1
|
Zhao W, Ma H, Gao Z, Li D, Lin Y, Wu C, Wei L. Uncovering the toxic effects and adaptive mechanisms of aminated polystyrene nanoplastics on microbes in sludge anaerobic digestion system: Insight from extracellular to intracellular. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136163. [PMID: 39418906 DOI: 10.1016/j.jhazmat.2024.136163] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/15/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
The impacts of polystyrene nanoplastics (PS NPs) with amino functional groups on sludge anaerobic digestion process and the underlying microbial feedbacks remains unclear. Herein, PS NPs coated with and without amino functional groups were employed to explore their impacts on the sludge digestion performance. Experimental results showed that aminated PS NPs (PS-NH2) deteriorated the methane yield and hydrolysis rate. The Derjaguin-Landau-Verwey-Overbeek theory analysis suggested that the PS-NH2 decreased the interaction energy barrier, making it easier to contact with sludge and disrupting the structure of extracellular polymeric substances. Metagenomic analysis showed that the abundance of functional microbes (e.g., Longilinea, Leptolinea, and Methanosarcina) decreased, accompanied with lower network complexity and fewer keystone taxa. Molecular docking revealed that PS-NH2 occupy the antioxidant enzyme active binding sites through hydrogen bonding and hydrophobic interactions, impairing degradation of reactive oxygen species. The severe intracellular oxidative stress up-regulated genes associated with quorum sensing (e.g., luxI and luxR) and protein biosynthesis (e.g., algA, trpG and trpE), and further inducing compact tryptophan-like proteins as a defense against NPs. These findings provide new understanding of the toxic effects from PS-NH2 in biological systems and offer valuable insights into the regulation strategies aimed at alleviating NPs inhibition.
Collapse
Affiliation(s)
- Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), National Engineering Research Center of Urban Water Resource Development and Utilization (North China), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Ma
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), National Engineering Research Center of Urban Water Resource Development and Utilization (North China), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhelu Gao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), National Engineering Research Center of Urban Water Resource Development and Utilization (North China), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dan Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), National Engineering Research Center of Urban Water Resource Development and Utilization (North China), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yingzi Lin
- Key Laboratory of Songliao Aquatic Environment (Ministry of Education), Jilin Jianzhu University, Changchun 130118, China
| | - Chuandong Wu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), National Engineering Research Center of Urban Water Resource Development and Utilization (North China), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), National Engineering Research Center of Urban Water Resource Development and Utilization (North China), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
2
|
Wang E, Sun H, Xing F, Zheng Y, Chen P, Lyu T, Liu R, Li X, Dong R, Guo J. Metagenomic analysis reveals metabolic mechanism of enhancing lignocellulosic anaerobic digestion mediated by CO 2/O 2-nanobubble water. BIORESOURCE TECHNOLOGY 2024; 414:131622. [PMID: 39395606 DOI: 10.1016/j.biortech.2024.131622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Nanobubble water (NW) has been reported to enhance anaerobic digestion (AD), but its influence on the metabolic pathways of microorganisms remains unclear. In this study, the specific methane yields of rice straw in the CO2NW and O2NW treatments increased by 6.9% and 18.3%, respectively. The electron transport system (ETS) and coenzyme F420 activities were enhanced by the addition of NW. Metagenomic analysis showed that the abundances of most enzymes in the acidification were significantly increased by both CO2NW and O2NW. Regarding methanogenesis, CO2NW promoted the expression of genes encoding enzymes of hydrogenotrophic methanogenesis, while O2NW stimulated both the acetoclastic and hydrogenotrophic methanogenesis. With the addition of O2NW, the expressions of modules related to the tricarboxylic acid (TCA) cycle and oxidative phosphorylation were enhanced, resulting in increased ATP production. This study provided fundamental evidence of the metabolic pathways of microorganisms mediated by NW at each stage of AD.
Collapse
Affiliation(s)
- Enzhen Wang
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Hui Sun
- College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Fan Xing
- Qingdao Conminent Environmental Energy Engineering Co., Ltd., Qingdao 266000, PR China
| | - Yonghui Zheng
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Penghui Chen
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Tao Lyu
- School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Ruotong Liu
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Xin Li
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Renjie Dong
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
3
|
Ostos I, Flórez-Pardo LM, Camargo C. A metagenomic approach to demystify the anaerobic digestion black box and achieve higher biogas yield: a review. Front Microbiol 2024; 15:1437098. [PMID: 39464396 PMCID: PMC11502389 DOI: 10.3389/fmicb.2024.1437098] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
The increasing reliance on fossil fuels and the growing accumulation of organic waste necessitates the exploration of sustainable energy alternatives. Anaerobic digestion (AD) presents one such solution by utilizing secondary biomass to produce biogas while reducing greenhouse gas emissions. Given the crucial role of microbial activity in anaerobic digestion, a deeper understanding of the microbial community is essential for optimizing biogas production. While metagenomics has emerged as a valuable tool for unravelling microbial composition and providing insights into the functional potential in biodigestion, it falls short of interpreting the functional and metabolic interactions, limiting a comprehensive understanding of individual roles in the community. This emphasizes the significance of expanding the scope of metagenomics through innovative tools that highlight the often-overlooked, yet crucial, role of microbiota in biomass digestion. These tools can more accurately elucidate microbial ecological fitness, shared metabolic pathways, and interspecies interactions. By addressing current limitations and integrating metagenomics with other omics approaches, more accurate predictive techniques can be developed, facilitating informed decision-making to optimize AD processes and enhance biogas yields, thereby contributing to a more sustainable future.
Collapse
Affiliation(s)
- Iván Ostos
- Grupo de Investigación en Ingeniería Electrónica, Industrial, Ambiental, Metrología GIEIAM, Universidad Santiago de Cali, Cali, Colombia
| | - Luz Marina Flórez-Pardo
- Grupo de Investigación en Modelado, Análisis y Simulación de Procesos Ambientales e Industriales PAI+, Universidad Autónoma de Occidente, Cali, Colombia
| | - Carolina Camargo
- Centro de Investigación de la Caña de Azúcar, CENICAÑA, Cali, Colombia
| |
Collapse
|
4
|
Huang T, Li D, Chen B, Wu B, Chai X. Utilization strategy for algal bloom waste through co-digestion with kitchen waste: Comprehensive kinetic and metagenomic analysis. ENVIRONMENTAL RESEARCH 2024; 255:119194. [PMID: 38777294 DOI: 10.1016/j.envres.2024.119194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Anaerobic co-digestion (AcoD) with kitchen waste (KW) is an alternative utilization strategy for algal bloom waste (AW). However, the kinetic characteristic and metabolic pathway during this process need to be explored further. This study conducted a comprehensive kinetic and metagenomic analysis for AcoD of AW and KW. A maximum co-digestion performance index (CPI) of 1.13 was achieved under the 12% AW addition. Co-digestion improved the total volatile fatty acids generation and the organic matter transformation efficiency. Kinetic analysis showed that the Superimposed model fit optimally (R2Adj = 0.9988-0.9995). The improvement of the kinetic process by co-digestion was mainly reflected in the increase of the methane production from slowly biodegradable components. Co-digestion enriched the cellulolytic bacterium Clostridium and the hydrogenotrophic methanogenic archaea Methanobacterium. Furthermore, for metagenome analysis, the abundance of key genes concerned in cellulose and lipid hydrolysis, pyruvate and methane metabolism were both increased in co-digestion process. This study provided a feasible process for the utilization of AW produced seasonally and a deeper understanding of the AcoD synergistic mechanism from kinetic and metagenomic perspectives.
Collapse
Affiliation(s)
- Tao Huang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Dong Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Bo Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Boran Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
5
|
Neshat SA, Santillan E, Seshan H, Wuertz S. Non-redundant metagenome-assembled genomes of activated sludge reactors at different disturbances and scales. Sci Data 2024; 11:855. [PMID: 39122705 PMCID: PMC11316123 DOI: 10.1038/s41597-024-03601-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/04/2024] [Indexed: 08/12/2024] Open
Abstract
Metagenome-assembled genomes (MAGs) are microbial genomes reconstructed from metagenomic data and can be assigned to known taxa or lead to uncovering novel ones. MAGs can provide insights into how microbes interact with the environment. Here, we performed genome-resolved metagenomics on sequencing data from four studies using sequencing batch reactors at microcosm (~25 mL) and mesocosm (~4 L) scales inoculated with sludge from full-scale wastewater treatment plants. These studies investigated how microbial communities in such plants respond to two environmental disturbances: the presence of toxic 3-chloroaniline and changes in organic loading rate. We report 839 non-redundant MAGs with at least 50% completeness and 10% contamination (MIMAG medium-quality criteria). From these, 399 are of putative high-quality, while sixty-seven meet the MIMAG high-quality criteria. MAGs in this catalogue represent the microbial communities in sixty-eight laboratory-scale reactors used for the disturbance experiments, and in the full-scale wastewater treatment plant which provided the source sludge. This dataset can aid meta-studies aimed at understanding the responses of microbial communities to disturbances, particularly as ecosystems confront rapid environmental changes.
Collapse
Affiliation(s)
- Soheil A Neshat
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University Singapore, Singapore, 637551, Singapore
| | - Ezequiel Santillan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University Singapore, Singapore, 637551, Singapore.
| | - Hari Seshan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University Singapore, Singapore, 637551, Singapore
- Department of Civil and Environmental Engineering, University of California, Davis, California, 95616, USA
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University Singapore, Singapore, 637551, Singapore.
- Department of Civil and Environmental Engineering, University of California, Davis, California, 95616, USA.
- School of Civil and Environmental Engineering, Nanyang Technological University Singapore, Singapore, 639798, Singapore.
| |
Collapse
|
6
|
Atasoy M, Scott WT, Regueira A, Mauricio-Iglesias M, Schaap PJ, Smidt H. Biobased short chain fatty acid production - Exploring microbial community dynamics and metabolic networks through kinetic and microbial modeling approaches. Biotechnol Adv 2024; 73:108363. [PMID: 38657743 DOI: 10.1016/j.biotechadv.2024.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
In recent years, there has been growing interest in harnessing anaerobic digestion technology for resource recovery from waste streams. This approach has evolved beyond its traditional role in energy generation to encompass the production of valuable carboxylic acids, especially volatile fatty acids (VFAs) like acetic acid, propionic acid, and butyric acid. VFAs hold great potential for various industries and biobased applications due to their versatile properties. Despite increasing global demand, over 90% of VFAs are currently produced synthetically from petrochemicals. Realizing the potential of large-scale biobased VFA production from waste streams offers significant eco-friendly opportunities but comes with several key challenges. These include low VFA production yields, unstable acid compositions, complex and expensive purification methods, and post-processing needs. Among these, production yield and acid composition stand out as the most critical obstacles impacting economic viability and competitiveness. This paper seeks to offer a comprehensive view of combining complementary modeling approaches, including kinetic and microbial modeling, to understand the workings of microbial communities and metabolic pathways in VFA production, enhance production efficiency, and regulate acid profiles through the integration of omics and bioreactor data.
Collapse
Affiliation(s)
- Merve Atasoy
- UNLOCK, Wageningen University & Research and Delft University of Technology, Wageningen and Delft, the Netherlands; Department of Environmental Technology, Wageningen University & Research, Wageningen, the Netherlands; Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| | - William T Scott
- UNLOCK, Wageningen University & Research and Delft University of Technology, Wageningen and Delft, the Netherlands; Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands.
| | - Alberte Regueira
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, Ghent, Belgium.
| | - Miguel Mauricio-Iglesias
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Peter J Schaap
- UNLOCK, Wageningen University & Research and Delft University of Technology, Wageningen and Delft, the Netherlands; Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands.
| | - Hauke Smidt
- UNLOCK, Wageningen University & Research and Delft University of Technology, Wageningen and Delft, the Netherlands; Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
7
|
Casabella-Font O, Riva M, Balcázar JL, Radjenovic J, Pijuan M. Distinctive effects of graphene oxide and reduced graphene oxide on methane production kinetics and pharmaceuticals removal in anaerobic reactors. BIORESOURCE TECHNOLOGY 2024; 403:130849. [PMID: 38759894 DOI: 10.1016/j.biortech.2024.130849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Graphene oxide (GO) addition to anaerobic digestion has been suggested to enhance direct electron transfer. The impact of GO (0.075 g GO g-1 VS) and biologically and hydrothermally reduced GO (bio-rGO and h-rGO, respectively) on the methane production kinetics and removal of 12 pharmaceuticals was assessed in Fed-batch reactors. A decrease of 15 % in methane production was observed in the tests with GO addition compared with the control and the h-rGO. However, bio-rGO and h-rGO substantially increased the methane production rate compared to the control tests (+40 %), in the third fed-batch test. Removal of pharmaceuticals was enhanced only during the bio-reduction of GO (1st fed-batch test), whereas once the GO was bio-reduced, it followed a similar trend in the control and h-rGO tests. The addition of GO can enhance the methane production rate and, therefore, reduce the anaerobic treatment time.
Collapse
Affiliation(s)
- Oriol Casabella-Font
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain.
| | - Massimiliano Riva
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; University of Insubria, Como, Italy
| | - Jose Luis Balcázar
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | - Jelena Radjenovic
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Maite Pijuan
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain.
| |
Collapse
|
8
|
Chang H, Du B, He K, Yin Q, Wu G. Mechanistic understanding of acclimation and energy metabolism of acetoclastic methanogens under different substrate to microorganism ratios. ENVIRONMENTAL RESEARCH 2024; 252:118911. [PMID: 38604482 DOI: 10.1016/j.envres.2024.118911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Mechanistic understanding of acetoclastic methanogenesis is pivotal for optimizing anaerobic digestion for efficient methane production. In this study, two different operational modes, continuous flow reactor (CFR) and sequencing batch reactor (SBR), accompanied with solids retention times (SRT) of 10 days (SBR10d and CFR10d) and 25 days (SBR25d and CFR25d) were implemented to elucidate their impacts on microbial communities and energy metabolism of methanogens in acetate-fed systems. Microbial community analysis revealed that the relative abundance of Methanosarcina (16.0%-46.0%) surpassed Methanothrix (3.7%-22.9%) in each reactor. SBRs had the potential to enrich both Methanothrix and Methanosarcina. Compared to SBRs, CFRs had lower total relative abundance of methanogens. Methanosarcina exhibited a superior enrichment in reactors with 10-day SRT, while Methanothrix preferred to be acclimated in reactors with 25-day SRT. The operational mode and SRT were also observed to affect the distribution of acetate-utilizing bacteria, including Pseudomonas, Desulfocurvus, Mesotoga, and Thauera. Regarding enzymes involved in energy metabolism, Ech and Vho/Vht demonstrated higher relative abundances at 10-day SRT compared to 25-day SRT, whereas Fpo and MtrA-H showed higher relative abundances in SBRs than those in CFRs. The relative abundance of genes encoding ATPase harbored by Methanothrix was higher than Methanosarcina at 25-day SRT. Additionally, the relative abundance of V/A-type ATPase (typically for methanogens) was observed higher in SBRs compared to CFRs, while the F-type ATPase (typically for bacteria) exhibited higher relative abundance in CFRs than that in SBRs.
Collapse
Affiliation(s)
- Huanhuan Chang
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Bang Du
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Kai He
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou 51000, Guangdong, China
| | - Qidong Yin
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou 51000, Guangdong, China
| | - Guangxue Wu
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland.
| |
Collapse
|
9
|
Niya B, Yaakoubi K, Beraich FZ, Arouch M, Meftah Kadmiri I. Current status and future developments of assessing microbiome composition and dynamics in anaerobic digestion systems using metagenomic approaches. Heliyon 2024; 10:e28221. [PMID: 38560681 PMCID: PMC10979216 DOI: 10.1016/j.heliyon.2024.e28221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
The metagenomic approach stands as a powerful technique for examining the composition of microbial communities and their involvement in various anaerobic digestion (AD) systems. Understanding the structure, function, and dynamics of microbial communities becomes pivotal for optimizing the biogas process, enhancing its stability and improving overall performance. Currently, taxonomic profiling of biogas-producing communities relies mainly on high-throughput 16S rRNA sequencing, offering insights into the bacterial and archaeal structures of AD assemblages and their correlations with fed substrates and process parameters. To delve even deeper, shotgun and genome-centric metagenomic approaches are employed to recover individual genomes from the metagenome. This provides a nuanced understanding of collective functionalities, interspecies interactions, and microbial associations with abiotic factors. The application of OMICs in AD systems holds the potential to revolutionize the field, leading to more efficient and sustainable waste management practices particularly through the implementation of precision anaerobic digestion systems. As ongoing research in this area progresses, anticipations are high for further exciting developments in the future. This review serves to explore the current landscape of metagenomic analyses, with focus on advancing our comprehension and critically evaluating biases and recommendations in the analysis of microbial communities in anaerobic digesters. Its objective is to explore how contemporary metagenomic approaches can be effectively applied to enhance our understanding and contribute to the refinement of the AD process. This marks a substantial stride towards achieving a more comprehensive understanding of anaerobic digestion systems.
Collapse
Affiliation(s)
- Btissam Niya
- Plant and Microbial Biotechnology Center, Moroccan Foundation of Advanced Science Innovation and Research MAScIR, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco
- Engineering, Industrial Management & Innovation Laboratory IMII, Faculty of Science and Technics (FST), Hassan 1st University of Settat, Morocco
| | - Kaoutar Yaakoubi
- Plant and Microbial Biotechnology Center, Moroccan Foundation of Advanced Science Innovation and Research MAScIR, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco
| | - Fatima Zahra Beraich
- Biodome.sarl, Research and Development Design Office of Biogas Technology, Casablanca, Morocco
| | - Moha Arouch
- Engineering, Industrial Management & Innovation Laboratory IMII, Faculty of Science and Technics (FST), Hassan 1st University of Settat, Morocco
| | - Issam Meftah Kadmiri
- Plant and Microbial Biotechnology Center, Moroccan Foundation of Advanced Science Innovation and Research MAScIR, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco
| |
Collapse
|
10
|
Zhao Y, Yu S, Tan J, Wang Y, Li L, Zhao H, Liu M, Jiang L. Bioconversion of citrus waste by long-term DMSO-cryopreserved rumen fluid to volatile fatty acids and biogas is feasible: A microbiome perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119693. [PMID: 38042069 DOI: 10.1016/j.jenvman.2023.119693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
Preserving rumen fluid as the inoculum for anaerobic digestion of food waste is necessary when access to animal donors or slaughterhouses is limited. This study aims to compare two preservation methods relative to fresh ruminal inoculum: (1) cryoprotected with 5% dimethyl sulfoxide (DMSO) and stored at -20 °C and (2) frozen at -20 °C, both for 6 months. The fermentation activity of different inoculum was evaluated by rumen-based in vitro anaerobic fermentation tests (volatile fatty acids, biomass digestibility, and gas production). Citrus pomace was used as the substrate during a 96-h fermentation. The maximum volatile fatty acids, methane production, and citrus pomace digestibility from fresh rumen fluid were not significantly different from rumen fluid preserved with DMSO. Metagenome analysis revealed a significant difference in the rumen microbial composition and functions between fresh rumen fluid and frozen inoculum without DMSO. Storage of rumen fluid using -20 °C with DMSO demonstrated the less difference compared with fresh rumen fluid in microbial alpha diversity and taxa composition. The hierarchical clustering tree of CAZymes showed that DMSO cryoprotected fluid was clustered much closer to the fresh rumen fluid, showing more similarity in CAZyme profiles than frozen rumen fluid. The abundance of functional genes associated with carbohydrate metabolism and methane metabolism did not differ between fresh rumen fluid and the DMSO-20 °C, whereas the abundance of key functional genes significantly decreased in frozen rumen fluid. These findings suggest that using rumen liquid preserved using DMSO at -20 °C for 180 days is a feasible alternative to fresh rumen fluid. This would reduce the need for laboratories to maintain animal donors and/or reduce the frequency of collecting rumen fluid from slaughterhouses.
Collapse
Affiliation(s)
- Yuchao Zhao
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Shiqiang Yu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Jian Tan
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Ying Wang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Liuxue Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Huiying Zhao
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Ming Liu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Linshu Jiang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
11
|
Joslin GR, Barber DG, Aston L, Liu P, Kuloyo O, Oentoro K, Liu J, Baugh AV, Fedenko JR, Melas I, Hamilton PG, Allen DJ, Tennant RK. Metagenomic analysis of ethylene glycol contamination in anaerobic digestion. BIORESOURCE TECHNOLOGY 2023; 387:129683. [PMID: 37597572 DOI: 10.1016/j.biortech.2023.129683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
Anaerobic digestion is an established method for the biological conversion of waste feedstocks to biogas and biomethane. While anaerobic digestion is an excellent waste management technique, it can be susceptible to toxins and pollutants from contaminated feedstocks, which may have a detrimental impact on a digester's efficiency and productivity. Ethylene glycol (EG) is readily used in the heat-transfer loops of anaerobic digestion facilities to maintain reactor temperature. Failure of the structural integrity of these heat transfer loops can cause EG to leak into the digester, potentially causing a decrease in the resultant gas yields. Batch fermentations were incubated with 0, 10, 100 and 500 ppm (parts per million) of EG, and analysis showed that the EG was completely metabolised by the digester microbiome. The concentrations of EG tested showed significant increases in gas yields, however there were no significant changes to the digester microbiome.
Collapse
Affiliation(s)
- Gabrielle R Joslin
- Geography, University of Exeter, Faculty of Environment, Science and Economy, Amory Building, Rennes Drive, Exeter, Devon EX4 4RJ, UK.
| | - Daniel G Barber
- Geography, University of Exeter, Faculty of Environment, Science and Economy, Amory Building, Rennes Drive, Exeter, Devon EX4 4RJ, UK.
| | - Lindsay Aston
- Shell International Exploration and Production, 3333 Highway 6 South, Houston, TX 77082, USA.
| | - Ping Liu
- Shell International Exploration and Production, 3333 Highway 6 South, Houston, TX 77082, USA.
| | - Olukayode Kuloyo
- Shell International Exploration and Production, 3333 Highway 6 South, Houston, TX 77082, USA.
| | - Kangsa Oentoro
- Shell International Exploration and Production, 3333 Highway 6 South, Houston, TX 77082, USA.
| | - Jiayi Liu
- Shell International Exploration and Production, 3333 Highway 6 South, Houston, TX 77082, USA.
| | - Ashley V Baugh
- Shell International Exploration and Production, 3333 Highway 6 South, Houston, TX 77082, USA.
| | - Jeffrey R Fedenko
- Equilon Enterprises LLC, 150 N Dairy Ashford Road, Houston, TX 77079, USA.
| | - Ioannis Melas
- Shell Research Limited, Shell Centre, London SE1 7PB, UK.
| | - Phillip G Hamilton
- Shell International Exploration and Production, 3333 Highway 6 South, Houston, TX 77082, USA.
| | - Damian J Allen
- Shell International Exploration and Production, 3333 Highway 6 South, Houston, TX 77082, USA.
| | - Richard K Tennant
- Geography, University of Exeter, Faculty of Environment, Science and Economy, Amory Building, Rennes Drive, Exeter, Devon EX4 4RJ, UK.
| |
Collapse
|
12
|
Wu X, Yu Z, Yuan S, Tawfik A, Meng F. An ecological explanation for carbon source-associated denitrification performance in wastewater treatment plants. WATER RESEARCH 2023; 247:120762. [PMID: 39492355 DOI: 10.1016/j.watres.2023.120762] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/27/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
The underlying mechanism associated with the roles of dosed carbon source in denitrification performance remains largely unknown. In this study, three denitrifying consortia (DNC) were constructed via evolutionary top-down enrichment method with well-defined conditions and specific carbon sources (acetate, glucose and their mixture). The reactor operation shows that nearly complete nitrate removal was achieved; however, the glucose feeding resulted in much higher concentrations of biomass and non-settable flocs. The 16S rRNA sequencing suggests that the bacterial diversity of the acetate-fed DNC was significantly higher than those of acetate/glucose-fed and glucose-fed DNCs. The dentrifying population in the acetate-fed DNC was dominated by Propionivibrio (16.1 %) and Thauera (3.4 %); whereas those of acetate/glucose- and glucose-fed DNCs were dominated by Pleomorphomonas (21.5 % and 26.3 %, respectively). Interestingly, the supernatant of acetate-fed DNC contained a high abundance of genera Thauera (averaged at 85.1 %), indicating the free-living nature of Thauera. Both PICURSt2 analysis of 16S rRNA sequencing and metagenomic analysis indicate that the acetate-fed DNC contained higher abundances of denitrifying genes; the acetate/glucose-fed and glucose-fed DNCs, in comparison, enriched genes related to glucose transportation and metabolism. Additionally, the acetate-fed DNC had better network stability than other two groups. This study adds important knowledge regarding the ecological traits of DNC, providing important clues for rational addition of carbon sources in wastewater treatment plants.
Collapse
Affiliation(s)
- Xueshen Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| | - Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| | - Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, 12622, Dokki, Cairo, Egypt; Department of Environmental Science, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China.
| |
Collapse
|
13
|
Pilarska AA, Marzec-Grządziel A, Paluch E, Pilarski K, Wolna-Maruwka A, Kubiak A, Kałuża T, Kulupa T. Biofilm Formation and Genetic Diversity of Microbial Communities in Anaerobic Batch Reactor with Polylactide (PLA) Addition. Int J Mol Sci 2023; 24:10042. [PMID: 37373189 DOI: 10.3390/ijms241210042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
In this paper, an anaerobic digestion (AD) study was conducted on confectionery waste with granular polylactide (PLA) as a cell carrier. Digested sewage sludge (SS) served as the inoculum and buffering agent of systems. This article shows the results of the analyses of the key experimental properties of PLA, i.e., morphological characteristics of the microstructure, chemical composition and thermal stability of the biopolymer. The evaluation of quantitative and qualitative changes in the genetic diversity of bacterial communities, performed using the state-of-the-art next generation sequencing (NGS) technique, revealed that the material significantly enhanced bacterial proliferation; however, it does not change microbiome biodiversity, as also confirmed via statistical analysis. More intense microbial proliferation (compared to the control sample, without PLA and not digested, CW-control, CW-confectionery waste) may be indicative of the dual role of the biopolymer-support and medium. Actinobacteria (34.87%) were the most abundant cluster in the CW-control, while the most dominant cluster in digested samples was firmicutes: in the sample without the addition of the carrier (CW-dig.) it was 68.27%, and in the sample with the addition of the carrier (CW + PLA) it was only 26.45%, comparable to the control sample (CW-control)-19.45%. Interestingly, the number of proteobacteria decreased in the CW-dig. sample (17.47%), but increased in the CW + PLA sample (39.82%) compared to the CW-control sample (32.70%). The analysis of biofilm formation dynamics using the BioFlux microfluidic system shows a significantly faster growth of the biofilm surface area for the CW + PLA sample. This information was complemented by observations of the morphological characteristics of the microorganisms using fluorescence microscopy. The images of the CW + PLA sample showed carrier sections covered with microbial consortia.
Collapse
Affiliation(s)
- Agnieszka A Pilarska
- Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, Piątkowska 94A, 60-649 Poznan, Poland
| | - Anna Marzec-Grządziel
- Department of Agriculture Microbiology, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland
| | - Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Tytusa Chałubińskiego 4, 50-376 Wroclaw, Poland
| | - Krzysztof Pilarski
- Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznan, Poland
| | - Agnieszka Wolna-Maruwka
- Department of Soil Science and Microbiology, Poznań University of Life Sciences, Szydłowska 50, 60-656 Poznan, Poland
| | - Adrianna Kubiak
- Department of Soil Science and Microbiology, Poznań University of Life Sciences, Szydłowska 50, 60-656 Poznan, Poland
| | - Tomasz Kałuża
- Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, Piątkowska 94A, 60-649 Poznan, Poland
| | - Tomasz Kulupa
- Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, Piątkowska 94A, 60-649 Poznan, Poland
| |
Collapse
|
14
|
Kimisto A, Muia AW, Ong'ondo GO, Ndung'u K. Molecular characterization of microorganisms with industrial potential for methane production in sludge from Kangemi sewage treatment plant, Nyeri county-Kenya. Heliyon 2023; 9:e15715. [PMID: 37234610 PMCID: PMC10205513 DOI: 10.1016/j.heliyon.2023.e15715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Microbial consortia under anaerobic conditions are involved in oxidizing organic matter in the sludge to produce methane gas. However, in developing countries like Kenya, these microbes have not been fully identified to target them for the efficient harnessing of biofuel. This study collected wet sludge from two anaerobic digestion lagoons 1 and 2 that were operational during sampling at Kangemi Sewage Treatment Plant, in Nyeri County, Kenya. DNA was extracted from samples using commercially available ZymoBIOMICS™ DNA Miniprep Kit and sequenced using Shotgun metagenomics. Samples were analyzed using MG-RAST software (Project ID: mgp100988), which allowed for identifying microorganisms directly involved in various stages of methanogenesis pathways. The study found hydrogenotrophic methanogens, such as Methanospirillum (32%), Methanobacterium (27%), Methanobrevibacter (27%), and Methanosarcina (32%), being predominant in the lagoon communities, whereas acetoclastic microorganisms such as the Methanoregula (22%) and the acetate oxidazing bacteria such as Clostridia (68%) were the key microbes for that pathway in the sewage digester sludge. Furthermore, Methanothermobacter (18%), Methanosarcina (21%), Methanosaeta (15%), and Methanospirillum (13%) carried out the methylotrophic pathway. In contrast, Methanosarcina (23%),Methanoregula (14%), methanosaeta (13%), and methnanoprevibacter (13%) seemed to play an important role in the final step of methane release. This study concluded that the sludge produced from the Nyeri-Kangemi WWTP harbors microbes with significant potential for biogas production. The study recommends a pilot study to investigate the efficiency of the identified microbes for biogas production.
Collapse
Affiliation(s)
- Allan.K. Kimisto
- Department of Biological Sciences, Egerton University, P.O Box 536- 20115 Egerton, Kenya
| | - Anastasia W. Muia
- Department of Biological Sciences, Egerton University, P.O Box 536- 20115 Egerton, Kenya
| | - Geoffrey O. Ong'ondo
- Department of Biological Sciences, Egerton University, P.O Box 536- 20115 Egerton, Kenya
| | - Kimani.C. Ndung'u
- Kenya Agricultural and Livestock Research Organisation (KALRO), Njoro Station, Private Bag 20107 Njoro, Kenya
| |
Collapse
|
15
|
Wang B, Zhang L, Shi J, Su Y, Wu D, Xie B. Genome-centric metagenomics revealed functional traits in high-solids anaerobic co-digestion of restaurant food waste, household food waste and rice straw. BIORESOURCE TECHNOLOGY 2023; 376:128926. [PMID: 36940870 DOI: 10.1016/j.biortech.2023.128926] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
High-solids anaerobic co-digestion (HS-AcoD) of food waste (FW) and other organic wastes is an effective option to improve the biogas production and system stability compared to mono-digestion. However, the clean and sustainable HS-AcoD strategy for FW and associated microbial functional traits have not been well explored. Here, HS-AcoD of restaurant food waste (RFW), household food waste (HFW) and rice straw (RS) were performed. Results showed that the maximum synergy index (SI) of 1.28 were achieved when the volatile solids ratio of RFW, HFW and RS was 0.45:0.45:0.1. HS-AcoD alleviated the acidification process by regulating metabolism associated with hydrolysis and volatile fatty acids formation. The synergistic relationship between syntrophic bacteria and Methanothrix sp., and the enhanced metabolic capacity associated with the acetotrophic and hydrogenotrophic pathways dominated by Methanothrix sp., provided a further explanation of the synergistic mechanism. These findings advance the knowledge about microbial mechanisms underlying the synergistic effect of HS-AcoD.
Collapse
Affiliation(s)
- Binghan Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China
| | - Liangmao Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China
| | - Jianhong Shi
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
16
|
A Review of Basic Bioinformatic Techniques for Microbial Community Analysis in an Anaerobic Digester. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Biogas production involves various types of intricate microbial populations in an anaerobic digester (AD). To understand the anaerobic digestion system better, a broad-based study must be conducted on the microbial population. Deep understanding of the complete metagenomics including microbial structure, functional gene form, similarity/differences, and relationships between metabolic pathways and product formation, could aid in optimization and enhancement of AD processes. With advancements in technologies for metagenomic sequencing, for example, next generation sequencing and high-throughput sequencing, have revolutionized the study of microbial dynamics in anaerobic digestion. This review includes a brief introduction to the basic process of metagenomics research and includes a detailed summary of the various bioinformatics approaches, viz., total investigation of data obtained from microbial communities using bioinformatics methods to expose metagenomics characterization. This includes (1) methods of DNA isolation and sequencing, (2) investigation of anaerobic microbial communities using bioinformatics techniques, (3) application of the analysis of anaerobic microbial community and biogas production, and (4) restriction and prediction of bioinformatics analysis on microbial metagenomics. The review has been concluded, giving a summarized insight into bioinformatic tools and also promoting the future prospects of integrating humungous data with artificial intelligence and neural network software.
Collapse
|
17
|
Wang Z, Zhang W, Xing X, Li X, Zheng D, Bao H, Xing L. Effects of ferroferric oxide on propionate methanogenesis in sequencing batch reactors: Microbial community structure and metagenomic analysis. BIORESOURCE TECHNOLOGY 2022; 363:127909. [PMID: 36089127 DOI: 10.1016/j.biortech.2022.127909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the effects of ferroferric oxide (Fe3O4) on propionate methanogenesis in anaerobic sequencing batch reactor (ASBR). Compared to ASBRC (without Fe3O4 addition), the addition of 10 g/L Fe3O4 (ASBRFe) decreased the maximum methane production rate by 69.6 % when propionate was used as the sole substrate. The addition of Fe3O4 reduced the contents of humic substances, riboflavin and nicotinamide adenine dinucleotide in extracellular polymeric substances. Therefore, Fe3O4 inhibited interspecies electron transfer of microorganisms through electronic mediators. Microbial community analysis revealed that Fe3O4 addition increased the relative abundance of acetate oxidizing bacterium (Mesotoga), but decreased the abundance of hydrogenotrophic methanogen (Methanobacterium). Further metagenomics analysis indicated that Fe3O4 increased the abundance of acetate oxidation genes and decreased that of hydrogenotrophic methanogenesis, quorum sensing and V/A-type ATPase genes. Thus, Fe3O4 reduced propionate methanogenesis during anaerobic digestion. The overall results indicate that Fe3O4 addition inhibits methanogenesis for treatment of propionate-contaminated wastewater in ASBR.
Collapse
Affiliation(s)
- Zifan Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Weikang Zhang
- Tong Yuan Design Group Co., Ltd., Jinan 250000, China
| | - Xiujuan Xing
- Everbright Water (Jinan) Co., Ltd., Jinan 250000, China
| | - Xiu Li
- Chengdu Botanical Garden, Chengdu 610000, China
| | - Derui Zheng
- Shandong Urban and Rural Planning Design Research Institute Co., Ltd., Jinan 250000, China
| | - Huanyu Bao
- School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Lizhen Xing
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| |
Collapse
|
18
|
He J, Luo T, Shi Z, Angelidaki I, Zhang S, Luo G. Microbial shifts in anaerobic digestion towards phenol inhibition with and without hydrochar as revealed by metagenomic binning. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129718. [PMID: 35952432 DOI: 10.1016/j.jhazmat.2022.129718] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The inhibition of anaerobic digestion (AD) by phenolic compounds is an obstacle to the efficient treatment of organic wastes. Besides, hydrochar produced from hydrothermal liquefaction of biomass has been previously reported to enhance AD. The present study aimed to provide deep insights into the microbial shifts at the species level to phenol (0-1.5 g/L) inhibition in AD of glucose with and without hydrochar by metagenomic analysis. Phenol higher than 1 g/L had severe inhibition on both the amount and rate of methane production in control experiments, while hydrochar significantly enhanced methane production, especially at phenol 1 g/L and 1.5 g/L. From metagenomic analysis, 78 High-quality metagenome-assembled genomes (MAGs) were obtained. Principal components analysis showed that the microbial communities were shifted when phenol concentration was increased to 0.25 g/L in control experiments and 1 g/L in hydrochar experiments. In control experiments, no MAGs involved in acetogenesis were found at phenol 1.5 g/L and Methanothrix sp.FDU243 was also inhibited. However, hydrochar resulted in the maintenance of several MAGs involved in acetogenesis and Methanothrix sp.FDU243 even at phenol 1.5 g/L, ensuring a persistent methane production. Furthermore, 6 phenol-degrading MAGs were identified, shifting dependent on the concentrations of phenol and the presence of hydrochar.
Collapse
Affiliation(s)
- Jun He
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Tao Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Zhijian Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs Lyngby DK-2800, Denmark
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
19
|
Shi T, Zhang T, Wang X, Wang X, Shen W, Guo X, Liu Y, Li Z, Jiang Y. Metagenomic Analysis of in Vitro Ruminal Fermentation Reveals the Role of the Copresent Microbiome in Plant Biomass Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12095-12106. [PMID: 36121066 DOI: 10.1021/acs.jafc.2c03522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In vitro ruminal fermentation is considered an efficient way to degrade crop residue. To better understand the microbial communities and their functions during in vitro ruminal fermentation, the microbiome and short chain fatty acid (SCFA) production were investigated using the metagenomic sequencing and rumen simulation technique (RUSITEC) system. A total of 1677 metagenome-assembled genomes (MAGs) were reconstructed, and 298 MAGs were found copresenting in metagenomic data of the current work and 58 previously ruminal representative samples. Additionally, the domains related to pectin and xylan degradation were overrepresented in the copresent MAGs compared with total MAGs. Among the copresent MAGs, we obtained 14 MAGs with SCFA-synthesis-related genes positively correlated with SCFA concentrations. The MAGs obtained from this study enable a better understanding of dominant microbial communities across in vivo and in vitro ruminal fermentation and show promise for pointing out directions for further research on in vitro ruminal fermentation.
Collapse
Affiliation(s)
- Tao Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Tingting Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Xihong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Xiangnan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Weijun Shen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan Province, P.R. China
| | - Xi Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Yuqin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Zongjun Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| |
Collapse
|
20
|
Zhang L, Gong X, Chen Z, Zhou Y. Genome-centric metagenomics analysis revealed the metabolic function of abundant microbial communities in thermal hydrolysis-assisted thermophilic anaerobic digesters under propionate stress. BIORESOURCE TECHNOLOGY 2022; 360:127574. [PMID: 35792328 DOI: 10.1016/j.biortech.2022.127574] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The ecological roles of microbial communities and how they interact with each other in thermal hydrolysis process (THP) assisted thermophilic anaerobic digestion (THP-AD) reactors remain largely unknown, especially under propionate stress. Two thermophilic THP-AD reactors had methane yield of 240-248 mL/g VSadded, but accumulated approximately 2000 mg/L propionate. Genome-centric metagenomics analysis showed that 68 metagenome-assembled genomes (MAGs) were recovered, 32 MAGs of which were substantially enriched. Firmicutes spp. dominated the enriched microbial community, including hydrolytic/fermentative bacteria and syntrophs. Methanogenic activities were mainly mediated by Methanosarcina sp. and Methanothermobacter spp. In addition to hydrogenotrophic methanogens, Thermodesulfovibrio sp. could also be a vital H2 scavenger, contributing to maintaining low H2 partial pressure in the bioreactors. The remarkable accumulation of propionate could be likely attributed to the weak syntrophic propionate-oxidizing activity or its absence. These findings advanced our knowledge about the mutualistic symbiosis of carbon metabolism in thermophilic THP-AD reactors.
Collapse
Affiliation(s)
- Liang Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Xianzhe Gong
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Zhiyi Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
21
|
Du J, Yin Q, Zhou X, Guo Q, Wu G. Distribution of extracellular amino acids and their potential functions in microbial cross-feeding in anaerobic digestion systems. BIORESOURCE TECHNOLOGY 2022; 360:127535. [PMID: 35779747 DOI: 10.1016/j.biortech.2022.127535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic digestion is a prevalent bioenergy production process relying on a complex network of symbiotic interactions, where the nutrient based cross-feeding is an essential microbial mechanism. Here, the cross-feeding function was assessed by analyzing extracellular polymeric substances-associated amino acids in microbial aggregates collected from 14 lab-scale anaerobic digesters, as well as deciphering their genetically biosynthetic potential by syntrophic bacteria and methanogens. The total concentration of essential amino acids ranged from 1.2 mg/g VSS to 174.0 mg/g VSS. The percentages of glutamic acid (8.5 ∼ 37.6%), lysine (2.7 ∼ 22.6%), alanine (5.6 ∼ 13.2%), and valine (3.0 ∼ 10.4%) to the total amount of detected amino acids were the highest in most samples. Through metagenomics analysis, several investigated syntrophs (i.e., Smithella, Syntrophobacter, Syntrophomonas, and Mesotoga) and methanogens (i.e., Methanothrix and Methanosarcina) were auxotrophies, but the genetic ability of syntrophs and methanogens to synthesize some essential amino acids could be complementary, implying potential cross-feeding partnership.
Collapse
Affiliation(s)
- Jin Du
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Qidong Yin
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Xingzhao Zhou
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Qiannan Guo
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Guangxue Wu
- Civil Engineering, School of Engineering, College of Science and Engineering, National University of Ireland, Galway, Galway H91 TK33, Ireland.
| |
Collapse
|
22
|
Ma J, Pan J, Zhang Y, Yao Z, Yu J, Luo J, Shen R, Awasthi MK, Zhao L. Alleviating "inhibited steady-state" in anaerobic digestion of poultry manure by bentonite amendment: Performance evaluation and microbial mechanism. BIORESOURCE TECHNOLOGY 2022; 360:127519. [PMID: 35760244 DOI: 10.1016/j.biortech.2022.127519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
This study systematically evaluated the effects of bentonite as a possible additive to alleviate the "inhibited steady-state" induced by ammonia and acid accumulation during anaerobic digestion. Continuous stirred tank reactors fed with poultry manure were operated at 35 ± 1 °C either with bentonite or not. The results demonstrate that bentonite amendment increased average specific methane production by 35% as suffered from steady-state at an organic loading rate of 6.25 g VS/L·d. 16S rRNA gene amplicon sequencing revealed that the relative abundance of electron-donating Sedimentibacter and Syntrophomonas, and electrophilic Methanosarcina was increased by 110%, 91%, and 49%, respectively. The genera were identified as crucial for alleviating "inhibited steady-state", through establishment of a more robust syntrophic pathway of methanogenic acetate degradation. The enhancement might result from the accelerated electron transfer by bentonite, which is qualified for serving as an exogenetic electron mediator due to containing abundant redox-active metal elements.
Collapse
Affiliation(s)
- Junyi Ma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yulei Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Zonglu Yao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jiadong Yu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Juan Luo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Ruixia Shen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Lixin Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
23
|
Kumar R, Kumar R, Brar SK, Kaur G. Next-generation -omics approaches to drive carboxylate production by acidogenic fermentation of food waste: a review. Bioengineered 2022; 13:14987-15002. [PMID: 37105768 PMCID: PMC10234218 DOI: 10.1080/21655979.2023.2180583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 04/29/2023] Open
Abstract
Acidogenic fermentation of food waste using mixed microbial cultures can produce carboxylates [or volatile fatty acids (VFA)] as high-valued bioproducts via a complex interplay of microorganisms during different stages of this process. However, the present fermentation systems are incapable of reaching the industrially relevant VFA production yields of ≥50 g/L primarly due to the complex process operation, competitive metabolic pathways, and limited understanding of microbial interplays. Recent reports have demonstrated the significant roles played by microbial communities from different phyla, which work together to control the process kinetics of various stages underlying acidogenic fermentation. In order to fully delineate the abundance, structure, and functionality of these microbial communities, next-generation high-throughput meta-omics technologies are required. In this article, we review the potential of metagenomics and metatranscriptomics approaches to enable microbial community engineering. Specifically, a deeper analysis of taxonomic relationships, shifts in microbial communities, and differences in the genetic expression of key pathway enzymes under varying operational and environmental parameters of acidogenic fermentation could lead to the identification of species-level functionalities for both cultivable and non-cultivable microbial fractions. Furthermore, it could also be used for successful gene sequence-guided microbial isolation and consortium development for bioaugmentation to allow VFA production with high concentrations and purity. Such highly controlled and engineered microbial systems could pave the way for tailored and high-yielding VFA synthesis, thereby creating a petrochemically competitive waste-to-value chain and promoting the circular bioeconomy.Research HighlightsMixed microbial mediated acidogenic fermentation of food waste.Metagenomics and metatranscriptomics based microbial community analysis.Omics derived function-associated microbial isolation and consortium engineering.High-valued sustainable carboxylate bio-products, i.e. volatile fatty acids.
Collapse
Affiliation(s)
- Reema Kumar
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario, Canada
| | - Rajat Kumar
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Satinder K. Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario, Canada
| | - Guneet Kaur
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Wang X, Wang P, Meng X, Ren L. Performance and metagenomics analysis of anaerobic digestion of food waste with adding biochar supported nano zero-valent iron under mesophilic and thermophilic condition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153244. [PMID: 35065103 DOI: 10.1016/j.scitotenv.2022.153244] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
A large amount of food waste (FW) brings environmental pollution and sanitation problems. Anaerobic digestion (AD) is an effective technology to treat FW and generate biogas energy. This study investigated the effect of biochar supported nano zero-valent iron (BC-nZVI) on AD performance of FW. Results showed that the cumulative methane yield (CMY) increased by 21.52%-54.90% and the lag time decreased significantly with BC-nZVI. Under mesophilic and thermophilic condition, the peak of CMY was achieved at 178.82 ± 5.27 mL/g VS and 193.01 ± 6.81 mL/g VS with 5 g/L BC-nZVI, respectively. Besides, BC-nZVI stimulated hydrolysis process and reduced the inhibition of NH4+-N and volatile fatty acids accumulation, and it could improve the system stability. Structural equation model analysis indicated that digestion time, BC-nZVI, NH4+-N, temperature and total volatile fatty acid had significant effects on CMY, explaining 92.20% of its total variation. The metagenomic analysis of key microorganisms and related metabolism pathways involved in AD system was further investigated. The results suggested that BC-nZVI contributed to strengthen methanogenesis through enriching the various predominant methanogenic pathways and activating most enzymes related to methane metabolism. BC-nZVI could improve the AD system function and provided a better AD performance by shifting the microbial communities and altering functional genes. This study provided a theoretical basis for BC-nZVI applications and improvements in AD process of FW.
Collapse
Affiliation(s)
- Xinzi Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Pan Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Xingyao Meng
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Lianhai Ren
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|