole ring, the StP-g-PIMDZs demonstrated greater thermal stability. The StP and StP-g-PIMDZs were used as sorbents for the adsorption of methylene blue dye (MBD) from the model solution. The maximum removal percentage for starch, StP, StP-g-PIMDZ 1, StP-g-PIMDZ 2 and StP-g-PIMDZ 3 was found to be 60.6%, 66.7%, 74.2%, 85.3 and 95.4%, respectively. The Pseudo second order kinetic model and Langmuir adsorption isotherm were best suited to the experimental data with R2 = 0.999 and 0.99, respectively. Additionally, the thermodynamic parameters showed that the adsorption process was feasible, spontaneous, endothermic and favored chemi-sorption mechanism.
Collapse
Affiliation(s)
- Fazal Haq
- Institute of Chemical Sciences, Gomal University, D.I.Khan, 29050, Pakistan
| | - Mehwish Kiran
- Faculty of Agriculture, Gomal University, D.I.Khan, 29050, Pakistan
| | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka, 560054, India
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I.Khan, 29050, Pakistan.
| | - Rizwan Ullah Khan
- Institute of Chemical Sciences, Gomal University, D.I.Khan, 29050, Pakistan
| | - Ghazanfar Ullah
- Faculty of Agriculture, Gomal University, D.I.Khan, 29050, Pakistan; Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| | - Ahmed Muteb Aljuwayid
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed A Habila
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Chuah LF, Mokhtar K, Mhd Ruslan SM, Bakar AA, Abdullah MA, Osman NH, Bokhari A, Mubashir M, Show PL. Implementation of the energy efficiency existing ship index and carbon intensity indicator on domestic ship for marine environmental protection. ENVIRONMENTAL RESEARCH 2023; 222:115348. [PMID: 36731596 DOI: 10.1016/j.envres.2023.115348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/01/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
The International Maritime Organization has set a goal to achieve a 50% reduction of total annual greenhouse gas emission related to the international shipping by 2050 compared to the 2008 baseline emissions. Malaysia government has taken an initiative to investigate the assessment (cost-effectiveness) of this International Maritime Organization's short-term measure on Malaysian-registered domestic ships although this measure is only for international merchant ship. To achieve this, this paper collected the ship's data from the shipowners from 25 sample ships. Engine power limitation is the most cost-effective option, but low power limits can lead to substantially increased sailing times. Based on cost-efficiency analysis, it creates for the purpose of compliance with the operational carbon intensity indicator. It found that even if it is possible to bring an asset back into service, it may not be possible to do so in a manner that generates a profit or complies with applicable regulations. In these situations, it may be more prudent to scrap the asset rather than run the risk of having it become a stranded asset. This is especially true for older tankers. Alternatives with lengthy payback periods are not desirable for the domestic tanker fleet that is already in operation.
Collapse
Affiliation(s)
- Lai Fatt Chuah
- Faculty of Maritime Studies, Universiti Malaysia Terengganu, Terengganu, Malaysia.
| | - Kasypi Mokhtar
- Faculty of Maritime Studies, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | | | - Anuar Abu Bakar
- Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Malaysia
| | | | - Nor Hasni Osman
- School of Technology Management and Logistics, Universiti Utara Malaysia, 06010, Sintok, Kedah Darul Aman, Malaysia
| | - Awais Bokhari
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Punjab, 54000, Pakistan; Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000 Kuala Lumpur, Malaysia
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Chemical Engineering, Khalifa University, Shakhbout Bin Sultan St - Zone 1, Abu Dhabi, United Arab Emirates; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
11
|
Shahid MU, Mohamed NM, Muhsan AS, Azella Zaine SN, Khatani M, Yar A, Ahmad W, Hussain MB, Alothman AA, Saleh Mushab MS. Graphene loaded TiO 2 submicron spheres scattering layer for efficient dye-sensitized solar cell. CHEMOSPHERE 2023; 321:138009. [PMID: 36731659 DOI: 10.1016/j.chemosphere.2023.138009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/04/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Dye-Sensitized Solar Cells (DSSCs) have attracted great attention due to environmentally friendly low-cost processing, excellent working ability in diffuse light, and potential to meet the power demands of future buildings due the true class of building integrated photovoltaics (BIPV). Nevertheless, DSSCs have relatively low photoconversion efficiency (PCE) due to multiple issues. Several strategies have been employed to enhance its PCE. For instance, bi-layered structure of photoelectrode i.e., mesoporous TiO2 transparent layer with top scattering layer was introduced which scatter light inside on large angles improves the harvesting ability of photoelectrode thus enhanced PCE. However, scattering layer is composed of aggregated small particles which offer sluggish electron transport due to multiple grain boundaries, consequently, unwanted recombination reaction which leads to poor PCE. This issue has been addressed for transparent layer immensely but ignored for scattering layer. Mostly for scattering layer in previous studies novel structures have been proposed to enhance scattering properties and dye adsorption only. Therefore, in this study for the first time presenting dual functional graphene/TiO2 scattering layer in which solvent exfoliated graphene is incorporated in TiO2 submicron spheres which enhanced electron transport properties, while submicron spheres scatter light effectively. Scattering and electron transport characteristics of DSSCs are thoroughly investigated with the function of graphene loading. Electrochemical impedance spectroscopy (EIS) has revealed that diffusion coefficient length and coefficient and conductivity attained maximum value at 0.01 wt%. while other important parameters such as electron lifetime and electron density in conduction band have been improved till 0.020 wt% graphene loading. However, results indicated that with 0.01 w% graphene 33% higher PCE was achieved than without scattering layer and 13% higher than scattering layer without graphene. The depraving in PCE at >0.01 wt% graphene despite of excellent electron transport improvement is attributed to the loss of diffuse reflectance and higher optical absorption by graphene.
Collapse
Affiliation(s)
- Muhammad Umair Shahid
- Faculty of Science, Department of Physics, University of Sialkot, Sialkot, 51310, Pakistan; Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia; Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia.
| | - Norani Muti Mohamed
- Faculty of Science, Department of Physics, University of Sialkot, Sialkot, 51310, Pakistan; Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia
| | - Ali Samer Muhsan
- Faculty of Science, Department of Physics, University of Sialkot, Sialkot, 51310, Pakistan; Mechanical Engineering Department, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia
| | - Siti Nur Azella Zaine
- Faculty of Science, Department of Physics, University of Sialkot, Sialkot, 51310, Pakistan; Chemical Engineering Department, University of Technology PETRONAS, Seri Iskandar, 32610, Malaysia
| | - Mehboob Khatani
- Faculty of Science, Department of Physics, University of Sialkot, Sialkot, 51310, Pakistan; Electrical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Malaysia
| | - Asfand Yar
- Faculty of Science, Department of Physics, University of Sialkot, Sialkot, 51310, Pakistan; Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia; Department of Physical and Num Sciences, Qurtaba University of Science and Technology, 29111, Dera Ismail Khan, Pakistan
| | - Waqar Ahmad
- Faculty of Science, Department of Physics, University of Sialkot, Sialkot, 51310, Pakistan
| | - Muhammad Babar Hussain
- Faculty of Science, Department of Physics, University of Sialkot, Sialkot, 51310, Pakistan; Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| | - Asma A Alothman
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
12
|
Ullah S, Ali Z, Khan AS, Nasrullah A, Javed F, Adalat B, Sher N, Ahmed M, Alshgari RA, Saleh Mushab MS, Majeed S. Hydrophobic ammonium based ionic liquids for efficient extraction of textile dyes from aqueous media: Extraction study and antibacterial evaluation. CHEMOSPHERE 2023; 321:138008. [PMID: 36731664 DOI: 10.1016/j.chemosphere.2023.138008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/11/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Alizarin red S (ARS) extraction from aqueous medium was carried out using hydrophobic ionic liquids (ILs) containing trioctylammonium cation paired with 4-tert-butylbenzoate ([TOA][Butbenz] (IL1), 4-phenylbutanoate ([TOA][PheBut] (IL2), 3-4-dimethylbenzoate ([TOA][DMbenz] (IL3), naphthoate, ([TOA][Naph]) (IL4), salicylate ([TOA][Sali]) (IL5) and nonanedioate ([TOA]2[Nona]) (IL6). The findings demonstrated that all of the tested ILs were efficient for extracting ARS, however, [TOA]2[Nona] was more effective than others. For the extraction of ARS from the aqueous phase, the effects of various parameters including the initial pH of the dye solution, contact time, ILs to dye volume ratio (VIL:VW), dye concentration, temperature, and salt effect were investigated. The spontaneity of the liquid-liquid extraction of ARS from the aqueous phase to the IL phase was confirmed by thermodynamic parameters. More than 90% of the ARS was extracted from the aqueous phase to the IL phase throughout all experiments. Interaction of selected IL with dyes were confirmed using FTIR analysis. The standard bacterial strains of Escherichia coli (E. coli) ATCC BAA-2471 (gram negative) and Methicillin-resistant Staphylococcus (MRSA) ATCC 43300 (gram positive) were used for evaluating antibacterial activity. The lower dose (250 ppm), the ILs1, 2, 3, 4, 5, and 6 inhibited 0.40, 1.50, 6.50, 1.50, 2.50, and 0.50 mm growth of E. coli, and 4.0, 2.0, 16.50, 0.40, 5.0, and 3.50 mm growth of MRSA, respectively. The experimental findings confirmed that the present ILs can be utilized as an effective solvent for ARS and other dyes extraction from aqueous media.
Collapse
Affiliation(s)
- Saadat Ullah
- Department of Chemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Zarshad Ali
- Department of Chemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Amir Sada Khan
- Department of Chemistry, University of Science and Technology Bannu 28100, Khyber Pakhtunkhwa, Pakistan.
| | - Asma Nasrullah
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Fatima Javed
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Bushra Adalat
- Department of Chemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Naila Sher
- Department of Biotechnology, University of Science and Technology Bannu-28100, Khyber Pakhtunkhwa, Pakistan
| | - Mushtaq Ahmed
- Department of Biotechnology, University of Science and Technology Bannu-28100, Khyber Pakhtunkhwa, Pakistan; Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| | - Razan A Alshgari
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Saadat Majeed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| |
Collapse
|
13
|
Ahmad T, Iqbal J, Bustam MA, Babar M, Tahir MB, Sagir M, Irfan M, Anwaar Asghar HM, Hassan A, Riaz A, Chuah LF, Bokhari A, Mubashir M, Show PL. Performance evaluation of phosphonium based deep eutectic solvents coated cerium oxide nanoparticles for CO 2 capture. ENVIRONMENTAL RESEARCH 2023; 222:115314. [PMID: 36738770 DOI: 10.1016/j.envres.2023.115314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/23/2022] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
The critical challenge being faced by our current modern society on a global scale is to reduce the surging effects of climate change and global warming, being caused by anthropogenic emissions of CO2 in the environment. Present study reports the surface driven adsorption potential of deep eutectic solvents (DESs) surface functionalized cerium oxide nanoparticles (CeNPs) for low pressure CO2 separation. The phosphonium based DESs were prepared using tetra butyl phosphoniumbromide as hydrogen bond acceptor (HBA) and 6 acids as hydrogen bond donors (HBDs). The as-developed DESs were characterized and employed for the surface functionalization of CeNPs with their subsequent utilization in adsorption-based CO2 adsorption. The synthesis of as-prepared DESs was confirmed through FTIR measurements and absence of precipitates, revealed through visual observations. It was found that DES6 surface functionalized CeNPs demonstrated 27% higher adsorption performance for CO2 capturing. On the contrary, DES3 coated CeNPs exhibited the least adsorption progress for CO2 separation. The higher adsorption performance associated with DES6 coated CeNPs was due to enhanced surface affinity with CO2 molecules that must have facilitated the mass transport characteristics and resulted an enhancement in CO2 adsorption performance. Carboxylic groups could have generated an electric field inside the pores to attract more polarizable adsorbates including CO2, are responsible for the relatively high values of CO2 adsorption. The quadruple movement of the CO2 molecules with the electron-deficient and pluralizable nature led to the enhancement of the interactive forces between the CO2 molecules and the CeNPs decorated with the carboxylic group hydrogen bond donor rich DES. The current findings may disclose the new research horizons and theoretical guidance for reduction in the environmental effects associated with uncontrolled CO2 emission via employing DES surface coated potential CeNPs.
Collapse
Affiliation(s)
- Tausif Ahmad
- Institute of Chemical & Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan, 64200, Pakistan
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates.
| | | | - Muhammad Babar
- Institute of Chemical & Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan, 64200, Pakistan
| | - Muhammad Bilal Tahir
- Institute of Physics, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan, 64200, Pakistan
| | - Muhammad Sagir
- Institute of Chemical & Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan, 64200, Pakistan
| | - Muhammad Irfan
- Pakistan Council of Scientific and Industrial Research (PCSIR), Lahore, Pakistan
| | | | - Afaq Hassan
- Institute of Chemical & Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan, 64200, Pakistan
| | - Asim Riaz
- Institute of Chemical & Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan, 64200, Pakistan
| | - Lai Fatt Chuah
- Faculty of Maritime Studies, Universiti Malaysia Terengganu, Terengganu, Malaysia.
| | - Awais Bokhari
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan.
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia.
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; Department of Chemical Engineering, Khalifa University, Shakhbout Bin Sultan St - Zone 1, Abu Dhabi, United Arab Emirates; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
14
|
Aqeel M, Ran J, Hu W, Irshad MK, Dong L, Akram MA, Eldesoky GE, Aljuwayid AM, Chuah LF, Deng J. Plant-soil-microbe interactions in maintaining ecosystem stability and coordinated turnover under changing environmental conditions. CHEMOSPHERE 2023; 318:137924. [PMID: 36682633 DOI: 10.1016/j.chemosphere.2023.137924] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Ecosystem functions directly depend upon biophysical as well as biogeochemical reactions occurring at the soil-microbe-plant interface. Environment is considered as a major driver of any ecosystem and for the distributions of living organisms. Any changes in climate may potentially alter the composition of communities i.e., plants, soil microbes and the interactions between them. Since the impacts of global climate change are not short-term, it is indispensable to appraise its effects on different life forms including soil-microbe-plant interactions. This article highlights the crucial role that microbial communities play in interacting with plants under environmental disturbances, especially thermal and water stress. We reviewed that in response to the environmental changes, actions and reactions of plants and microbes vary markedly within an ecosystem. Changes in environment and climate like warming, CO2 elevation, and moisture deficiency impact plant and microbial performance, their diversity and ultimately community structure. Plant and soil feedbacks also affect interacting species and modify community composition. The interactive relationship between plants and soil microbes is critically important for structuring terrestrial ecosystems. The anticipated climate change is aggravating the living conditions for soil microbes and plants. The environmental insecurity and complications are not short-term and limited to any particular type of organism. We have appraised effects of climate change on the soil inhabiting microbes and plants in a broader prospect. This article highlights the unique qualities of tripartite interaction between plant-soil-microbe under climate change.
Collapse
Affiliation(s)
- Muhammad Aqeel
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Jinzhi Ran
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Weigang Hu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Muhammad Kashif Irshad
- Department of Environmental Sciences, Government College University Faisalabad, (38000), Pakistan
| | - Longwei Dong
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Muhammad Adnan Akram
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China; Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| | - Gaber E Eldesoky
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed Muteb Aljuwayid
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Lai Fatt Chuah
- Faculty of Maritime Studies, Universiti Malaysia Terengganu, Terengganu, Malaysia.
| | - Jianming Deng
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China.
| |
Collapse
|
15
|
Manikandan S, Vickram S, Sirohi R, Subbaiya R, Krishnan RY, Karmegam N, Sumathijones C, Rajagopal R, Chang SW, Ravindran B, Awasthi MK. Critical review of biochemical pathways to transformation of waste and biomass into bioenergy. BIORESOURCE TECHNOLOGY 2023; 372:128679. [PMID: 36706818 DOI: 10.1016/j.biortech.2023.128679] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
In recent years, biofuel or biogas have become the primary source of bio-energy, providing an alternative to conventionally used energy that can meet the growing energy demand for people all over the world while reducing greenhouse gas emissions. Enzyme hydrolysis in bioethanol production is a critical step in obtaining sugars fermented during the final fermentation process. More efficient enzymes are being researched to provide a more cost-effective technique during enzymatic hydrolysis. The exploitation of microbial catabolic biochemical reactions to produce electric energy can be used for complex renewable biomasses and organic wastes in microbial fuel cells. In hydrolysis methods, a variety of diverse enzyme strategies are used to promote efficient bioethanol production from various lignocellulosic biomasses like agricultural wastes, wood feedstocks, and sea algae. This paper investigates the most recent enzyme hydrolysis pathways, microbial fermentation, microbial fuel cells, and anaerobic digestion in the manufacture of bioethanol/bioenergy from lignocellulose biomass.
Collapse
Affiliation(s)
- Sivasubramanian Manikandan
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road3#, Shaanxi, Yangling 712100, China; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Ranjna Sirohi
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, 248001 Uttarakhand, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Radhakrishnan Yedhu Krishnan
- Department of Food Technology, Amal Jyothi College of Engineering, Kanjirappally, Kottayam 686 518, Kerala, India
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, Tamil Nadu, India
| | - C Sumathijones
- Department of Pharmacology, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai 600 100, India
| | - Rajinikanth Rajagopal
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, Tamil Nadu, India; Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road3#, Shaanxi, Yangling 712100, China.
| |
Collapse
|
16
|
Alsaiari M, Ahmad M, Zafar M, Harraz FA, Algethami JS, Šljukić B, Santos DMF, Akhtar MS. Transformation of waste seed biomass of Cordia myxa into valuable bioenergy through membrane bioreactor using green nanoparticles of indium oxide. CHEMOSPHERE 2023; 314:137604. [PMID: 36574789 DOI: 10.1016/j.chemosphere.2022.137604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Depletion of non-renewable fuel has obliged researchers to seek out sustainable and environmentally friendly alternatives. Membranes have proven to be an effective technique in biofuel production for reaction, purification, and separation, with the ability to use both porous and non-porous membranes. It is demonstrated that a membrane-based sustainable and green production can result in a high degree of process intensification, whereas the recovery and repurposing of catalysts and alcohol are anticipated to increase the process economics. Therefore, in this study sustainable biodiesel was synthesized from inedible seed oil (37 wt%) of Cordia myxa using a membrane reactor. Transesterification was catalyzed by heterogenous nano-catalyst of indium oxide prepared with leaf extract of Boerhavia diffusa. Highest biodiesel yield of 95 wt% was achieved at methanol to oil molar ratio of 7:1, catalyst load 0.8 wt%, temperature 82.5 °C and time 180 min In2O3 nanoparticles exhibited reusability up to five successive transesterification rounds. The production of methyl esters was confirmed using Fourier-transform infrared spectroscopy and Nuclear Magnetic Resonance. The predominant fatty acid methyl ester detected in the biodiesel was 5, 8-octadecenoic acid. Biodiesel fuel qualities were determined to be comparable to worldwide ASTM D-6571 and EN-14214 standards. Finally, it was concluded that membrane technology can result in a highly intensified reaction process while efficient recovery of both nano catalysts and methanol increases the economics of transesterification and lead to sustainable production.
Collapse
Affiliation(s)
- Mabkhoot Alsaiari
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano Research Centre, Najran University, Najran, 11001, Saudi Arabia; Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Sharurah, Saudi Arabia.
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid- i- Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Zafar
- Department of Plant Sciences, Quaid- i- Azam University, Islamabad, 45320, Pakistan
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano Research Centre, Najran University, Najran, 11001, Saudi Arabia; Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box: 87 Helwan, Cairo, 11421, Egypt
| | - Jari S Algethami
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano Research Centre, Najran University, Najran, 11001, Saudi Arabia
| | - Biljana Šljukić
- Center of Physics and Engineering of Advanced Materials, Laboratory for Physics of Materials and Emerging Technologies, Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Diogo M F Santos
- Center of Physics and Engineering of Advanced Materials, Laboratory for Physics of Materials and Emerging Technologies, Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea.
| |
Collapse
|
17
|
Ahmad U, Naqvi SR, Ali I, Naqvi M, Asif S, Bokhari A, Juchelková D, Klemeš JJ. A review on properties, challenges and commercial aspects of eco-friendly biolubricants productions. CHEMOSPHERE 2022; 309:136622. [PMID: 36181837 DOI: 10.1016/j.chemosphere.2022.136622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/01/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Lubricants operate as antifriction media, preserving machine reliability, facilitating smooth operation, and reducing the likelihood of frequent breakdowns. The petroleum-based reserves are decreasing globally, leading to price increases and raising concerns about environmental degradation. The researchers are concentrating their efforts on developing and commercializing an environmentally friendly lubricant produced from renewable resources. Biolubricants derived from nonedible vegetable oils are environmentally favorable because of their non-toxicity, biodegradability, and close to net zero greenhouse gas emissions. The demand for bio lubricants in industry and other sectors is increasing due to their non-toxic, renewable, and environmentally friendly nature. Good lubrication, anti-corrosion, and high flammability are characteristic properties of vegetable oils due to their unique structure. This study presents several key properties of nonedible oils that are used to produce lubricants via the transesterification process. Bibliometric analysis is also performed, which provides us with a better understanding of previous studies related to the production of bio lubricants from the transesterification process. Only 371 published documents in the Scopus database were found to relate to the production of bio lubricants using the transesterification process. The published work was mostly dominated by research articles (286; 77.088%). Significant development can be seen in recent years, with the highest occurrence in 2021, reaching 68 publications accounting for 18.38% of the total documents. In the second step, (i) the authors with the most number of publications; (ii) journals with the most productions; (iii) most productive countries; and (iv) the authors' most frequently used keywords were evaluated. These results will provide a pathway for researchers interested in this field. Lastly, recommendation is made on research gaps to device possible strategies for its commercialization.
Collapse
Affiliation(s)
- Uzair Ahmad
- Laboratory of Alternative Fuels & Sustainability, School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad, Pakistan
| | - Salman Raza Naqvi
- Laboratory of Alternative Fuels & Sustainability, School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad, Pakistan.
| | - Imtiaz Ali
- Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Muhammad Naqvi
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Saira Asif
- Sustainable Process Integration Laboratory - SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology - VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic
| | - Awais Bokhari
- Sustainable Process Integration Laboratory - SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology - VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic; Chemical Engineering Department, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Punjab 54000, Pakistan
| | - Dagmar Juchelková
- Department of Electronics, Faculty of Electrical Engineering and Computer Science, VŠB - Technical University of Ostrava, 17. Listopadu 15/2172, 708 00, Ostrava, Poruba, Czech Republic
| | - Jiří Jaromír Klemeš
- Sustainable Process Integration Laboratory - SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology - VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic
| |
Collapse
|
18
|
Li J, Zeng Y, Wang WB, Wan QQ, Liu CG, den Haan R, van Zyl WH, Zhao XQ. Increasing extracellular cellulase activity of the recombinant Saccharomyces cerevisiae by engineering cell wall-related proteins for improved consolidated processing of carbon neutral lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2022; 365:128132. [PMID: 36252752 DOI: 10.1016/j.biortech.2022.128132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Sustainable bioproduction usingcarbon neutral feedstocks, especially lignocellulosic biomass, has attracted increasing attention due to concern over climate change and carbon reduction. Consolidated bioprocessing (CBP) of lignocellulosic biomass using recombinantyeast of Saccharomyces cerevisiaeis a promising strategy forlignocellulosic biorefinery. However, the economic viability is restricted by low enzyme secretion levels.For more efficient CBP, MIG1spsc01isolated from the industrial yeast which encodes the glucose repression regulator derivative was overexpressed. Increased extracellular cellobiohydrolase (CBH) activity was observed with unexpectedly decreased cell wall integrity. Further studies revealed that disruption ofCWP2, YGP1, andUTH1,which are functionally related toMIG1spsc01, also enhanced CBH secretion. Subsequently, improved cellulase production was achieved by simultaneous disruption ofYGP1and overexpression ofSED5, which remarkably increased extracellular CBH activity of 2.2-fold over the control strain. These results provide a novel strategy to improve the CBP yeast for bioconversion of carbon neutral biomass.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Zeng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei-Bin Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing-Qing Wan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville 7530, South Africa
| | - Willem H van Zyl
- Department of Microbiology, University of Stellenbosch, Stellenbosch 7600, South Africa
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
19
|
Yu Y, Liu S, Zhang Y, Lu M, Sha Y, Zhai R, Xu Z, Jin M. A novel fermentation strategy for efficient xylose utilization and microbial lipid production in lignocellulosic hydrolysate. BIORESOURCE TECHNOLOGY 2022; 361:127624. [PMID: 35872269 DOI: 10.1016/j.biortech.2022.127624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 05/06/2023]
Abstract
The sugar utilization efficiency and the tolerance of microorganism to inhibitors are essential for lipid production from lignocellulosic biomass. In this study, the sugar consumption and inhibitor tolerance characteristics of Trichosporon dermatis 32,903 were investigated. The results showed that the lipid yield on xylose was much lower than that on glucose, while these substrates exhibited comparative efficiency for cell growth. High inoculum size improved the tolerance of T. dermatis 32,903 to inhibitors. Based on these characteristics, sugar-targeted-utilization and cyclic fermentation strategy was developed. The tolerance of high inoculum size to inhibitors was utilized, glucose was targeted for lipid fermentation and xylose was targeted for cell growth. As a result, the lipid production efficiency was greatly enhanced. The lipid titer in hydrolysate of DLCA (Densifying Lignocellulosic biomass with Chemicals followed by Autoclave) pretreated rice straw was improved to as high as 38.4 g/L with lipid yield of 0.207 g/g consumed sugar.
Collapse
Affiliation(s)
- Yang Yu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Shuangmei Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Yuwei Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Yuanyuan Sha
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Rui Zhai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China.
| |
Collapse
|
20
|
Ahmad I, Ibrahim NNB, Abdullah N, Koji I, Mohama SE, Khoo KS, Cheah WY, Ling TC, Show PL. Bioremediation strategies of palm oil mill effluent and landfill leachate using microalgae cultivation: An approach contributing towards environmental sustainability. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Cako E, Wang Z, Castro-Muñoz R, Rayaroth MP, Boczkaj G. Cavitation based cleaner technologies for biodiesel production and processing of hydrocarbon streams: A perspective on key fundamentals, missing process data and economic feasibility - A review. ULTRASONICS SONOCHEMISTRY 2022; 88:106081. [PMID: 35777195 PMCID: PMC9253490 DOI: 10.1016/j.ultsonch.2022.106081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 05/19/2023]
Abstract
The present review emphasizes the role of hydrodynamic cavitation (HC) and acoustic cavitation in clean and green technologies for selected fuels (of hydrocarbon origins such as gasoline, naphtha, diesel, heavy oil, and crude oil) processing applications including biodiesel production. Herein, the role of cavitation reactors, their geometrical parameters, physicochemical properties of liquid media, liquid oxidants, catalyst loading, reactive oxygen species, and different types of emulsification and formation of radicals, formation as well as extraction of formed by-products are systematically reviewed. Among all types of HC reactors, vortex diode and single hole orifices revealed more than 95 % desulfurization yield and a 20 % viscosity reduction in heavy oil upgrading, while multi-hole orifice (100 holes) and slit Venturi allowed obtaining the best biodiesel production processes in terms of high (%) yield, low cost of treatment, and short processing time (5 min; 99 % biodiesel; 4.80 USD/m3). On the other hand, the acoustic cavitation devices are likely to be the most effective in biodiesel production based on ultrasonic bath (90 min; 95 %; 6.7 $/m3) and desulfurization treatment based on ultrasonic transducers (15 min; 98.3 % desulfurization; 10.8 $/m3). The implementation of HC-based processes reveals to be the most cost-effective method over acoustic cavitation-based devices. Finally, by reviewing the ongoing applications and development works, the limitations and challenges for further research are addressed emphasizing the cleaner production and guidelines for future scientists to assure obtaining comprehensive data useful for the research community.
Collapse
Affiliation(s)
- Elvana Cako
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Poland
| | - Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), No.20 Cuiniao Road, Chen Jiazhen, Shanghai 202162, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Roberto Castro-Muñoz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Poland; Tecnologico de Monterrey, Campus Toluca. Av. Eduardo Monroy, Cárdenas 2000 San Antonio Buenavista, 50110 Toluca de Lerdo, Mexico
| | - Manoj P Rayaroth
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Poland; GREMI, UMR 7344, Université d'Orléans, CNRS, 45067 Orléans, France
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
22
|
Prospects of Catalysis for Process Sustainability of Eco-Green Biodiesel Synthesis via Transesterification: A State-Of-The-Art Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14127032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Environmental pollution caused by conventional petro-diesel initiates at time of crude oil extraction and continues until its consumption. The resulting emission of poisonous gases during the combustion of petroleum-based fuel has worsened the greenhouse effect and global warming. Moreover, exhaustion of finite fossil fuels due to extensive exploitation has made the search for renewable resources indispensable. In light of this, biodiesel is a best possible substitute for the regular petro-diesel as it is eco-friendly, renewable, and economically viable. For effective biodiesel synthesis, the selection of potential feedstock and choice of efficient catalyst is the most important criteria. The main objective of this bibliographical review is to highlight vital role of different catalytic systems acting on variable feedstock and diverse methods for catalysis of biodiesel synthesis reactions. This paper further explores the effects of optimized reaction parameters, modification in chemical compositions, reaction operating parameters, mechanism and methodologies for catalysts preparation, stability enhancement, recovery, and reusability with the maximum optimum activity of catalysts. In future, the development of well-planned incentive structures is necessary for systematic progression of biodiesel process. Besides this, the selection of accessible and amended approaches for synthesis and utilization of specific potential catalysts will ensure the sustainability of eco-green biodiesel.
Collapse
|
23
|
Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100284] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
24
|
Rozina, Ahmad M, Khan AM, Abbas Q, Arfan M, Mahmood T, Zafar M, Raza J, Sultana S, Akhtar MT, Ameen M. Implication of scanning electron microscopy as a tool for identification of novel, nonedible oil seeds for biodiesel production. Microsc Res Tech 2021; 85:1671-1684. [PMID: 34913535 DOI: 10.1002/jemt.24027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/08/2021] [Accepted: 12/02/2021] [Indexed: 01/22/2023]
Abstract
Biodiesel is a promising, bio-based, renewable, nontoxic, environment friendly, and alternative fuel for petroleum derived fuels which helps to reduce dependency on conventional fossil fuels. In this study, six novel, nonedible seed oil producing feedstock were explored for their potential for sustainable production of biodiesel. It is very important to correctly identify oil yielding plant species. Scanning electron microscopy (SEM) was used as reliable tool for authentic identification of oil yielding seeds. Macromorphological characters of seeds were studied with light microscopy (LM). Outcomes of LM of seeds exposed distinctive variation in seed size from 16.3 to 3.2 mm in length and 12.4 to 0.9 mm in width, shape varied from oval to triangular, and color from black to light brown. Oil content of nonedible seed ranged from 25 to 30% (w/w). Free fatty acid content of seed oil varied from 0.32 to 2.5 mg KOH/g. Moreover, ultra structural study of seeds via SEM showed variation in surface sculpturing, cell arrangement, cell shape, periclinal wall shape, margins, protuberances, and anticlinal wall shape. Surface sculpturing varied from rugged, reticulate, varrucose, papillate, and striate. Periclinal wall arrangements confirmed variation from rough, wavy, raised, depressed, smooth, and elevated whereas, anticlinal walls pattern showed variation from profuse undulating, smooth, raised, grooved, deep, curved, and depressed. It was concluded that SEM could be a latent and advanced technique in unveiling hidden micromorphological characters of nonedible oil yielding seeds which delivers valuable information to researchers and indigenous people for precise and authentic identification and recognition.
Collapse
Affiliation(s)
- Rozina
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Botany, Government Girls Degree College Zaida, Swabi, KP, Pakistan
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Amir Muhammad Khan
- Department of Botany, University of Mianwali, Mianwali, Pakistan.,Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Qamar Abbas
- Department of Biological Sciences, Karakoram International University, Gilgit, Pakistan
| | - Muhammad Arfan
- Department of Botany, University of Education Lahore, Vehari Campus, Vehari, Pakistan
| | - Tariq Mahmood
- Department of Forestry, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Zafar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jamil Raza
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shazia Sultana
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Maryam Tanveer Akhtar
- Department of Environmental Sciences, International Islamic University, Islamabad, Pakistan
| | - Maria Ameen
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
25
|
Determining the Unit Values of the Allocation of Greenhouse Gas Emissions for the Production of Biofuels in the Life Cycle. ENERGIES 2021. [DOI: 10.3390/en14248394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Thanks to the allocation methods, i.e., the division of the total GHG emissions between each of the products generated in the production of biofuels, it is possible to reduce the emissions of these gases by up to 35% in relation to the production and combustion of fuels derived from crude oil. As part of this study, the biodiesel production process was analyzed in terms of greenhouse gas (GHG) emissions. On the basis of the obtained results, the key factors influencing the emissions level of the biodiesel production process were identified. In order to assess the sensitivity of the results of the adopted allocation method, this study included calculations of GHG emissions with an allocation method based on mass, energy, and financial shares. The article reviews recent advances that have the potential to enable a sustainable energy transition, a green economy, and carbon neutrality in the biofuels sector. The paper shows that the technology used for the production of biodiesel is of great importance for sustainable development. The possibility of using renewable raw materials for the production of fuels leads to a reduction in the consumption of fossil fuels and lower emission of pollutants. It showed that during the combustion of biodiesel, the percentages of released gas components, with the exception of nitrogen oxides, which increased by 13%, were significantly lower: CO2—78%, CO—43%, SO2—100%, PM10—32%, and volatile hydrocarbons—63%. Moreover, it was found that biodiesel undergoes five times faster biodegradation in the environment than diesel oil.
Collapse
|