1
|
Xu X, Cao Y, Zhi S, Phyu K, Wang H, Liu J, Cordeiro CM, Sindhøj E, Zhang K, Zhao R. Current perspectives on microalgae and extracellular polymers for reducing antibiotic resistance genes in livestock wastewater. BIORESOURCE TECHNOLOGY 2025; 431:132622. [PMID: 40324729 DOI: 10.1016/j.biortech.2025.132622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Antibiotic resistance genes (ARGs) in livestock wastewater resulting from excessive antibiotics used in animal farming pose significant environmental and public health risks. Conventional treatment methods are often costly, inefficient, and may inadvertently promote ARG transmission. Microalgae, with their long genetic distance from bacteria and strong ability to utilize wastewater nutrients, offer a sustainable solution for ARG mitigation. This review studied the abundance and characterization of ARGs in livestock wastewater, highlighted microalgal-based removal mechanisms of ARGs, including phagocytosis, competition, and absorption by extracellular polymeric substances (EPS), and explored factors influencing their efficacy. Notably, the microalgae-EPS system reduced ARGs by 0.62-3.00 log, demonstrating significant potential in wastewater treatment. Key challenges, such as optimizing algal species, understanding EPS-ARG interactions, targeted reduction of host bacteria, and scaling technologies, were discussed. This work provides critical insights for advancing microalgal-based strategies for ARG removal, promoting environmentally friendly and efficient wastewater management.
Collapse
Affiliation(s)
- Xiaoyu Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yuang Cao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Suli Zhi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Low-Carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Khinkhin Phyu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Han Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Jiahua Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Cheryl Marie Cordeiro
- RISE Research Institutes of Sweden, Frans Perssons väg 6, 412 76 Gothenburg, Sweden.
| | - Erik Sindhøj
- RISE Research Institutes of Sweden, Frans Perssons väg 6, 412 76 Gothenburg, Sweden.
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Low-Carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Run Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
2
|
Zhao Y, Li L, Tan J, Zhao H, Wang Y, Zhang A, Jiang L. Metagenomic insights into the inhibitory effect of phytochemical supplementation on antibiotic resistance genes and virulence factors in the rumen of transition dairy cows. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137717. [PMID: 40020294 DOI: 10.1016/j.jhazmat.2025.137717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/07/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Antimicrobial resistance (AMR) is a major global health concern, with the rumen microbiota of dairy cows serving as an important reservoir for antibiotic resistance genes (ARGs) and virulence factors (VFs). This study explores the impact of dietary phytochemical supplementation on the rumen resistome and virulome of transition dairy cows using metagenomic sequencing. Naringin supplementation reduced the abundance of ARGs by up to 9.0 % and VFs by up to 7.2 % during the transition period, as indicated by metagenomic analysis (P < 0.05). Clinically high-risk ARGs, including those conferring resistance to beta-lactams (mecA), tetracyclines (tetM, tetO), and aminoglycosides (rmtF), were notably downregulated (P < 0.05). Virulence factors associated with adherence, secretion systems, and toxins were also significantly decreased (P < 0.05). Naringin altered the microbial community structure, particularly reducing the abundance of Proteobacteria, a key phylum harboring ARGs and VFs. Despite inducing increased ARG-VF network complexity, naringin supplementation promoted a less pathogenic microbiome with reduced resistance potential. These findings demonstrate the potential of naringin as a natural dietary strategy to mitigate AMR by reducing the risk of ARG and VF dissemination into the environment, while supporting rumen microbiota stability in transition dairy cows.
Collapse
Affiliation(s)
- Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Liuxue Li
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Jian Tan
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Huiying Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Ying Wang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Ao Zhang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
3
|
Mardalisa, Wang R, Sabar MA, Matsuura N, Hara-Yamamura H, Honda R. Different fates between extracellular and intracellular antimicrobial resistome in full-scale activated sludge and membrane bioreactor processes. WATER RESEARCH 2025; 274:123155. [PMID: 39854777 DOI: 10.1016/j.watres.2025.123155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/25/2024] [Accepted: 01/15/2025] [Indexed: 01/26/2025]
Abstract
Treated effluent of wastewater treatment plants (WWTPs) are major sources of extracellular antimicrobial resistance genes (eARGs) into aquatic environments. This study aimed to clarify the fate and origins of eARGs from influent to treated effluent at a full-scale WWTP. The compositions of eARG and intracellular ARG (iARG) were acquired via shotgun metagenomic sequencing in influent wastewater, activated sludge, and treated effluent of the target WWTP, where identical wastewater was treated by conventional activated sludge (CAS) and membrane bioreactor (MBR) processes. The proportion of eARGs to iARGs increased from influent to effluent in both processes, reaching almost half of the total ARG. Most eARGs in influent were associated with clinically important antimicrobials, whereas eARGs in sludge and effluent were dominated by aminoglycoside resistance genes of aadA and APH variants. Although the eARGs composition in influent wastewater mirrored that of iARGs, a substantial shift occurred in activated sludge and effluent, highlighting the presence of distinct dissemination and reduction mechanisms between eARGs and iARGs. Notably, the origin of eARGs in treated effluent was mainly iARGs in the effluent rather than the carryover of eARG from activated sludge, which were substantially reduced in MBR, compared to CAS. Consequently, these differences in selective mechanisms led to different fates between eARG and iARG during wastewater treatment.
Collapse
Affiliation(s)
- Mardalisa
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan; Department of Marine Science, Faculty of Fishery and Marine Science, Riau University, Riau 28293, Indonesia
| | - Rongxuan Wang
- Asia-Japan Research Institute, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Muhammad Adnan Sabar
- Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Norihisa Matsuura
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiroe Hara-Yamamura
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1192, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, 565-0871, Japan.
| |
Collapse
|
4
|
Wang R, Mardalisa, Hara-Yamamura H, Matsuura N, Honda R. Applicability of intI1 as an indicator gene for securing the removal efficiency of extracellular antimicrobial resistance genes in full-scale wastewater treatment plants. BIORESOURCE TECHNOLOGY 2025; 419:132047. [PMID: 39793674 DOI: 10.1016/j.biortech.2025.132047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Mitigating the release of extracellular antimicrobial resistance genes (exARGs) from wastewater treatment plants (WWTPs) is crucial for preventing the spread of antimicrobial resistance from human domains into the environment. This study aimed to evaluate the applicability of intI1 as a performance indicator for securing the removal of exARGs at WWTPs. We investigated the reduction of exARGs and intI1 in a full-scale WWTP, where identical wastewater was treated using conventional activated sludge (CAS) and membrane bioreactor (MBR) systems. The log reduction values (LRVs) for exARGs were lower than those for intracellular ARGs (iARGs) across all ARG species and treatment systems. LRVs for exARGs were consistently higher in the MBR than in the CAS. The intI1 exhibited lower LRVs compared to most exARGs, ensuring a minimum LRV of exARG in both CAS and MBR systems. Consequently, intI1 is an effective indicator gene for securing the removal of exARGs.
Collapse
Affiliation(s)
- Rongxuan Wang
- Graduate School of Natural Science and Technology Kanazawa University Kanazawa Japan; Asia-Japan Research Institute Ritsumeikan University Shiga Japan
| | - Mardalisa
- Graduate School of Natural Science and Technology Kanazawa University Kanazawa Japan
| | - Hiroe Hara-Yamamura
- Faculty of Geosciences and Civil Engineering Kanazawa University Kanazawa Japan
| | - Norihisa Matsuura
- Faculty of Geosciences and Civil Engineering Kanazawa University Kanazawa Japan
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering Kanazawa University Kanazawa Japan.
| |
Collapse
|
5
|
Mortezaei Y, Demirer GN, Williams MR. Different combinations of operating temperature and solids retention time during two-phase anaerobic digestion impacts removal of antibiotic resistance genes. BIORESOURCE TECHNOLOGY 2025; 418:131944. [PMID: 39643059 DOI: 10.1016/j.biortech.2024.131944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Two-phase anaerobic digestion (AD) performance is significantly influenced by operating parameters such as temperature and solids retention time (SRT), while their impact on antibiotic resistance genes (ARGs) during the acidogenic (AP) and methanogenic (MP) phases remains unclear. This study assessed the abundance of eight ARGs in full-scale two-phase AD, then operated lab-scale two-phase AD systems to evaluate temperature combinations (thermophilic-thermophilic, thermophilic-mesophilic, mesophilic-thermophilic, and mesophilic-mesophilic) at a constant SRT (AP = 2/MP = 13d) and to further assess different SRTs (AP = 2/MP = 13d and AP = 4/MP = 11d). qPCR results revealed that full-scale two-phase AD reduced total ARGs abundance by 87.70 ± 0.50 %. In lab-scale tests, the thermophilic-thermophilic configuration achieved nearly complete ARGs removal (97.61 ± 0.21 %), while the combination of AP = 4/MP = 11d had the highest removal efficiency (83.39 ± 1.17 %). Network analysis indicated that Firmicutes, Bacteroidota, and Proteobacteria were the primary ARG hosts, with Firmicutes dominant. These findings highlight the optimal operating parameters in two-phase AD for maximizing ARGs removal.
Collapse
Affiliation(s)
- Yasna Mortezaei
- Earth and Ecosystem Science, Central Michigan University, Mount Pleasant, MI, USA
| | - Goksel N Demirer
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI, USA; Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA
| | - Maggie R Williams
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI, USA; Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
6
|
Li Y, Liu K, Qiu H, Chen F, Zhang J, Zheng Z. Dynamics of antibiotic resistance genes and bacterial community structure within substrate biofilms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123512. [PMID: 39642837 DOI: 10.1016/j.jenvman.2024.123512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 11/02/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Biofilms that develop on the surface of substrates are critical for treating wastewater. The accumulation of antibiotic resistance genes (ARGs) within these biofilms is particularly noteworthy. Despite their importance, studies that focus on biofilms attached to substrate surfaces remain scarce. This investigation explored the prevalence and succession of ARGs and microbial dynamics in biofilms on different substrates (ceramic, biomass filter, and steel slag) versus water biofilms over a year. Results showed distinct differences in ARG profiles between water and substrate biofilms. Multidrug ARGs constituted 39.14-46.73% of all ARGs in the substrate biofilms, with macrolide ARGs making up 11.98-14.52%. Seasonal variations influenced the diversity of the ARGs, notably increasing during the spring. The neutral community model suggested that the ARG assembly was dominantly driven by stochastic process. Proteobacteria, Actinobacteria and Campylobacter emerged as the predominant phyla within these biofilms. The microbial community distribution was predominantly influenced by ammonium nitrogen (NH4+-N) (R2 = 0.4113), temperature and total nitrogen (TN). Notably, temperature exerted a critical impact on the microbial community distribution (P = 0.001), identifying it as the principal factor for spatial arrangement. Furthermore, the structural variations of ARGs were primarily driven by total organic carbon (TOC) (R2 = 0.3988), temperature, oxidation-reduction potential (ORP) and NH4+-N. Our findings provided new insights into the optimization of substrate selection and ecological management to manage ARG enrichment, offering a promising strategy for aquatic ecological restoration and pollution control.
Collapse
Affiliation(s)
- Yaguang Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China; Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai, 200233, PR China
| | - Kexuan Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Hanwen Qiu
- Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai, 200233, PR China
| | - Fanmo Chen
- Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai, 200233, PR China
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China.
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
7
|
Li Z, Feng Q, Lu M, Qin F, Liu Z, Guo R. Enhancement of livestock wastewater treatment by a novel wooden-modified biocarrier. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125131. [PMID: 39419466 DOI: 10.1016/j.envpol.2024.125131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Intensive livestock wastewater poses threat to ecosystem. A novel wooden-modified biocarrier was applied in this study to enhance the livestock wastewater treatment in anoxic-aerobic systems. Compared to the ordinary polyethylene (PE) biocarrier, the novel wooden-modified biocarrier improved the biomass owing to its rough surface and porous side wall, and had better nitrogen removal ability. The biomass of wooden-modified biocarrier was 6.3 ± 1.1 and 36.4 ± 17.0 times that of PE biocarrier in anoxic and aerobic condition, respectively. The removal rates of ammonia nitrogen and total nitrogen of this novel biocarrier on specific biofilm's aera eventually stabilized at 0.64 ± 0.10 and 0.94 ± 0.21 g N/m2/d, respectively. Notably, this wooden-modified biocarrier was conducive to increase nitrogen removal by simultaneous nitrification and denitrification to some extent. The biofilm on novel modified biocarrier had higher extracellular polymeric substances (EPS) contents than activated sludge (AS), and the proportions of polysaccharides (PS) in EPS from biocarrier were more than those from AS. Compared to PE biocarrier and AS, the wooden-modified biocarriers enhanced the enrichment of nitrifying and denitrifying bacteria, and promoted the membrane transport and aerobic nitrogen metabolism. This study confirmed the superiority of wooden-modified biocarrier and provided reference for the treatment of high concentration sewage in full-scale project.
Collapse
Affiliation(s)
- Zhiwei Li
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China
| | - Quan Feng
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China.
| | - Mingyi Lu
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China
| | - Fan Qin
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China
| | | | - Rongbo Guo
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China
| |
Collapse
|
8
|
Mortezaei Y, Demirer GN, Williams MR. Fate of intracellular and extracellular antibiotic resistance genes in sewage sludge by full-scale anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175760. [PMID: 39182790 DOI: 10.1016/j.scitotenv.2024.175760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Storage tank (ST) is a promising strategy for solid-liquid separation following anaerobic digestion (AD). However, little is known regarding the effects of ST on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and microbial communities. Therefore, this study first investigated eight typical ARGs (sul1, sul2, tetW, tetA, tetO, tetX, ermF, and ermB) and three MGEs (int1, int2, and tnpA) during full-scale AD of sludge and the liquid and biosolids phases of ST. Following that, intracellular ARGs (iARGs), extracellular polymeric substances (EPS)-associated ARGs, and cell-free ARGs removal were quantified in AD process, which is largely unknown for full-scale AD of sludge. The qPCR results showed that both AD and ST significantly removed ARGs, with ST biosolids showing the highest removal efficiency for the total measured relative (82.27 ± 2.09 %) and absolute (92.38 ± 0.89 %) abundance of ARGs compared to the raw sludge. Proteobacteria, Bacteroidota, Firmicutes and Campilobacterota were the main potential ARGs hosts in the sludge. Moreover, the results of different ARGs fractions showed that the total relative and absolute abundance of iARGs decreased by 90.12 ± 0.83 % and 79.89 ± 1.41 %, respectively, following AD. The same trend was observed for the abundance of EPS-associated ARGs, while those of cell-free ARGs increased after AD. These results underscore the risk of extracellular ARGs and provided new insights on extracellular ARGs dissemination evaluation.
Collapse
Affiliation(s)
- Yasna Mortezaei
- Earth and Ecosystem Science, Central Michigan University, Mount Pleasant, MI, USA
| | - Goksel N Demirer
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI, USA; Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA
| | - Maggie R Williams
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI, USA; Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
9
|
Sun X, Su L, Zhen J, Wang Z, Panhwar KA, Ni SQ. The contribution of swine wastewater on environmental pathogens and antibiotic resistance genes: Antibiotic residues and beyond. CHEMOSPHERE 2024; 364:143263. [PMID: 39236924 DOI: 10.1016/j.chemosphere.2024.143263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Swine wastewater application can introduce antibiotics, antibiotic resistance genes (ARGs) into environments. Herein, the full-scale transmission of antibiotics, ARGs and their potential carriers from an intensive swine feedlot to its surroundings were explored. Results showed that lincomycin and doxycycline hydrochloride were dominant antibiotics in this ecosystem. Lincomycin concentration were strongly associated with soil bacterial communities. According to the risk quotient (RQ), lincomycin was identified as posing higher ecological risk in aquatic environments. ARGs and mobile genetic elements (MGEs) abundance in wastewater were reduced after anaerobic treatment. Notably, ARGs composition of environmental samples were clustered into two groups based on if they were directly affected by the wastewater. However, there were no remarkable difference of ARGs abundance among environmental samples. The total abundance of ARGs was positively related to that of MGEs. Pathogens Escherichia coli and Enterococcus revealed strong connection with qnrS, tet and sul. Overall, this study highlights the importance of responsible antibiotics use in livestock production and appropriate treatment technology before agricultural application and discharge.
Collapse
Affiliation(s)
- Xiaojie Sun
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Lei Su
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Jianyuan Zhen
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Zhibin Wang
- School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Kashif Ali Panhwar
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
10
|
Ai C, Cui P, Liu C, Wu J, Xu Y, Liang X, Yang QE, Tang X, Zhou S, Liao H, Friman VP. Viral and thermal lysis facilitates transmission of antibiotic resistance genes during composting. Appl Environ Microbiol 2024; 90:e0069524. [PMID: 39078126 PMCID: PMC11337816 DOI: 10.1128/aem.00695-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/06/2024] [Indexed: 07/31/2024] Open
Abstract
While the distribution of extracellular ARGs (eARGs) in the environment has been widely reported, the factors governing their release remain poorly understood. Here, we combined multi-omics and direct experimentation to test whether the release and transmission of eARGs are associated with viral lysis and heat during cow manure composting. Our results reveal that the proportion of eARGs increased 2.7-fold during composting, despite a significant and concomitant reduction in intracellular ARG abundances. This relative increase of eARGs was driven by composting temperature and viral lysis of ARG-carrying bacteria based on metagenome-assembled genome (MAG) analysis. Notably, thermal lysis of mesophilic bacteria carrying ARGs was a key factor in releasing eARGs at the thermophilic phase, while viral lysis played a relatively stronger role during the non-thermal phase of composting. Furthermore, MAG-based tracking of ARGs in combination with direct transformation experiments demonstrated that eARGs released during composting pose a potential transmission risk. Our study provides bioinformatic and experimental evidence of the undiscovered role of temperature and viral lysis in co-driving the spread of ARGs in compost microbiomes via the horizontal transfer of environmentally released DNA. IMPORTANCE The spread of antibiotic resistance genes (ARGs) is a critical global health concern. Understanding the factors influencing the release of extracellular ARGs (eARGs) is essential for developing effective strategies. In this study, we investigated the association between viral lysis, heat, and eARG release during composting. Our findings revealed a substantial increase in eARGs despite reduced intracellular ARG abundance. Composting temperature and viral lysis were identified as key drivers, with thermal lysis predominant during the thermophilic phase and viral lysis during non-thermal phases. Moreover, eARGs released during composting posed a transmission risk through horizontal gene transfer. This study highlights the significance of temperature and phage lysis in ARG spread, providing valuable insights for mitigating antibiotic resistance threats.
Collapse
Affiliation(s)
- Chaofan Ai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peng Cui
- Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Chen Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiawei Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Xu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaolong Liang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Qiu-e Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiang Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | | |
Collapse
|
11
|
Zhou S, Yang F, Wang W, Yang Z, Song J, Jiang T, Huang Z, Gao Y, Wang Y. Impact of uranium on antibiotic resistance in activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170369. [PMID: 38278272 DOI: 10.1016/j.scitotenv.2024.170369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
The emergence of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in the environment is well established as a human health crisis. The impact of radioactive heavy metals on ecosystems and ultimately on human health has become a global issue, especially for the regions suffering various nuclear activities or accidents. However, whether the radionuclides can affect the fate of antibiotic resistance in bacteria remains poorly understood. Here, the dynamics of ARB, three forms of ARGs-intracellular ARGs (iARGs), adsorbed extracellular ARGs (aeARGs), and free extracellular ARGs (feARGs)-and microbial communities were investigated following exposure to uranium (U), a representative radioactive heavy metal. The results showed that 90-d of U exposure at environmentally relevant concentrations of 0.05 mg/L or 5 mg/L significantly increased the ARB concentration in activated sludge (p < 0.05). Furthermore, 90-d of U exposure slightly elevated the absolute abundance of aeARGs (except tetO) and sulfonamide iARGs, but decreased tetracycline iARGs. Regarding feARGs, the abundance of tetC, tetO, and sul1 decreased after 90-d of U stress, whereas sul2 showed the opposite trend. Partial least-squares path model analysis revealed that the abundance of aeARGs and iARGs under U stress was predominantly driven by increased cell membrane permeability/intI1 abundance and cell membrane permeability/reactive oxygen species concentration, respectively. Conversely, the changes in feARGs abundance depended on the composition of the microbial community and the expression of efflux pumps. Our findings shed light on the variations of ARGs and ARB in activated sludge under U exposure, providing a more comprehensive understanding of antibiotic resistance risks aggravated by radioactive heavy metal-containing wastewater.
Collapse
Affiliation(s)
- Shuai Zhou
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China; Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Fengjuan Yang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Zhengqing Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Jian Song
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Tianyun Jiang
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zefeng Huang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Yuanyuan Gao
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China.
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China.
| |
Collapse
|
12
|
Zheng S, Han B, Wang Y, Ding Y, Zhao R, Yang F. Occurrence and dissemination of antibiotic resistance genes in the Yellow River basin: focused on family farms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16328-16341. [PMID: 38316741 DOI: 10.1007/s11356-024-32290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/28/2024] [Indexed: 02/07/2024]
Abstract
As an emerging contaminant, antibiotic resistance genes (ARGs) have attracted growing attention, owing to their widespread dissemination and potential risk in the farming environment. However, ARG pollution from family livestock farms in the Yellow River basin, one of the main irrigation water sources in the North China Plain, remains unclear. Herein, we targeted 21 typical family farms to assess the occurrence patterns of ARGs in livestock waste and its influence on ARGs in receiving environment by real-time quantitative PCR (qPCR). Results showed that common ARGs were highly prevalent in family livestock waste, and tet-ARGs and sul-ARGs were the most abundant in these family farms. Most ARG levels in fresh feces of different animals varied, as the trend of chicken farms (broilers > laying hens) > swine farms (piglets > fattening pigs > boars and sows) > cattle farms (dairy cattle > beef cattle). The effect of natural composting on removing ARGs for chicken manure was better than that for cattle manure, while lagoon storage was not effective in removing ARGs from family livestock wastewater. More troublesomely, considerable amounts of ARGs were discharged with manure application, further leading to the ARG increase in farmland soil (up to 58-119 times), which would exert adverse impacts on human health and ecological safety.
Collapse
Affiliation(s)
- Shimei Zheng
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang, 261061, China
| | - Bingjun Han
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yandong Wang
- Department of Pediatrics, Weifang People's Hospital, Weifang, 261041, China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Ran Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
13
|
Wang Y, Zuo S, Zeng C, Wan J, Yan Z, Yi J. Unraveling the single-atom Fe-N 4 catalytic site selectivity generate singlet oxygen via activation of persulfate: Polarizing electric fields changes the electron transfer pathway. CHEMOSPHERE 2023; 344:140331. [PMID: 37778645 DOI: 10.1016/j.chemosphere.2023.140331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Single-atom catalysts have been proved to be an effective material for the removal of organic pollutants from water and wastewater, and yet, the relationship between their internal structures and their roles still remains elusive. In this work, a catalyst Fe (MIL)-SAC with single-atom Fe-N4 active site was prepared. Fe (MIL)-SAC/Peroxydisulfate (PDS) system was able to achieve complete degrade of the Sulfamethoxazole (SMX) with kobs at 0.466 min-1, which was faster than the Fenton system under the same conditions (kobs = 0.422 min-1) and 16 times faster than Fe (MIL) (kobs = 0.029 min-1). Density functional calculations reveal that the Fe-N4 structure will affect the electron transport path and lead to selective generation of 1O2 by triggering S-O breakage and O-O polarization in PDS. Furthermore, Fe (MIL)-SAC/PDS system exhibits strong resistance to common influencing factors and has good application prospects. This work provides a new approach for the selectively generation of 1O2 for the efficient treatment of organic pollutants in aqueous environment.
Collapse
Affiliation(s)
- Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510006, China.
| | - Shiyu Zuo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Cheng Zeng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510006, China.
| | - Zhicheng Yan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Jianxin Yi
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Mei Z, Fu Y, Wang F, Xiang L, Hu F, Harindintwali JD, Wang M, Virta M, Hashsham SA, Jiang X, Tiedje JM. Magnetic biochar/quaternary phosphonium salt reduced antibiotic resistome and pathobiome on pakchoi leaves. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132388. [PMID: 37639796 DOI: 10.1016/j.jhazmat.2023.132388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Antibiotic resistance genes (ARGs) and human pathogenic bacteria (HPB) in leafy vegetable is a matter of concern as they can be transferred from soil, atmosphere, and foliar sprays, and poses a potential risk to public health. While traditional disinfection technologies are effective in reducing the presence of ARGs and HPB in soil. A new technology, foliar spraying with magnetic biochar/quaternary ammonium salt (MBQ), was demonstrated and applied to the leaf surface. High-throughput quantitative PCR targeting 96 valid ARGs and 16 S rRNA sequencing were used to assess its efficacy in reducing ARGs and HPB. The results showed that spraying MBQ reduced 97.0 ± 0.81% of "high-risk ARGs", associated with seven classes of antibiotic resistance in pakchoi leaves within two weeks. Water washing could further reduce "high-risk ARGs" from pakchoi leaves by 19.8%- 24.6%. The relative abundance of HPB closely related to numerous ARGs was reduced by 15.2 ± 0.23% with MBQ application. Overall, this study identified the potential risk of ARGs from leafy vegetables and clarified the significant implications of MBQ application for human health as it offers a promising strategy for reducing ARGs and HPB in leafy vegetables.
Collapse
Affiliation(s)
- Zhi Mei
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Faculty of Agriculture and Forestry Department of Microbiology, University of Helsinki, 00014, Finland
| | - Yuhao Fu
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Leilei Xiang
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Hu
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jean Damascene Harindintwali
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyi Wang
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Geographical Sciences, Nantong University, Nantong 226001, China
| | - Marko Virta
- Faculty of Agriculture and Forestry Department of Microbiology, University of Helsinki, 00014, Finland
| | - Syed A Hashsham
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA; Department of Civil and Environmental Engineering, Michigan State University, MI 48824, USA
| | - Xin Jiang
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - James M Tiedje
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA
| |
Collapse
|
15
|
Li X, Chen G, Liu L, Wang G. Anaerobic sludge digestion elevates dissemination risks of bacterial antibiotic resistance in effluent supernatant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117854. [PMID: 37023605 DOI: 10.1016/j.jenvman.2023.117854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Anaerobic digestion following a variety of pretreatments is a promising technique for the reduction of excess sludge in municipal wastewater treatment plants (MWWTPs), and eliminations of possible pathogens, viruses, protozoa, and other disease-causing organisms. Notwithstanding a rapidly increasing health concern of antibiotic resistant bacteria (ARB) in MWWTPs, dissemination risks of ARB in anaerobic digestion processes are still poorly understood, especially in the digested supernatant. Taking the representative ARB with respect to the common tetracycline-, sulfamethoxazole-, clindamycin- and ciprofloxacin resistance, we investigated the compositions of ARB in the sludge and supernatant, and quantified their variations along the entire anaerobic sludge digestion process following ultrasonication-, alkali-hydrolysis- and alkali-ultrasonication pretreatments, respectively. Results showed that the abundance of ARB was diminished by up to 90% from the sludge along anaerobic digestion coupling with the pretreatments. Surprisingly, pretreatments clearly boosted the abundance of specific ARB (e.g., 2.3 × 102 CFU/mL of tetracycline-resistant bacteria) in the supernatant that otherwise remained relatively low value of 0.6 × 102 CFU/mL from the direct digestion. Measurements of the soluble-, loosely-bound- and tightly-bound extracellular polymeric substances components revealed a gradually intensified destruction of the sludge aggregates along the entire anaerobic digestion processes, which could be likely responsible to the increase of the ARB abundance in the supernatant. Furthermore, analysis of the bacterial community components showed that the ARB populations were strongly correlated with the occurrence of Bacteroidetes, Patescibacteria, and Tenericutes. Interestingly, intensified conjugal transfer (0.015) of antibiotic resistance genes (ARGs) was observed upon returning of the digested supernatant to the biological treatment system. It implies the likelihood of ARGs spreading and subsequent ecological risks upon anaerobic digestion towards reducing excess sludge, and therefore requires further attentions for the excess sludge treatments especially of supernatant.
Collapse
Affiliation(s)
- Xia Li
- Department of Municipal Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guowei Chen
- Department of Municipal Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Li Liu
- Department of Municipal Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Gang Wang
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
16
|
Zhang H, Guan W, Shu J, Yu S, Xiong Y, Liu G, Zhong Y, Chen J, Zhao Z, He N, Xing Q, Guo D, Li L, Hongbing O. Graphene nano zinc oxide reduces the expression and release of antibiotic resistance-related genes and virulence factors in animal manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163520. [PMID: 37061060 DOI: 10.1016/j.scitotenv.2023.163520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
Animal manure contains many antibiotic resistance genes (ARGs) and virulence factors (VFs), posing significant health threats to humans. However, the effects of graphene nano zinc oxide (GZnONP), a zinc bioaugmentation substitute, on bacterial chemotaxis, ARGs, and VFs in animal manure remain scanty. Herein, the effect of GZnONP on the in vivo anaerobic expression of ARGs and VFs in cattle manure was assessed using high-throughput sequencing. Results showed that GZnONP inhibited bacterial chemotaxis by reducing the zinc pressure under anaerobic fermentation, altering the microbial community structure. The expression of ARGs was significantly lower in GZnONP than in zinc oxide and nano zinc oxide (ZnONP) groups. The expression of VFs was lower in the GZnONP than in the zinc oxide and ZnONP groups by 9.85 % and 13.46 %, respectively. Co-occurrence network analysis revealed that ARGs and VFs were expressed by the Spirochaetes phylum, Paraprevotella genus, and Treponema genus et al. The ARGs-VFs coexistence was related to the expression/abundance of ARGs and VFs genes. GZnONP reduces the abundance of certain bacterial species by disrupting chemotaxis, minimizing the transfer of ARGs and VFs. These findings suggest that GZnONP, a bacterial chemotaxis suppressor, effectively reduces the expression and release of ARGs and VFs in animal manure.
Collapse
Affiliation(s)
- Haibo Zhang
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Weikun Guan
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Jun Shu
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Sen Yu
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Yingmin Xiong
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Gao Liu
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Yuhong Zhong
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Jia Chen
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Zhigang Zhao
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Ning He
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Qingfeng Xing
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Dongsheng Guo
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Lizhi Li
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China.
| | | |
Collapse
|
17
|
Ye S, Li S, Su C, Shi Z, Li H, Hong J, Wang S, Zhao J, Zheng W, Dong S, Ye S, Lou Y, Zhou Z, Du J. Characterization of microbial community and antibiotic resistome in intra urban water, Wenzhou China. Front Microbiol 2023; 14:1169476. [PMID: 37396356 PMCID: PMC10311006 DOI: 10.3389/fmicb.2023.1169476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
The present study investigated the water quality index, microbial composition and antimicrobial resistance genes in urban water habitats. Combined chemicals testing, metagenomic analyses and qualitative PCR (qPCR) were conducted on 20 locations, including rivers from hospital surrounds (n = 7), community surrounds (n = 7), and natural wetlands (n = 6). Results showed that the indexes of total nitrogen, phosphorus, and ammonia nitrogen of hospital waters were 2-3 folds high than that of water from wetlands. Bioinformatics analysis revealed a total of 1,594 bacterial species from 479 genera from the three groups of water samples. The hospital-related samples had the greatest number of unique genera, followed by those from wetlands and communities. The hospital-related samples contained a large number of bacteria associated with the gut microbiome, including Alistipes, Prevotella, Klebsiella, Escherichia, Bacteroides, and Faecalibacterium, which were all significantly enriched compared to samples from the wetlands. Nevertheless, the wetland waters enriched bacteria from Nanopelagicus, Mycolicibacterium and Gemmatimonas, which are typically associated with aquatic environments. The presence of antimicrobial resistance genes (ARGs) that were associated with different species origins in each water sample was observed. The majority of ARGs from hospital-related samples were carried by bacteria from Acinetobacter, Aeromonas and various genera from Enterobacteriaceae, which each was associated with multiple ARGs. In contrast, the ARGs that were exclusively in samples from communities and wetlands were carried by species that encoded only 1 to 2 ARGs each and were not normally associated with human infections. The qPCR showed that water samples of hospital surrounds had higher concentrations of intI1 and antimicrobial resistance genes such as tetA, ermA, ermB, qnrB, sul1, sul2 and other beta-lactam genes. Further genes of functional metabolism reported that the enrichment of genes associated with the degradation/utilization of nitrate and organic phosphodiester were detected in water samples around hospitals and communities compared to those from wetlands. Finally, correlations between the water quality indicators and the number of ARGs were evaluated. The presence of total nitrogen, phosphorus, and ammonia nitrogen were significantly correlated with the presence of ermA and sul1. Furthermore, intI1 exhibited a significant correlation with ermB, sul1, and blaSHV, indicating a prevalence of ARGs in urban water environments might be due to the integron intI1's diffusion-promoting effect. However, the high abundance of ARGs was limited to the waters around the hospital, and we did not observe the geographical transfer of ARGs along with the river flow. This may be related to water purifying capacity of natural riverine wetlands. Taken together, continued surveillance is required to assess the risk of bacterial horizontal transmission and its potential impact on public health in the current region.
Collapse
Affiliation(s)
- Sheng Ye
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shengkai Li
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chenjun Su
- Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zhuqing Shi
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Heng Li
- Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jiawen Hong
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
- Taizhou Hospital of Zhejiang Province, Taizhou, China
| | - Shengke Wang
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jingyan Zhao
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weiji Zheng
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shixuan Dong
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shuhan Ye
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhemin Zhou
- Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jimei Du
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Liu Z, Yu X, Zhou Z, Zhou J, Shuai X, Lin Z, Chen H. 3D ZnO/Activated Carbon Alginate Beads for the Removal of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes. Polymers (Basel) 2023; 15:polym15092215. [PMID: 37177361 PMCID: PMC10180892 DOI: 10.3390/polym15092215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/06/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
The worldwide prevalence of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have become one of the most urgent issues for public health. Thus, it is critical to explore more sustainable methods with less toxicity for the long-term removal of both ARB and ARGs. In this study, we fabricated a novel material by encapsulating zinc oxide (ZnO) nanoflowers and activated carbon (AC) in an alginate biopolymer. When the dosage of ZnO was 1.0 g (≈2 g/L), the composite beads exhibited higher removal efficiency and a slight release of Zn2+ in water treatment. Fixed bed column experiments demonstrated that ZnO/AC alginate beads had excellent removal capacities. When the flow rate was 1 mL/min, and the initial concentration was 107 CFU/mL, the removal efficiency of ARB was 5.69-log, and the absolute abundance of ARGs was decreased by 2.44-2.74-log. Moreover, the mechanism demonstrated that ZnO significantly caused cell lysis, cytoplasmic leakage, and the increase of reactive oxygen species induced subsequent oxidative stress state. These findings suggested that ZnO/AC alginate beads can be a promising material for removing ARB and ARGs from wastewater with eco-friendly and sustainable properties.
Collapse
Affiliation(s)
- Zhe Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenchao Zhou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinyu Zhou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Shuai
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zejun Lin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- International Cooperation Base of Environmental Pollution and Ecological Health, Science and Technology Agency of Zhejiang, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
Ding D, Wang B, Zhang X, Zhang J, Zhang H, Liu X, Gao Z, Yu Z. The spread of antibiotic resistance to humans and potential protection strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114734. [PMID: 36950985 DOI: 10.1016/j.ecoenv.2023.114734] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Antibiotic resistance is currently one of the greatest threats to human health. Widespread use and residues of antibiotics in humans, animals, and the environment can exert selective pressure on antibiotic resistance bacteria (ARB) and antibiotic resistance gene (ARG), accelerating the flow of antibiotic resistance. As ARG spreads to the population, the burden of antibiotic resistance in humans increases, which may have potential health effects on people. Therefore, it is critical to mitigate the spread of antibiotic resistance to humans and reduce the load of antibiotic resistance in humans. This review briefly described the information of global antibiotic consumption information and national action plans (NAPs) to combat antibiotic resistance and provided a set of feasible control strategies for the transmission of ARB and ARG to humans in three areas including (a) Reducing the colonization capacity of exogenous ARB, (b) Enhancing human colonization resistance and mitigating the horizontal gene transfer (HGT) of ARG, (c) Reversing ARB antibiotic resistance. With the hope of achieving interdisciplinary one-health prevention and control of bacterial resistance.
Collapse
Affiliation(s)
- Dong Ding
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China; College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Bin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoan Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junxi Zhang
- NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Huanhuan Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xinxin Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhan Gao
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, China; The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
20
|
Yi J, Wan J, Ye G, Wang Y, Ma Y, Yan Z, Zeng C. Targeted degradation of refractory organic pollutants in wastewater based on molecularly imprinted catalytic materials: adsorption process and degradation mechanism. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
Wang B, Song L, Li W, Hou L, Li J, Xu X, Sheng G. Distribution and migration of antibiotic resistance genes, as well as their correlation with microbial communities in swine farm and its surrounding environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120618. [PMID: 36368555 DOI: 10.1016/j.envpol.2022.120618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The prevalence and correlation of antibiotic resistance genes (ARGs) in pig farm wastewater treatment plants (WWTPs) and surrounding environment were investigated using metagenomics and real time quantitative PCR (q-PCR). The hosts of ARGs were also studied in this study. The abundance of ARGs decreased significantly in the anoxic/oxic (A/O) process and disinfection tank of WWTPs. New ARGs emerged in wastewater that passed though the anaerobic reactor. The abundances of ARGs in the soils and water near pig farm were 10- and 35-fold higher than those in the control, respectively. The abundance of ARGs in wells near pig farm were an order of magnitude higher than that in the control. Similarly, a high abundance of ARGs was detected in swine manure. After composting, most of the ARGs were eliminated, but sul1 increased 10.5-fold. A high-throughput analysis revealed that the pig farm altered the microbial community structure in the surrounding environment, with 52% and 37% of the operational taxonomic units (OTUs) endemic to the soil and water samples near pig farm in comparison with these data in the control, respectively. The phyla Proteobacteria, Choroflexi, and Actinobacteriota dominated the water and soil samples. In addition, three pathogenic genera were found in the surrounding soil and water samples. A metagenomic analysis identified 14 types of ARGs (>1%), with the highest proportion of multidrug ARGs at 47%. A total of 28 subtypes of ARGs were detected (>1%), with macB the most prevalent. The correlation analysis revealed that several key phyla, including Proteobacteria, Actinobacteria and Acidobacteria, were the main potential hosts and posed a positive correlation with the ARGs. Efflux pumps (60-66%) were the primary resistance mechanism, and each resistance mechanism was distributed in similar proportions in the microbial community.
Collapse
Affiliation(s)
- Bin Wang
- College of Civil Engineering, Guizhou Provincial Key Laboratory of Rock and Soil Mechanics and Engineering Safety, Guizhou University, Guiyang, 550025, China; Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Lei Song
- College of Civil Engineering, Guizhou Provincial Key Laboratory of Rock and Soil Mechanics and Engineering Safety, Guizhou University, Guiyang, 550025, China
| | - Wenjia Li
- College of Civil Engineering, Guizhou Provincial Key Laboratory of Rock and Soil Mechanics and Engineering Safety, Guizhou University, Guiyang, 550025, China
| | - Li'an Hou
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Xi'an High-Tech Institute, Xi'an, 710025, China
| | - Jiang Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Xiaoyi Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Guishang Sheng
- College of Civil Engineering, Guizhou Provincial Key Laboratory of Rock and Soil Mechanics and Engineering Safety, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
22
|
Huang F, Hong Y, Mo C, Huang P, Liao X, Yang Y. Removal of antibiotic resistance genes during livestock wastewater treatment processes: Review and prospects. Front Vet Sci 2022; 9:1054316. [PMID: 36619948 PMCID: PMC9813402 DOI: 10.3389/fvets.2022.1054316] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Antibiotic resistance genes (ARGs) are emerging pollutants that have received extensive attention. Many different types of ARGs exist in livestock wastewater. If not effectively treated, they can threaten animal production, public health and the ecological safety of the surrounding environment. To address the high risk of livestock wastewater contamination by ARGs, the effects of different wastewater treatment processes on ARGs and their influencing factors and mechanisms are reviewed herein. Additionally, the current problems associated with removal of ARGs are discussed, and future research is proposed.
Collapse
Affiliation(s)
- Feng Huang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yanting Hong
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chunhao Mo
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Peier Huang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xindi Liao
- College of Animal Science, South China Agricultural University, Guangzhou, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, China,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yiwen Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, China,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China,*Correspondence: Yiwen Yang ✉
| |
Collapse
|
23
|
Chen T, Zhao M, Tang X, Wang W, Zhang M, Tang J, Wang W, Wei W, Ma B, Zou Y, Zhang N, Mi J, Wang Y, Liao X, Wu Y. Serious Risk of Tigecycline Resistance in Escherichia coli Isolated from Swine Manure. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02133-2. [PMID: 36326874 DOI: 10.1007/s00248-022-02133-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The emergence of the plasmid-mediated tigecycline resistance gene tetX family in pig farms has attracted worldwide attention. The use of tetracycline antibiotics in pig farms has a facilitating effect on the prevalence of the tetX family, but the relationship among its presence, expression, and resistance phenotype in resistant bacteria is unknown. In this study, the presence and expression characteristics of tetracycline resistance genes (TRGs) in 89 strains of doxycycline-resistant E. coli (DRE) isolated from pig manure samples from 20 pig farms under low concentrations of doxycycline stress (2 μg/mL) were analyzed. The detection rate of tetO was 96.63%, which is higher than those of other TRGs, such as tetA (94.38%), tetX (76.40%), tetB (73.03%), and tet(X4) (69.66%). At least three TRG types were present in DRE strains, which thus showed extensive resistance to tetracycline antibiotics, and 37% of these strains were resistant to tigecycline. In the presence of a low concentration of doxycycline, tetA played an important role, and the expression and existence ratio of TRGs indicated low expression of TRGs. Furthermore, the doxycycline resistance of DRE was jointly determined by the total absolute abundance of TRGs, and the absolute abundance of tetX and tet(X4) was significantly positively associated with tigecycline resistance in DRE (P < 0.05). Overall, DRE isolated from swine manure is an important reservoir of the tetX family, which suggests that DRE in swine manure has a high risk of tigecycline resistance, poses a potential threat to human health, and should be of public concern.
Collapse
Affiliation(s)
- Tao Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Minxing Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoyue Tang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wenqiang Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Miao Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Tang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wenxiao Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, 528200, Foshan, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, 528200, Foshan, China
| | - Na Zhang
- Foshan Customs Comprehensive Technology Center, 528200, Foshan, China
| | - Jiandui Mi
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, 525000, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing, China
- Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, 525000, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing, China
- Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, 525000, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing, China
- Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, 525000, China.
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing, China.
- Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
24
|
Inuwa AB, Mahmood Q, Iqbal J, Widemann E, Shafiq S, Irshad M, Irshad U, Iqbal A, Hafeez F, Nazir R. Removal of Antibiotic Resistance Genes, Class 1 Integrase Gene and Escherichia coli Indicator Gene in a Microalgae-Based Wastewater Treatment System. Antibiotics (Basel) 2022; 11:antibiotics11111531. [PMID: 36358186 PMCID: PMC9686833 DOI: 10.3390/antibiotics11111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Microalgae-based wastewater treatment systems (AWWTS) have recently shown promise in the mitigation of antibiotic resistance genes (ARGs) from municipal wastewater (MWW). However, due to the large number of ARGs that exist in MWW, the use of indirect conventional water quality parameters to monitor ARGs reduction in wastewater would make the process less burdensome and economically affordable. In order to establish a robust relationship between the ARGs and water quality parameters, the current study employed different microalgae strains in monoculture (CM2, KL10) and multi-species combinations (CK and WW) for the MWW treatment under outdoor environmental conditions. The studied genes were quantified in the MWW influents and effluents using real-time PCR. All the cultures substantially improved the physicochemical qualities of the MWW. Out of the 14 genes analyzed in this study, tetO, tetW, tetX and ermB were decreased beyond detection within the first 4 days of treatment in all the cultures. Other genes, including blaCTX, sul1, cmlA, aadA, int1 and uidA were also decreased beyond a 2 log reduction value (LRV). The mobile genetic element, int1, correlated positively with most of the ARGs, especially sul1 (r ≤ 0.99, p < 0.01) and aadA (r ≤ 0.97, p < 0.01). Similarly, the Escherichia coli indicator gene, uidA, correlated positively with the studied genes, especially with aadA, blaCTX, blaTEM and cmlA (r ≤ 0.99 for each, p < 0.01). Some of the studied genes also correlated positively with total dissolved solids (TDS) (r ≤ 0.98, p < 0.01), and/or negatively with total suspended solids (TSS) (r ≤ −0.98, p < 0.01) and pH (r ≤ −0.98, p < 0.01). Among the tested cultures, both monocultures, i.e., KL10 and CM2 were found to be more consistent in gene suppression than their multi-species counterparts. The findings revealed water quality parameters such as TDS, TSS and E. coli as reliable proxies for ARGs mitigation in AWWTS and further highlight the superiority of monocultures over multi-species cultures in terms of gene suppression from the MWW stream.
Collapse
Affiliation(s)
- Abdullahi B. Inuwa
- Department of Environmental Sciences, COMSATS University Islamabad (CUI), Abbottabad Campus, Abbottabad 22060, Pakistan
- Department of Microbiology, Faculty of Life Sciences, College of Natural and Pharmaceutical Sciences, Bayero University Kano, Kano 700006, Nigeria
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS University Islamabad (CUI), Abbottabad Campus, Abbottabad 22060, Pakistan
- Department of Biology, College of Science, University of Bahrain, Sakhir P.O. Box 32038, Bahrain
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad (CUI), Abbottabad Campus, Abbottabad 22060, Pakistan
- Department of Pharmacy, COMSATS University Islamabad (CUI), Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Emilie Widemann
- Institut de Biologie Moléculaire des Plantes, CNRS-Université de Strasbourg, 67084 Strasbourg, France
| | - Sarfraz Shafiq
- Department of Anatomy and Cell Biology, University of Western Ontario, 1151 Richmond St., London, ON N6A5B8, Canada
| | - Muhammad Irshad
- Department of Environmental Sciences, COMSATS University Islamabad (CUI), Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Usman Irshad
- Department of Environmental Sciences, COMSATS University Islamabad (CUI), Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Akhtar Iqbal
- Department of Environmental Sciences, COMSATS University Islamabad (CUI), Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Farhan Hafeez
- Department of Environmental Sciences, COMSATS University Islamabad (CUI), Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Rashid Nazir
- Department of Environmental Sciences, COMSATS University Islamabad (CUI), Abbottabad Campus, Abbottabad 22060, Pakistan
- Correspondence:
| |
Collapse
|
25
|
Shekhawat SS, Kulshreshtha NM, Saini P, Upadhyay A, Gupta AB, Jenifer M H, Subramanian V, Kumari A, Pareek N, Vivekanand V. Antibiotic resistance genes and bacterial diversity: A comparative molecular study of treated sewage from different origins and their impact on irrigated soils. CHEMOSPHERE 2022; 307:136175. [PMID: 36030942 DOI: 10.1016/j.chemosphere.2022.136175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/27/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Present study aims to investigate how is soil affected following irrigation with treated effluents of different origins by analysing the bacterial diversity, metabolic diversity and antibiotic resistance genes (ARGs). Comparative analysis with previously reported ARGs in effluents was performed to understand the mobility of ARGs from treated wastewater to the irrigated soil with respect to the control soil regimen. Acinetobacter, Burkholderia and Pseudomonas were observed as the most abundant genera in all the samples. The metabolic gene abundance of all the samples suggests a prominent contribution to natural mineral recycling. Most abundant ARGs observed encode resistance for clindamycin, kanamycin A, macrolides, paromomycin, spectinomycin and tetracycline. Treated effluent reuse did not appear to enhance the ARG levels in soils in most cases except for institutional treatment site (M), where the ARGs for aminoglycosides, β-lactams and sulfonamides were found to be abundantly present in both treated effluent and the irrigated soil. This study finds the importance of wastewater treatment from different origins and the impact of treated wastewater reuse in irrigation. This study also emphasises on the better understanding of ARGs mobility from water to soil.
Collapse
Affiliation(s)
- Sandeep Singh Shekhawat
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur, 302017, India; Jaipur National University Jaipur-Agra Bypass, Near New RTO Office, Jagatpura, Jaipur, 302017, India
| | - Niha Mohan Kulshreshtha
- Department of Civil Engineering, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur, 302017, India
| | - Pankaj Saini
- Department of Civil Engineering, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur, 302017, India
| | - Aparna Upadhyay
- Department of Civil Engineering, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur, 302017, India
| | - Akhilendra Bhushan Gupta
- Department of Civil Engineering, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur, 302017, India
| | | | | | - Ankita Kumari
- Biokart India Private Limited, Bengaluru, 560043, India
| | - Nidhi Pareek
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan Bandarsindri, Ajmer, Kishangarh, Rajasthan, 305801, India
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur, 302017, India.
| |
Collapse
|
26
|
Cai C, Huang X, Dai X. Differential variations of intracellular and extracellular antibiotic resistance genes between treatment units in centralized sewage sludge treatment plants. WATER RESEARCH 2022; 222:118893. [PMID: 35933813 DOI: 10.1016/j.watres.2022.118893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/16/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Centralized sludge treatment plants (CSTPs) are implicated as strong hotspots of antibiotic resistance genes (ARGs). However, the knowledge gap on the fate of intracellular and extracellular ARGs (iARGs and eARGs), and the functionality of resistant hosts limit risk assessment and management of CSTP resistome. Here, the flow of iARGs and eARGs across treatment units and analyses of ARG hosts were systematically explored in three full-scale CSTPs using quantitative metagenomic approaches. We found that 29% of sludge ARGs could be removed, with iARGs being dominant in the produced biosolids. The treatment process significantly affected the variations of iARG and eARG abundance while no significant difference in composition between iARGs and eARGs was observed in CSTPs. 15% of 295 recovered genomes were identified as antibiotic-resistant hosts, among which Actinobacteriota tended to encode multiple resistance. The key functions of ARG hosts were relative to the biological organic removal (e.g., carbohydrates). There also existed relationships between certain resistance mechanisms and functional traits, indicating that ARGs might take part in the physiological process of microorganisms in the sludge treatment. These findings provide important insight into the differential resistome variations and host functionality, which would be crucial in the management of antibiotic resistance in CSTPs.
Collapse
Affiliation(s)
- Chen Cai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiangfeng Huang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
27
|
Zhang G, Sui X, Xu Y, Jiao Y, Chang JS, Lee DJ. Efficient removal of tetracycline using U-type continuous-flow bioelectrochemical system without ion exchange membrane or cathodic catalyst. BIORESOURCE TECHNOLOGY 2022; 346:126677. [PMID: 34999189 DOI: 10.1016/j.biortech.2022.126677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
A U-type membraneless continuous-flow bioelectrochemical system was developed to efficiently remove tetracycline and antibiotic resistance genes from synthetic wastewaters at hydraulic retention time of only eight hours. At the TC concentration of 20-80 mgL-1 in feed, the removals of tetracycline all exceeded 95%, over 60-1200 mgL-1 chemical oxygen demand, 30-150 mgL-1 NH4+-N, and at 5-25 °C, superior to the performances reported in literature. The maximum power of the BES system peaked at 0.416 Wm-3 at 20 mgL-1 TC feeding, corresponding to open circle voltage of 0.90 V and internal resistance of 799.8 Ω. The community analysis showed that the elevated TC loadings forced the predominate population to be evolved to TC-degrading consortium. The relative abundances of tetA, tetC, tetO, tetQ, and tetW in treated effluent ranged 1.20 × 10-6 to 2.60 × 10-4, revealing that the present BES reactor has superior removal efficiency of antibiotic resistance genes.
Collapse
Affiliation(s)
- Guodong Zhang
- School of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoyu Sui
- School of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Yangyang Xu
- School of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan Jiao
- School of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong.
| |
Collapse
|