1
|
Wang H, Deng S, Yang J, Liu X, Si G, Jin H, Yang Z, Gao K, Ti S. Analysis and techno-economic evaluation of co-pyrolysis of medical protective clothing and biomass. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124567. [PMID: 39983582 DOI: 10.1016/j.jenvman.2025.124567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/24/2025] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
With the increasing global energy demand and the worsening issue of energy shortages, the energy crisis has become a significant challenge worldwide. Meanwhile, the disposal of medical and agricultural waste is also becoming an increasingly critical issue. Medical waste, such as protective clothing, contains hazardous substances that, if improperly managed, pose threats to the environment and public health. Traditional disposal methods, such as incineration and landfilling, not only consume high amounts of energy but also make it difficult to recover energy and materials from the waste. To address these problems, this study proposes a sustainable and environmentally friendly solution, aiming to convert hazardous medical waste into valuable fuel products such as CH4, H2, and CO through pyrolysis technology. In this regard, the study conducted a series of simulation experiments to analyze the pyrolysis of medical protective clothing (MPC), cow dung (CD), low-density polyethylene (LDPE), and corn straw (CS) under different temperature and mixing conditions. The results show that the pyrolysis of MPC alone predominantly produces char (accounting for around 50%). Co-pyrolysis of LDPE and MPC enhances the product yield. For example, at a pyrolysis temperature of 500 °C, co-pyrolysis of LDPE and MPC increases the methane (CH4) yield by 12% compared to the pyrolysis of MPC alone. Additionally, a life cycle assessment and a techno-economic evaluation were conducted from an application perspective. The results indicate that the project is economically feasible with net profits achievable in the second year of operation and has no harmful environmental impacts. Converting medical waste, agricultural waste, and other types of waste into biofuels holds the potential for being green, economical, and sustainable. This approach not only reduces reliance on traditional energy sources but also contributes to achieving carbon neutrality and promoting green development goals.
Collapse
Affiliation(s)
- Haopeng Wang
- College of Building Environmental Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Shanshan Deng
- College of Building Environmental Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Jinhui Yang
- College of Building Environmental Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Xiaoying Liu
- School of Energy & Power Engineering, Inner Mongolia University of Technology, Hohhot, 010000, PR China
| | - Gaowei Si
- Henan Tianchen Xinyuan Environmental Protection Technology Research Institute Co., Ltd, Zhengzhou, 450000, PR China
| | - Haoze Jin
- College of Building Environmental Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Zhi Yang
- College of Building Environmental Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Ke Gao
- College of Building Environmental Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
| | - Shuguang Ti
- College of Building Environmental Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China.
| |
Collapse
|
2
|
Umeh OR, Ophori DU, Ibo EM, Eke CI, Oyen TP. Groundwater systems under siege: The silent invasion of microplastics and cock-tails worldwide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124305. [PMID: 38830527 DOI: 10.1016/j.envpol.2024.124305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
Microplastics (MPs) contamination is one of the significant escalating environmental concerns worldwide, and this stems from the increasing production and unlawful disposal of plastic materials. Regretfully, the synthesis of plastic materials is expected to triple in the upcoming years. Nevertheless, MPs pollution in marine, aquatic, and terrestrial settings has received much attention, unlike in groundwater systems. This study exhaustively reviewed varying degrees of recent publications in various search engines and provided a detailed state of current knowledge and research progress vis-à-vis MPs and cock-tail pollution in groundwater systems. Evidently, groundwater sources are severely contaminated as a result of growing anthropogenic activities and vertical movement of MPs and cock-tails from the atmospheric, terrestrial, and aquatic environments, however, fewer researchers have fixated their attention on estimating the occurrence of MPs in groundwater resources, while sufficient information regarding their sources, sampling methods, abundance, transport pathways, fate, modeling techniques, appropriate and adequate data, sorption properties, separation from other environmental media, toxicity, and remedial measures are extensively lacking. In addition, MPs may combine with other toxic emerging contaminants to improve migration and toxicity; however, no research has been conducted to fully understand cock-tail migration mechanisms and impacts in groundwater systems. Over time, groundwater may be regarded as the primary sink for MPs, if effective actions are neglected. Overall, this study detected a lack of concern and innumerable voids in this field; hence, vital and nascent research gaps were identified for immediate, advanced, and interdisciplinary research investigations.
Collapse
Affiliation(s)
- Odera R Umeh
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, 07043, USA.
| | - Duke U Ophori
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, 07043, USA.
| | - Eziafakaego M Ibo
- Department of Environmental Management, Pan African University Life and Earth Sciences Institute, Ibadan, Oyo State, 200002, Nigeria.
| | - Chima I Eke
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, 07043, USA.
| | - Toritseju P Oyen
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, 07043, USA.
| |
Collapse
|
3
|
Ge W, Liang H, Gao P, Li Y, Song N, Wu J, Chai C. Exploring the release mechanism of micro/nanoplastics from different layers of masks in water: towards reduction of plastic contamination in masks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33047-33057. [PMID: 38668948 DOI: 10.1007/s11356-024-33443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024]
Abstract
During the COVID-19 pandemic, a substantial quantity of disposable face masks was discarded, consisting of three layers of nonwoven fabric. However, their improper disposal led to the release of microplastics (MPs) and nanoplastics (NPs) when they ended up in aquatic environments. To analyze the release kinetics and size characteristics of these masks, release experiments were performed on commercially available disposable masks over a period of 7 days and micro- and nanoplastic releases were detected using fiber counting and nanoparticle tracking analysis. The study's findings revealed that there was no significant difference (p > 0.05) in the quantity of MPs released among the layers of the masks. However, the quantity of NPs released from the middle layer of the mask was 25.9 ± 1.3 × 108 to 81.3 ± 5.3 × 108 particles/piece, significantly higher than the inner and outer layers (p < 0.05). The release process of micro/nanoplastics (M/NPs) from each layer of the mask followed the Elovich equation and the power function equation, indicating that the release was divided into two stages. MPs in the range of 1-500 µm and NPs in the range of 100-300 nm dominated the release from each layer of the mask, accounting for an average of 93.81% and 67.52%, respectively. Based on these findings, recommendations are proposed to reduce the release of M/NPs from masks during subsequent use.
Collapse
Affiliation(s)
- Wei Ge
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hao Liang
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Ping Gao
- School of Resources and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yan Li
- Institute of Agricultural Resource and Environment, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Ningning Song
- School of Resources and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Juan Wu
- School of Resources and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Chai
- School of Resources and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
4
|
Zabihi O, Patrick R, Ahmadi M, Forrester M, Huxley R, Wei Y, Hadigheh SA, Naebe M. Mechanical upcycling of single-use face mask waste into high-performance composites: An ecofriendly approach with cost-benefit analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170469. [PMID: 38311090 DOI: 10.1016/j.scitotenv.2024.170469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024]
Abstract
The COVID-19 pandemic created an unprecedented demand for PPE, with single-use face masks emerging as a critical tool in containing virus transmission. However, the extensive use and improper disposal of these single-use face masks, predominantly composed of non-biodegradable plastics, has exacerbated environmental challenges. This research presents an innovative method for mechanically upcycling PPEs used in medical sectors i.e. single use face masks. The study investigates a facile approach for reclamation of infection-free and pure polypropylene (PP) plastic from discarded single use face masks (W-PP) and blends it with various vegetable oil percentages (5, 10 and 20 %), resulting in a versatile material suitable for various applications. Melt flow index, rheological behaviour, DSC and FTIR were employed to investigate the effect of vegetable oil/radical initiator through chemical grafting on W-PP properties. The results demonstrate significant enhancements in the tensile strength and modulus of W-PP when blended with vegetable oil and a radical initiator. There was a marked increase in tensile strength (33 %) and strain (55 %) compared to untreated W-PP, rendering W-PP both robust and flexible. Furthermore, we employed this upcycled W-PP in the fabrication of glass fibre-reinforced composites, resulting in notable enhancements in both tensile strength and impact resistance. The upcycled W-PP demonstrates excellent potential for various applications, such as sheet forming and 3D printing, where the non-brittleness of plastics plays a pivotal role in manufacturing high-quality products. The cost-benefit analysis of this approach underscores the potential of upcycling PPE waste as a sustainable solution to mitigate plastic pollution and conserve valuable resources. The applications of this upcycled material span a wide range of industries, including automotive composites, packaging, and 3D printing.
Collapse
Affiliation(s)
- Omid Zabihi
- Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, VIC 3216, Australia.
| | - Rebecca Patrick
- School of Health and Social Development, Faculty of Health, Deakin University, Burwood, Victoria, Australia; Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | - Mojtaba Ahmadi
- Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Mike Forrester
- School of Health and Social Development, Faculty of Health, Deakin University, Burwood, Victoria, Australia
| | - Rachel Huxley
- Faculty of Health, Deakin University, Burwood, Victoria, Australia
| | - Yaning Wei
- School of Civil Engineering, Faculty of Engineering, The University of Sydney, NSW 2006, Australia
| | - S Ali Hadigheh
- School of Civil Engineering, Faculty of Engineering, The University of Sydney, NSW 2006, Australia
| | - Minoo Naebe
- Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, VIC 3216, Australia.
| |
Collapse
|
5
|
Vuppaladadiyam SSV, Vuppaladadiyam AK, Sahoo A, Urgunde A, Murugavelh S, Šrámek V, Pohořelý M, Trakal L, Bhattacharya S, Sarmah AK, Shah K, Pant KK. Waste to energy: Trending key challenges and current technologies in waste plastic management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169436. [PMID: 38160846 DOI: 10.1016/j.scitotenv.2023.169436] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Due to the 'forever' degrading nature of plastic waste, plastic waste management is often complicated. The applications of plastic are ubiquitous and inevitable in many scenarios. Current global waste plastics production is ca. 3.5 MMT per year, and with the current trend, plastic waste production will reach 25,000 MMT by 2040. However, the rapid growth in plastic manufacture and the material's inherent nature resulted in the accumulation of a vast amount of plastic garbage. The current recycling rate is <10 %, while the large volumes of discarded plastic waste cause environmental and ecological problems. Recycling rates for plastic vary widely by region and type of plastic. In some developed countries, the recycling rate for plastics is around 20-30 %, while in many developing nations, it is much lower. These statistics highlight the magnitude of the plastic waste problem and the urgent need for comprehensive strategies to manage plastic waste more effectively and reduce its impact on the environment. This review critically analyses past studies on the essential and efficient techniques for turning plastic trash into treasure. Additionally, an attempt has been made to provide a comprehensive understanding of the plastic upcycling process, the 3Rs policy, and the life-cycle assessment (LCA) of plastic conversion. The review advocates pyrolysis as one of the most promising methods of turning plastic trash into valuable chemicals. In addition, plastic waste management can be severely impacted due to uncontrollable events, such as Covid 19 pandemic. Recycling and chemical upcycling can certainly bring value to the end-of-life plastic. However, the LCA analysis indicated there is still a huge scope for innovation in chemical upcycling area compared to mechanical recycling. The formulation of policies and heightened public participation could play a pivotal role in reducing the environmental repercussions of plastic waste and facilitating a shift towards a more sustainable future.
Collapse
Affiliation(s)
| | | | - Abhisek Sahoo
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ajay Urgunde
- Department of Chemistry and Biochemistry, Auburn University, AL 36849, USA
| | - S Murugavelh
- CO(2) Research and Green Technologies Centre, Vellore Institute of Technology, Vellore, India
| | - Vít Šrámek
- Department of Power Engineering, Faculty of Environmental Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic; Department of Gaseous and Solid Fuels and Air Protection, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Michael Pohořelý
- Department of Power Engineering, Faculty of Environmental Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Lukáš Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha 6, Suchdol, Czech Republic
| | - Sankar Bhattacharya
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Kalpit Shah
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Kamal K Pant
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
6
|
Lyu L, Bagchi M, Markoglou N, An C, Peng H, Bi H, Yang X, Sun H. Towards environmentally sustainable management: A review on the generation, degradation, and recycling of polypropylene face mask waste. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132566. [PMID: 37742382 DOI: 10.1016/j.jhazmat.2023.132566] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
There has been a considerable increase in the use of face masks in the past years. Managing face mask waste has become a global concern, as the current waste management system is insufficient to deal with such a large quantity of solid waste. The drastic increase in quantity, along with the material's inability to degrade plastic components such as polypropylene, has led to a large accumulation of plastic waste, causing a series of environmental and ecological challenges. In addition, the growing use also imposes pressure on waste management methods such as landfill and incineration, raising concerns about high energy consumption, low value-added utilization, and the release of additional pollutants during the process. This article initially reviews the impact of mask-related plastic waste generation and degradation behavior in the natural environment. It then provides an overview of various recently developed methods for recycling face mask plastic waste. The article also offers forward-looking strategies and recommendations on face mask plastic waste management. The review aims to provide guidance on harnessing the complexities of mask waste and other medical plastic pollution issues, as well as improving the current waste management system's deficiencies and inefficiencies in tackling the growing plastic waste problem.
Collapse
Affiliation(s)
- Linxiang Lyu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Monisha Bagchi
- Department Research and Development, Meltech Innovation Canada Inc., Medicom Group, Pointe-Claire, QC H9P 2Z2, Canada
| | - Nektaria Markoglou
- Department Research and Development, Meltech Innovation Canada Inc., Medicom Group, Pointe-Claire, QC H9P 2Z2, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
| | - He Peng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Huifang Bi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Xiaohan Yang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Huijuan Sun
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
7
|
Garcia-Garcia G, Martín-Lara MÁ, Calero M, Ortega F, Blázquez G. Life-Cycle Assessment of the thermal and catalytic pyrolysis over sepiolite of face masks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165063. [PMID: 37355111 PMCID: PMC10287176 DOI: 10.1016/j.scitotenv.2023.165063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Since the start of the global COVID-19 pandemic, extensive quantities of face masks have been used and discarded. Most of these masks end up in landfills, causing a high environmental impact and no benefits. However, there are alternative ways to deal with this waste in a more sustainable way. For example, valorisation of face masks through pyrolysis has received special attention because it offers efficient application to produce a liquid oil that can be used as a diesel substitute and a solid char that can be used as an activated carbon substitute after activation. In this context, this study applies the Life-Cycle Assessment methodology to quantify and analyse the environmental impacts of different treatment scenarios based on the pyrolysis of surgical masks and FFP2 masks. It also compares their environmental performance with the conventional practice of landfilling. The scenarios studied include both thermal and catalytic pyrolysis by using sepiolite, a low-cost material abundant in Spain. Data on the pyrolysis process were obtained from laboratory experiments. It was found that the use of the produced oil as a diesel substitute very significantly reduces the environmental impact in all pyrolysis scenarios. Consequently, the pyrolysis of face masks can reduce the environmental impact caused by the treatment of this waste material. Furthermore, the thermal pyrolysis performs environmentally better than the catalytic pyrolysis. In all scenarios, freshwater ecotoxicity and marine ecotoxicity are the environmental impact categories that cause the highest environmental impact overall.
Collapse
Affiliation(s)
- Guillermo Garcia-Garcia
- Department of Agrifood Chain Economics, Institute of Agricultural and Fisheries Research and Training (IFAPA), Centre 'Camino de Purchil', 18080 Granada, Spain
| | - María Ángeles Martín-Lara
- Department of Chemical Engineering, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| | - Mónica Calero
- Department of Chemical Engineering, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| | - Francisco Ortega
- Department of Chemical Engineering, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Gabriel Blázquez
- Department of Chemical Engineering, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| |
Collapse
|
8
|
Yuan X, Cao Y, Li J, Patel AK, Dong CD, Jin X, Gu C, Yip ACK, Tsang DCW, Ok YS. Recent advancements and challenges in emerging applications of biochar-based catalysts. Biotechnol Adv 2023; 67:108181. [PMID: 37268152 DOI: 10.1016/j.biotechadv.2023.108181] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
The sustainable utilization of biochar produced from biomass waste could substantially promote the development of carbon neutrality and a circular economy. Due to their cost-effectiveness, multiple functionalities, tailorable porous structure, and thermal stability, biochar-based catalysts play a vital role in sustainable biorefineries and environmental protection, contributing to a positive, planet-level impact. This review provides an overview of emerging synthesis routes for multifunctional biochar-based catalysts. It discusses recent advances in biorefinery and pollutant degradation in air, soil, and water, providing deeper and more comprehensive information of the catalysts, such as physicochemical properties and surface chemistry. The catalytic performance and deactivation mechanisms under different catalytic systems were critically reviewed, providing new insights into developing efficient and practical biochar-based catalysts for large-scale use in various applications. Machine learning (ML)-based predictions and inverse design have addressed the innovation of biochar-based catalysts with high-performance applications, as ML efficiently predicts the properties and performance of biochar, interprets the underlying mechanisms and complicated relationships, and guides biochar synthesis. Finally, environmental benefit and economic feasibility assessments are proposed for science-based guidelines for industries and policymakers. With concerted effort, upgrading biomass waste into high-performance catalysts for biorefinery and environmental protection could reduce environmental pollution, increase energy safety, and achieve sustainable biomass management, all of which are beneficial for attaining several of the United Nations Sustainable Development Goals (UN SDGs) and Environmental, Social and Governance (ESG).
Collapse
Affiliation(s)
- Xiangzhou Yuan
- Ministry of Education of Key Laboratory of Energy Thermal Conversion and Control, School of Energy and Environment, Southeast University, Nanjing 210096, China; Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yang Cao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jie Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Alex C K Yip
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
9
|
Su G, Zulkifli NWM, Ong HC, Ibrahim S, Cheah MY, Zhu R, Bu Q. Co-pyrolysis of medical protective clothing and oil palm wastes for biofuel: Experimental, techno-economic, and environmental analyses. ENERGY (OXFORD, ENGLAND) 2023; 273:127221. [PMID: 36942281 PMCID: PMC10014877 DOI: 10.1016/j.energy.2023.127221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
The ongoing global pandemic of COVID-19 has devastatingly influenced the environment, society, and economy around the world. Numerous medical resources are used to inhibit the infectious transmission of the virus, resulting in massive medical waste. This study proposes a sustainable and environment-friendly method to convert hazardous medical waste into valuable fuel products through pyrolysis. Medical protective clothing (MPC), a typical medical waste from COVID-19, was utilized for co-pyrolysis with oil palm wastes (OPWs). The utilization of MPC improved the bio-oil properties in OPWs pyrolysis. The addition of catalysts further ameliorated the bio-oil quality. HZSM-5 was more effective in producing hydrocarbons in bio-oil, and the relevant reaction pathway was proposed. Meanwhile, a project was simulated to co-produce bio-oil and electricity from the co-pyrolysis of OPWs and MPC from application perspectives. The techno-economic analysis indicated that the project was economically feasible, and the payback period was 6.30-8.75 years. Moreover, it was also environmentally benign as its global warming potential varied from -211.13 to -90.76 kg CO2-eq/t. Therefore, converting MPC and OPWs into biofuel and electricity through co-pyrolysis is a green, economic, and sustainable method that can decrease waste, produce valuable fuel products, and achieve remarkable economic and environmental benefits.
Collapse
Affiliation(s)
- Guangcan Su
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia
- Centre for Energy Sciences, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Nurin Wahidah Mohd Zulkifli
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia
- Centre for Energy Sciences, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Hwai Chyuan Ong
- Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, 64002, Taiwan
- Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Shaliza Ibrahim
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Mei Yee Cheah
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia
- Centre for Energy Sciences, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Ruonan Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Quan Bu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
10
|
Dey TK, Rasel M, Roy T, Uddin ME, Pramanik BK, Jamal M. Post-pandemic micro/nanoplastic pollution: Toward a sustainable management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161390. [PMID: 36621482 PMCID: PMC9814273 DOI: 10.1016/j.scitotenv.2023.161390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
The global health crisis caused by the COVID-19 pandemic has resulted in massive plastic pollution from the use of personal protection equipment (PPE), with polypropylene (PP) being a major component. Owing to the weathering of exposed PPEs, such contamination causes microplastic (MP) and nanoplastic (NP) pollution and is extremely likely to act as a vector for the transportation of COVID-19 from one area to another. Thus, a post-pandemic scenario can forecast with certainty that a significant amount of plastic garbage combined with MP/NP formation has an adverse effect on the ecosystem. Therefore, updating traditional waste management practices, such as landfilling and incineration, is essential for making plastic waste management sustainable to avert this looming catastrophe. This study investigates the post-pandemic scenario of MP/NP pollution and provides an outlook on an integrated approach to the recycling of PP-based plastic wastes. The recovery of crude oil, solid char, hydrocarbon gases, and construction materials by approximately 75, 33, 55, and 2 %, respectively, could be achieved in an environmentally friendly and cost-effective manner. Furthermore, the development of biodegradable and self-sanitizing smart PPEs has been identified as a promising alternative for drastically reducing plastic pollution.
Collapse
Affiliation(s)
- Thuhin K Dey
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Md Rasel
- Department of Chemistry, Faculty of Civil Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Tapati Roy
- Department of Agronomy, Faculty of Agriculture, Khulna Agricultural University, Khulna, Bangladesh; Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Md Elias Uddin
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Biplob K Pramanik
- Department of Civil and Infrastructure Engineering, RMIT University, Australia
| | - Mamun Jamal
- Department of Chemistry, Faculty of Civil Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh.
| |
Collapse
|
11
|
Sahu P, Vairakannu P. CO
2
pyrolysis and gasification of COVID‐19 based wastes (overall gown) with Indian high ash coal. ASIA-PAC J CHEM ENG 2023. [DOI: 10.1002/apj.2905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
12
|
Panchal N, Vinu R. Resource recovery from discarded COVID-19 PPE kit through catalytic fast pyrolysis. JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS 2023; 170:105870. [PMID: 36686287 PMCID: PMC9846882 DOI: 10.1016/j.jaap.2023.105870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
During the COVID-19 pandemic, the world saw an exponential surge in the production of Personal Protective Equipment (PPE) kits, which eventually got discarded in the biomedical waste stream. In this study, thirteen different polymer samples from the PPE kit were collected and characterized using Fourier transform infrared spectrometer, thermogravimetric analysis, and analytical pyrolysis-gas chromatograph/mass spectrometry. The characterization data showed that about 94 % by mass of components were made of only three polymers, viz. polypropylene (PP, 75.6 wt %), polyethylene terephthalate (PET, 12.5 wt %), and polycarbonate (PC, 6 wt %). The analytical pyrolysis of the PPE coverall suit (PP) yielded mainly alkenes containing 2,4-dimethyl-1-heptene as the major compound with 17 wt % yield at 600 °C. The pyrolysates from face shield (PET) were rich in benzoic acid (5.8 wt %) and acetophenone (4.8 wt %), while those from safety goggles (PC) were rich in phenol (17.6 wt %) and p-cresol (12.4 wt %) at 600 °C. HZSM-5 and HY zeolites were used for the catalytic upgradation of pyrolysates especially from PP, PET and PC. The temperature and feed-to-catalyst ratio were optimized by performing catalytic fast pyrolysis experiments at 500 °C, 600 °C and 700 °C with different feed-to-catalyst ratios 1:2, 1:4, and 1:6 (w/w). The yield of aromatic hydrocarbons, viz., BTEX (benzene, toluene, ethylbenzene, xylenes) and naphthalene, was maximum (∼25.7 wt %) from PP coverall when HY catalyst was used at 600 °C and 1:6 (w/w) loading. In the case of PET face shield, the total yield of BTEX, naphthalene and biphenyl was maximum (27.9 wt %) at 600 °C and 1:4 (w/w) of HZSM-5, while in the case of PC goggles, it was maximum (18.6 wt %) at 700 °C and 1:4 (w/w) of HY. This study shows that the entire PPE kit can be valorized via catalytic fast pyrolysis to generate petrochemical products and platform molecules like monoaromatic hydrocarbons at high selectivities.
Collapse
Affiliation(s)
- Nikhilkumar Panchal
- Department of Chemical Engineering and National Centre for Combustion Research and Development, Indian Institute of Technology Madras, Chennai 600036, India
| | - R Vinu
- Department of Chemical Engineering and National Centre for Combustion Research and Development, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
13
|
Turning waste into valuables: In situ deposition of polypyrrole on the obsolete mask for Cr(VI) removal and desalination. Sep Purif Technol 2023; 306:122643. [PMID: 36406342 PMCID: PMC9661547 DOI: 10.1016/j.seppur.2022.122643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
The global mask consumption has been exacerbated because of the coronavirus disease 2019 (COVID-19) pandemic. Simultaneously, the traditional mask disposal methods (incineration and landfill) have caused serious environmental pollution and waste of resources. Herein, a simple and green mass-production method has been proposed to recycle carbon protective mask (CPM) into the carbon protective mask/polydopamine/polypyrrole (CPM/PDA/PPy) composite by in situ polymerization of PPy. The CPM/PDA/PPy composite was used for the removal of Cr(VI) and salt ions to produce clean water. The synergistic effect of PPy and the CPM improved the removal capability of Cr(VI). The CPM/PDA/PPy composite provided high adsorption capacity (358.68 mg g-1) and economic value (811.42 mg $-1). Consequently, the CPM/PDA/PPy (cathode) was combined with MnO2 (anode) for desalination in CDI cells, demonstrated excellent desalination capacity (26.65 mg g-1) and ultrafast salt adsorption rate (6.96 mg g-1 min-1), which was higher than conventional CDI cells. Our work proposes a new low-carbon strategy to recycle discarded masks and demonstrates their utilization in Cr(VI) removal and seawater desalination.
Collapse
|
14
|
Chaturvedi K, Singhwane A, Dhangar M, Mili M, Gorhae N, Naik A, Prashant N, Srivastava AK, Verma S. Bamboo for producing charcoal and biochar for versatile applications. BIOMASS CONVERSION AND BIOREFINERY 2023; 14:1-27. [PMID: 36817514 PMCID: PMC9924895 DOI: 10.1007/s13399-022-03715-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 05/29/2023]
Abstract
Bamboo, the fastest-growing plant, has several unique characteristics that make it appropriate for diverse applications. It is low-cost, high-tensile, lightweight, flexible, durable, and capable of proliferating even in ineffectual areas (e.g., incline). This review discusses the unique properties of bamboo for making charcoal and biochar for diverse applications. To produce bamboo charcoal and biochar, this study reports on the pyrolysis process for the thermal degradation of organic materials in an oxygen-depleted atmosphere under a specific temperature. This is an alternative method for turning waste biomass into products with additional value, such as biochar. Due to various advantages, bamboo charcoal is preferred over regular charcoal as it has four times the absorption rate and ten times more surface area reported. According to the reports, the charcoal yield ranges from 24.60 to 74.27%. Bamboo chopsticks were the most useful source for producing charcoal, with a high yield of 74.27% at 300 °C in nitrogen, but the thorny bamboo species have a tremendous amount of minimal charcoal, i.e., 24.60%. The reported biochar from bamboo yield ranges from 32 to 80%. The most extensive biochar production is produced by the bamboo D. giganteus, which yields 80% biochar at 300 °C. Dry bamboo stalks at 400 °C produced 32% biochar. One of the sections highlights biochar as a sustainable solution for plastic trash management produced during the COVID-19 pandemic. Another section is dedicated to the knowledge enhancement about the broad application spectrum of the charcoal and biochar. The last section highlights the conclusions, future perspectives, and recommendations on the charcoal and biochar derived from bamboo. Graphical Abstract
Collapse
Affiliation(s)
- Kamna Chaturvedi
- Council of Scientific and Industrial Research – Advanced Materials and Processes Research Institute (AMPRI), Bhopal, MP 462026 India
- Academy of Scientific and Innovative Research - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| | - Anju Singhwane
- Council of Scientific and Industrial Research – Advanced Materials and Processes Research Institute (AMPRI), Bhopal, MP 462026 India
| | - Manish Dhangar
- Council of Scientific and Industrial Research – Advanced Materials and Processes Research Institute (AMPRI), Bhopal, MP 462026 India
| | - Medha Mili
- Council of Scientific and Industrial Research – Advanced Materials and Processes Research Institute (AMPRI), Bhopal, MP 462026 India
- Academy of Scientific and Innovative Research - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| | - Nikhil Gorhae
- Council of Scientific and Industrial Research – Advanced Materials and Processes Research Institute (AMPRI), Bhopal, MP 462026 India
- Academy of Scientific and Innovative Research - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| | - Ajay Naik
- Council of Scientific and Industrial Research – Advanced Materials and Processes Research Institute (AMPRI), Bhopal, MP 462026 India
- Academy of Scientific and Innovative Research - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| | - N. Prashant
- Council of Scientific and Industrial Research – Advanced Materials and Processes Research Institute (AMPRI), Bhopal, MP 462026 India
| | - A. K. Srivastava
- Council of Scientific and Industrial Research – Advanced Materials and Processes Research Institute (AMPRI), Bhopal, MP 462026 India
- Academy of Scientific and Innovative Research - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| | - Sarika Verma
- Council of Scientific and Industrial Research – Advanced Materials and Processes Research Institute (AMPRI), Bhopal, MP 462026 India
- Academy of Scientific and Innovative Research - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| |
Collapse
|
15
|
Vicente D, Proença DN, Morais PV. The Role of Bacterial Polyhydroalkanoate (PHA) in a Sustainable Future: A Review on the Biological Diversity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2959. [PMID: 36833658 PMCID: PMC9957297 DOI: 10.3390/ijerph20042959] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Environmental challenges related to the mismanagement of plastic waste became even more evident during the COVID-19 pandemic. The need for new solutions regarding the use of plastics came to the forefront again. Polyhydroxyalkanoates (PHA) have demonstrated their ability to replace conventional plastics, especially in packaging. Its biodegradability and biocompatibility makes this material a sustainable solution. The cost of PHA production and some weak physical properties compared to synthetic polymers remain as the main barriers to its implementation in the industry. The scientific community has been trying to solve these disadvantages associated with PHA. This review seeks to frame the role of PHA and bioplastics as substitutes for conventional plastics for a more sustainable future. It is focused on the bacterial production of PHA, highlighting the current limitations of the production process and, consequently, its implementation in the industry, as well as reviewing the alternatives to turn the production of bioplastics into a sustainable and circular economy.
Collapse
Affiliation(s)
| | - Diogo Neves Proença
- Department of Life Sciences, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, 3000-456 Coimbra, Portugal
| | | |
Collapse
|
16
|
Rai PK, Sonne C, Song H, Kim KH. Plastic wastes in the time of COVID-19: Their environmental hazards and implications for sustainable energy resilience and circular bio-economies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159880. [PMID: 36328266 PMCID: PMC9618453 DOI: 10.1016/j.scitotenv.2022.159880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 06/06/2023]
Abstract
The global scope of pollution from plastic waste is a well-known phenomenon associated with trade, mass consumption, and disposal of plastic products (e.g., personal protective equipment (PPE), viral test kits, and vacuum-packaged food). Recently, the scale of the problem has been exacerbated by increases in indoor livelihood activities during lockdowns imposed in response to the coronavirus disease 2019 (COVID-19) pandemic. The present study describes the effects of increased plastic waste on environmental footprint and human health. Further, the technological/regulatory options and life cycle assessment (LCA) approach for sustainable plastic waste management are critically dealt in terms of their implications on energy resilience and circular economy. The abrupt increase in health-care waste during pandemic has been worsening environmental quality to undermine the sustainability in general. In addition, weathered plastic particles from PPE along with microplastics (MPs) and nanoplastics (NPs) can all adsorb chemical and microbial contaminants to pose a risk to ecosystems, biota, occupational safety, and human health. PPE-derived plastic pollution during the pandemic also jeopardizes sustainable development goals, energy resilience, and climate control measures. However, it is revealed that the pandemic can be regarded as an opportunity for explicit LCA to better address the problems associated with environmental footprints of plastic waste and to focus on sustainable management technologies such as circular bio-economies, biorefineries, and thermal gasification. Future researches in the energy-efficient clean technologies and circular bio-economies (or biorefineries) in concert with a "nexus" framework are expected to help reduce plastic waste into desirable directions.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Phyto-Technologies and Plant Invasion Lab, Department of Environmental Science, School of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl, Mizoram, India
| | - C Sonne
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - H Song
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
17
|
Montero-Calderón C, Tacuri R, Solís H, De-La-Rosa A, Gordillo G, Araujo-Granda P. Masks thermal degradation as an alternative of waste valorization on the COVID-19 pandemic: A kinetic study. Heliyon 2023; 9:e13518. [PMID: 36785832 PMCID: PMC9907787 DOI: 10.1016/j.heliyon.2023.e13518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
The COVID-19 pandemic generated a new dynamic around waste management. Personal protective equipment such as masks, gloves, and face shields were essential to prevent the spread of the disease. However, despite the increase in waste, no technical alternatives were foreseen for the recovery of these wastes, which are made up of materials that can be valued for energy recovery. It is essential to design processes such as waste to energy to promote the circular economy. Therefore, techniques such as pyrolysis and thermal oxidative decomposition of waste materials need to be studied and scaled up, for which kinetic models and thermodynamic parameters are required to allow the design of this reaction equipment. This work develops kinetic models of the thermal degradation process by pyrolysis as an alternative for energy recovery of used masks generated by the COVID-19 pandemic. The wasted masks were isolated for 72 h for virus inactivation and characterized by FTIR-ATR spectroscopy, elemental analysis, and determinate the higher calorific value (HCV). The composition of the wasted masks included polypropylene, polyethylene terephthalate, nylon, and spandex, with higher calorific values than traditional fuels. For this reason, they are susceptible to value as an energetic material. Thermal degradation was performed by thermogravimetric analysis at different heating rates in N2 atmosphere. The gases produced were characterized by gas chromatography and mass spectrometry. The kinetic model was based on the mass loss of the masks on the thermal degradation, then calculated activation energies, reaction orders, pre-exponential factors, and thermodynamic parameters. Kinetics models such as Coats and Redfern, Horowitz and Metzger, Kissinger-Akahira-Sunose were studied to find the best-fit models between the experimental and calculated data. The kinetic and thermodynamic parameters of the thermal degradation processes demonstrated the feasibility and high potential of recovery of these residues with conversions higher than 89.26% and obtaining long-chain branched hydrocarbons, cyclic hydrocarbons, and CO2 as products.
Collapse
|
18
|
Mohamadi S, Madadi R, Rakib MRJ, De-la-Torre GE, Idris AM. Abundance and characterization of personal protective equipment (PPE) polluting Kish Island, Persian Gulf. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158678. [PMID: 36099950 PMCID: PMC9464308 DOI: 10.1016/j.scitotenv.2022.158678] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 05/13/2023]
Abstract
Plastic pollution is one of the major environmental threats the world is facing nowadays, which was exacerbated during the COVID-19 pandemic. In particular, multiple reports of single-use plastics driven by the pandemic, namely personal protective equipment (PPE) (e.g., face masks and gloves), contaminating coastal areas have been published. However, most studies focused solely on counting and visually characterizing this type of litter. In the present study, we complement conventional reports by characterizing this type of litter through chemical-analytical techniques. Standardized sampling procedures were carried out in Kish Island, The Persian Gulf, resulting in an average density of 2.34 × 10-4 PPE/m2. Fourier transformed infrared spectroscopy confirmed the polymeric composition of weathered face masks and showed the occurrence of additional absorption bands associated with the photooxidation of the polymer backbone. On the other hand, the three layers of typical surgical face masks showed different non-woven structures, as well as signs of physical degradation (ruptures, cracks, rough surfaces), possibly leading to the release of microplastics. Furthermore, elemental mapping through energy-dispersive X-ray spectroscopy showed that the middle layer of the masks allocated more elements of external origin (e.g., Na, Cl, Ca, Mg) than the outer and inner layers. This is likely to the overall higher surface area of the middle layer. Furthermore, our evidence indicates that improperly disposed PPE is already having an impact on a number of organisms in the study area.
Collapse
Affiliation(s)
- Sedigheh Mohamadi
- Environmental Research Laboratory, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran.
| | - Reyhane Madadi
- Environmental Research Laboratory, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh.
| | - Gabriel E De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
19
|
Iwuozor KO, Emenike EC, Stephen AA, Kevin OS, Adeleke J, Adeniyi AG. Thermochemical recycling of waste disposable facemasks in a non-electrically powered system. LOW-CARBON MATERIALS AND GREEN CONSTRUCTION 2023; 1:12. [PMCID: PMC10069943 DOI: 10.1007/s44242-023-00010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
The COVID-19 pandemic encouraged the use of plastic-based personal protective equipment (PPE), which aided greatly in its management. However, the increased production and usage of these PPEs put a strain on the environment, especially in developing and underdeveloped countries. This has led various researchers to study low-cost and effective technologies for the recycling of these materials. One such material is disposable facemasks. However, previous studies have only been able to engage electrically powered reactors for their thermochemical conversion, which is a challenge as these reactors cannot be used in regions with an insufficient supply of electricity. In this study, the authors utilized a biomass-powered reactor for the conversion of waste disposable facemasks and almond leaves into hybrid biochar. The reactor, which is relatively cheap, simple to use, environmentally friendly, and modified for biochar production, is biomass-powered. The co-carbonization process, which lasted 100 min, produced a 46% biochar yield, which is higher than previously obtained biochar yields by other researchers. The biochar thus obtained was characterized to determine its properties. FTIR analysis showed that the biochar contained functional groups such as alkenes, alkynes, hydroxyls, amines, and carbonyls. The EDX analysis revealed that the biochar was primarily made of carbon, tellurium, oxygen, and calcium in the ratios of 57%, 19%, 9%, and 7%, respectively. The inclusion of the facemask decreased the surface area and porosity of the biochar material, as evidenced by its surface area and pore characteristics.
Collapse
Affiliation(s)
- Kingsley O. Iwuozor
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Ebuka Chizitere Emenike
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Agbana Abiodun Stephen
- Department of Chemical Engineering, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
| | | | - Joy Adeleke
- Department of Chemical Engineering, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
| | - Adewale George Adeniyi
- Department of Chemical Engineering, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
- Chemical Engineering Department, Landmark University, Omu-Aran, Nigeria
| |
Collapse
|
20
|
Occasi G, De Angelis D, Scarsella M, Tammaro M, Tuccinardi L, Tuffi R. Recovery material from a new designed surgical face mask: A complementary approach based on mechanical and thermo-chemical recycling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116341. [PMID: 36191501 DOI: 10.1016/j.jenvman.2022.116341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
The usage of disposable face mask to control the spread of COVID-19 disease has led to the alarming generation of a huge amount of plastic waste in a short span of time. On other hand, face masks are made of high-quality thermoplastic polymers that could be recovered and converted into valuable products. The aim of this study is to investigate a complementary approach for the recycling of face mask in lab-scale plants: the mechanical recycling of the filter in polypropylene (PP) and the chemical recycling of the whole face mask. For this purpose, a new designed surgical face mask was chemically and physically characterized. The results shows that the face mask was composed of 92.3 wt% high grade PP (filter), very similar to virgin PP but with a high melt volume index (MVI, 385 cm3/10 min) due to its non-woven manufacturing. The PP from face mask was mixed with recycled virgin PP in order to obtain a MVI suitable for the extrusion process and recycled as filament for 3D printing. This filament was used to print a specimen with a very similar visual quality of that printed with a commercial PP filament. Simultaneously, the whole face mask underwent a pyrolysis process to produce new feedstocks or fuels. Low-cost catalysts derived from coal fly ash (CFA) were employed to enhance the production of light hydrocarbons. In particular, the synthetized acid X zeolite (HX/CFA) improved the yield of light fractions up to 91 wt% (79 wt% for thermal pyrolysis) and the quality of the light oil with the 85% of C6-C10 (55% for thermal pyrolysis). Furthermore, HX/CFA decreased the degradation temperature of PP to 384 °C versus 458 °C of thermal cracking.
Collapse
Affiliation(s)
- Giulio Occasi
- Department for Sustainability, ENEA Casaccia Research Center, Rome, Italy
| | - Doina De Angelis
- Department for Sustainability, ENEA Casaccia Research Center, Rome, Italy
| | | | - Marco Tammaro
- Department for Sustainability, ENEA Portici Research Center, Napoli, Italy
| | - Letizia Tuccinardi
- Department for Sustainability, ENEA Casaccia Research Center, Rome, Italy.
| | - Riccardo Tuffi
- Department for Sustainability, ENEA Casaccia Research Center, Rome, Italy.
| |
Collapse
|
21
|
Pourebrahimi S. Upcycling face mask wastes generated during COVID-19 into value-added engineering materials: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158396. [PMID: 36055514 PMCID: PMC9424124 DOI: 10.1016/j.scitotenv.2022.158396] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/07/2022] [Accepted: 08/25/2022] [Indexed: 06/06/2023]
Abstract
Billions of disposable face masks (i.e., single-use masks) are used and discarded worldwide monthly due to the COVID-19 outbreak. The immethodical disposal of these polymer-based wastes containing non-biodegradable constituents (e.g., polypropylene) has provoked marked and severe damage to the ecosystem. Meanwhile, their ever-growing usage significantly strains the present-day waste management measures such as landfilling and incineration, resulting in large quantities of used face-covering masks landing in the environment as importunate contaminants. Hence, alternative waste management strategies are crucially demanded to decrease the negative impacts of face mask contamination. In this venue, developing high-yield, effective, and green routes toward recycling or upcycling face mask wastes (FMWs) into value-added materials is of great importance. While existing recycling processes assist the traditional waste management, they typically end up in materials with downgraded physicochemical, structural, mechanical, and thermal characteristics with reduced values. Therefore, pursuing potential economic upcycling processes would be more beneficial than waste disposal and/or recycling processes. This paper reviews recent advances in the FMWs upcycling methods. In particular, we focus on producing value-added materials via various waste conversion methods, including carbonization (i.e., extreme pyrolysis), pyrolysis (i.e., rapid carbonization), catalytic conversion, chemical treatment, and mechanical reprocessing. Generally, the upcycling methods are promising, firming the vital role of managing FMWs' fate and shedding light on the road of state-of-the-art materials design and synthesis.
Collapse
Affiliation(s)
- Sina Pourebrahimi
- Department of Chemical and Materials Engineering, Concordia University, 7141 Sherbrooke Street West, Montréal, Quebec H4B 1R6, Canada.
| |
Collapse
|
22
|
Kheirabadi S, Sheikhi A. Recent advances and challenges in recycling and reusing biomedical materials. CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY 2022; 38:100695. [PMID: 36277846 PMCID: PMC9568467 DOI: 10.1016/j.cogsc.2022.100695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
Medical waste has increased in the past 3 years as a result of the coronavirus disease 2019 (COVID-19) pandemic. This condition is expected to exacerbate due to the growing healthcare markets and aging population, posing health threats to the public via environmental footprints. To alleviate these impacts, there is an urgent need for medical waste management. This article highlights the drawbacks of current disposal methods and the potential of medical waste reuse and recycling, emphasizing the processes, materials, and chemistry involved in each practice. Further discussion is provided on the chemical and mechanical recycling of plastics as the dominating material in biomedical applications, and possible strategies and challenges in recycling and reusing biomedical materials are explored in this review.
Collapse
Affiliation(s)
- Sina Kheirabadi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Amir Sheikhi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
23
|
Tan P, Jiang Y, Gong D, Shi Y, Shi X, Wu P, Tan L. Synthetic polyurethane nanofibrous membrane with sustained rechargeability for integrated air cleaning. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
24
|
Igalavithana AD, Yuan X, Attanayake CP, Wang S, You S, Tsang DCW, Nzihou A, Ok YS. Sustainable management of plastic wastes in COVID-19 pandemic: The biochar solution. ENVIRONMENTAL RESEARCH 2022; 212:113495. [PMID: 35660402 PMCID: PMC9155208 DOI: 10.1016/j.envres.2022.113495] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/08/2022] [Accepted: 05/14/2022] [Indexed: 05/21/2023]
Abstract
To prevent the COVID-19 transmission, personal protective equipment (PPE) and packaging materials have been extensively used but often managed inappropriately, generating huge amount of plastic waste. In this review, we comprehensively discussed the plastic products utilized and the types and amounts of plastic waste generated since the outbreak of COVID-19, and reviewed the potential treatments for these plastic wastes. Upcycling of plastic waste into biochar was addressed from the perspectives of both environmental protection and practical applications, which can be verified as promising materials for environmental protections and energy storages. Moreover, novel upcycling of plastic waste into biochar is beneficial to mitigate the ubiquitous plastic pollution, avoiding harmful impacts on human and ecosystem through direct and indirect micro-/nano-plastic transmission routes, and achieving the sustainable plastic waste management for value-added products, simultaneously. This suggests that the plastic waste could be treated as a valuable resource in an advanced and green manner.
Collapse
Affiliation(s)
- Avanthi D Igalavithana
- Department of Soil Science, Faculty of Agriculture, University of Peradeniya, 20400, Sri Lanka; Korea Biochar Research Centre, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea
| | - Xiangzhou Yuan
- Korea Biochar Research Centre, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea; R&D Centre, Sun Brand Industrial Inc., Jeollanam-do, 57248, South Korea
| | - Chammi P Attanayake
- Department of Soil Science, Faculty of Agriculture, University of Peradeniya, 20400, Sri Lanka
| | - Shujun Wang
- Korea Biochar Research Centre, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea; College of Water Conservancy, Shenyang Agricultural University, Shenyang, China
| | - Siming You
- Division of Systems, Power and Energy, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Ange Nzihou
- Université de Toulouse, Mines Albi, UMR CNRS 5302, Centre RAPSODEE, Campus Jarlard, F-81013, Albi Cedex 09, France; Princeton University, School of Engineering and Applied Science, Princeton, NJ 08544, USA; Princeton University, Andlinger Center for Energy and the Environment, Princeton, NJ 08544, USA
| | - Yong Sik Ok
- Korea Biochar Research Centre, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
25
|
Egbosiuba TC. Biochar and bio-oil fuel properties from nickel nanoparticles assisted pyrolysis of cassava peel. Heliyon 2022; 8:e10114. [PMID: 36042740 PMCID: PMC9420488 DOI: 10.1016/j.heliyon.2022.e10114] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/21/2022] [Accepted: 07/25/2022] [Indexed: 12/21/2022] Open
Abstract
Direct biomass usage as a renewable fuel source and substitute for fossil fuels is discouraging due to high moisture, low energy density and low bulk density. Herein, thermogravimetric analysis (TGA) was conducted at various heating rates to determine peak decomposition temperatures for the dried cassava peels (DCP). The influence of pyrolysis temperature (300, 400, 500 and 600 °C) and heating rates (10, 20 and 30 °C/min) on the nickel nanoparticles catalyzed decomposition of DCP to produce biochar, bio-oil and biogas was investigated and characterized. The results revealed higher biochar (CBC) yield of 68.59 wt%, 62.55 wt% and 56.92 wt% at lower pyrolysis temperature of 300 °C for the different heating rates of 10, 20 and 30 °C/min. The higher carbon content of 52.39, 53.30 and 55.44 wt% was obtained at elevated temperature of 600 °C and heating rates of 10, 20 and 30 °C/min, respectively. At the pyrolysis temperature of 600 °C and heating rates of 10, 20 and 30 °C/min, the optimum yield of bio-oil (24.35, 17.69 and 18.16 wt%) and biogas (31.35, 42.03 and 46.12 wt%) were attained. A high heating value (HHV) of 28.70 MJ/kg was obtained for the biochar at 600 °C. Through the TGA, FTIR and HRSEM results, the thermal stability, hydrophobicity and structural changes of DCP and CBC samples were established. Similarly, the thermal stability of CBC samples increased with increasing pyrolysis temperature. Biochar with optimum fuel properties was produced at 600 °C due to the highest carbon content and high heating value (HHV). Improved kinematic viscosity (3.87 mm2/s) and density (0.850 g/cm3) were reported at the temperature of 300 °C and heating rate of 30 °C/min, while a higher pH (4.96), HHV (42.68 MJ/kg) and flash point (53.85 min) were presented by the bio-oil at the temperature of 600 °C and heating rate of 30 °C/min. Hence, DCP produced value-added biochar and bio-oil as renewable energy. Nickel nanoparticles successfully catalyzed the pyrolysis of CP biomass. Temperature and heating rates affected the yield of pyrolysis products. Fixed carbon content increased rapidly with temperature increase. The HHV of both biochar and bio-oil was higher than the DCP biomass. The fuel properties of biochar and bio-oil improved rapidly through NiNPs catalyzed pyrolysis.
Collapse
Affiliation(s)
- Titus Chinedu Egbosiuba
- Chemical Engineering Department, Chukwuemeka Odumegwu Ojukwu University, Uli Campus, Anambra State, Nigeria
| |
Collapse
|
26
|
Hu Q, Ok YS, Wang CH. Sustainable and Highly Efficient Recycling of Plastic Waste into Syngas via a Chemical Looping Scheme. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8953-8963. [PMID: 35648174 DOI: 10.1021/acs.est.2c01645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Converting plastic waste into valuable products (syngas) is a promising approach to achieve sustainable cities and communities. Here, we propose for the first time to convert plastic waste into syngas via the Fe2AlOx-based chemical looping technology in a two-zone reactor. The Fe2AlOx-based redox cycle was achieved with the pyrolysis of plastic waste in the upper zone, followed by the decomposition and thermal cracking of hydrocarbon vapors, and the oxidation and water splitting in the lower zone (850 °C) enabled a higher carbon conversion (81.03%) and syngas concentration (92.84%) when compared with the mixed feeding process. The iron species could provide lattice oxygen and meanwhile act as the catalyst for the deep decomposition of hydrocarbons into CO and the accumulation of deposited carbon in the reduction step. Meanwhile, the introduced water would be split by the reduced iron and deposited carbon to further produce H2 and CO in the following oxidation step. A high hydrogen yield of 85.82 mmol/g HDPE with a molar ratio of H2/CO of 2.03 was achieved from the deconstruction of plastic waste, which lasted for five cycles. This proof of concept demonstrated a sustainable and highly efficient pathway for the recycling of plastic waste into valuable chemicals.
Collapse
Affiliation(s)
- Qiang Hu
- NUS Environmental Research Institute, National University of Singapore, Singapore 138602, Singapore
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yong Sik Ok
- Korea Biochar Research Centre, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Chi-Hwa Wang
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
27
|
Luo Z, Zhu X, Ma Y, Gong K, Zhu X. Alternating magnetic field initiated catalytic deconstruction of medical waste to produce hydrogen-rich gases and graphite. CELL REPORTS. PHYSICAL SCIENCE 2022; 3:100934. [PMID: 35698720 PMCID: PMC9175563 DOI: 10.1016/j.xcrp.2022.100934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/25/2022] [Accepted: 05/18/2022] [Indexed: 05/12/2023]
Abstract
During the coronavirus 2019 (COVID-19) pandemic, there has been a dramatic increase in the use of medical products and personal protective equipment, such as masks, gowns, and disposable syringes, to treat patients or administer vaccines. However, this may lead to generation of large quantities of biohazardous medical waste. Here, an alternating-magnetic-field-initiated catalytic strategy is proposed to convert disposable syringes into hydrogen-rich gases and high-value graphite. Specifically, in addition to selecting heavy fraction of bio-oil as initiator, disposable syringe needles are used as radio frequency electromagnetic wave receptors to initiate the deconstruction of disposable syringe plastic. The highest H2 yield of 39.9 mmol g-1 is achieved, and 30.1 mmol g-1 is maintained after 10 cycles. Moreover, a high carbon yield of 286 mg g-1 can be obtained. Beyond disposable syringes, this strategy could help to solve the emerging issue for other types of medical waste (e.g., mask and protective clothing) disposal.
Collapse
Affiliation(s)
- Zejun Luo
- School of Engineering Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China
| | - Xiefei Zhu
- School of Engineering Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China
| | - YaKai Ma
- School of Engineering Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China
| | - Ke Gong
- Instruments Center for Physical Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China
| | - Xifeng Zhu
- School of Engineering Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China
| |
Collapse
|
28
|
Inkoua S, Li C, Kontchouo FMB, Sun K, Zhang S, Gholizadeh M, Wang Y, Hu X. Activation of waste paper: Influence of varied chemical agents on product properties. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 146:94-105. [PMID: 35588650 DOI: 10.1016/j.wasman.2022.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Waste paper (WP) is rich in cellulose, which can be activated to produce porous carbon, bio-oil, and combustible gases. During chemical activation of WP, the use of varied chemical agents not only generates activated carbon of distinct pore structure but also bio-oil/gases of different property. In this study, the activation of WP with varied chemical agents was conducted. The distinct characteristics of activated carbon and also bio-oil/gases were correlated with the different nature of the used chemical agents. The results indicated that H3PO4 and ZnCl2 catalyzed polymerization reactions for producing more bio-oil while less gases owing to their Brønsted and Lewis acidic sites. K2C2O4 showed high activity for cracking/gasification reactions, forming bio-oil with higher abundance of organics with smaller π-conjugated structures. In addition, ZnCl2 could create a very coarse porous structure with abundant macropores via destroying fiber structure in WP and promoting the growth of graphitic crystals. In comparison, K2C2O4 hindered the aromatization and facilitated the formation of amorphous activated carbon. K2C2O4 and ZnCl2 were much more effective than H3PO4 for creating micropores and mesopores from WP, the derived activated carbon showed superior performances as the electrode of supercapacitor and adsorbent for adsorption of oxytetracycline from aqueous solution. In addition, K2C2O4 as activating agent showed lower environmental impact than ZnCl2 in terms of energy consumption, environmental pollution and the greenhouse effect.
Collapse
Affiliation(s)
- Stelgen Inkoua
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Chao Li
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | | | - Kai Sun
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Shu Zhang
- Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Mortaza Gholizadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Yi Wang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
29
|
Abstract
Polymers and plastics are crucial materials in many sectors of our economy, due to their numerous advantages. They also have some disadvantages, among the most important are problems with the recycling and disposal of used plastics. The recovery of waste plastics is increasing every year, but over 27% of plastics are landfilled. The rest is recycled, where, unfortunately, incineration is still the most common management method. From an economic perspective, waste management methods that lead to added-value products are most preferred—as in the case of material and chemical recycling. Since chemical recycling can be used for difficult wastes (poorly selected, contaminated), it seems to be the most effective way of managing these materials. Moreover, as a result this of kind of recycling, it is possible to obtain commercially valuable products, such as fractions for fuel composition and monomers for the reproduction of polymers. This review focuses on various liquefaction technologies as a prospective recycling method for three types of plastic waste: PE, PP and PS.
Collapse
|
30
|
Ardila-Suárez C, Pablo Villegas J, Lins de Barros Neto E, Ghislain T, Lavoie JM. Waste surgical masks to fuels via thermochemical co-processing with waste motor oil and biomass. BIORESOURCE TECHNOLOGY 2022; 348:126798. [PMID: 35122979 DOI: 10.1016/j.biortech.2022.126798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
In this work, the co-processing of waste surgical masks, waste motor oil, and biomass was investigated to reduce the environmental impacts of the increasing medical-derived plastic pollution as well as to elucidate its effect on the production of chemicals . The results showed high yields towards an oily product with an interesting hydrocarbon content in the diesel range. Furthermore, although the initial waste motor oil had a high sulfur content, the oily products showed a low sulfur content, that was logically distributed in the solid and gas phases. In addition, all oily products presented HHVs higher than 44 MJ/Kg, with cetane indices, densities, and viscosities lower than those of petroleum-derived diesel. This work could impact on the management of waste surgical masks and the joint recovery of everyday waste towards high value-added products.
Collapse
Affiliation(s)
- Carolina Ardila-Suárez
- Biomass Technology Laboratory, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Canada
| | - Juan Pablo Villegas
- Biomass Technology Laboratory, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Canada
| | - Eduardo Lins de Barros Neto
- Biomass Technology Laboratory, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Canada
| | - Thierry Ghislain
- Biomass Technology Laboratory, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Canada
| | - Jean-Michel Lavoie
- Biomass Technology Laboratory, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Canada.
| |
Collapse
|