1
|
Liu J, Xu G, Zhao S, He J. Microbiomes of coastal sediments and plastispheres shaped by microplastics and decabrominated diphenyl ether. WATER RESEARCH 2025; 280:123417. [PMID: 40112457 DOI: 10.1016/j.watres.2025.123417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/25/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
Deciphering the impact of microplastic and persistent organic pollutants (POPs) co-contamination on coastal sediment is critical for developing effective remediation strategies for polluted sites yet remains underexplored. This study investigated the interactions between microplastics, decabrominated diphenyl ether (deca-BDE), and their co-contamination effects on the evolvement of coastal sediment and plastisphere microbiomes for over 2 years. Results showed that deca-BDE was naturally debrominated in sediments via diverse pathways, with microplastic polystyrene stimulating the debromination rate by up to 78.7 ± 10.0 %. The putative OHRB Dehalobacter and uncultured Dehalococcoidia populations were identified responsible for the complete debromination. Co-exposure to microplastics and deca-BDE induced significant shifts in community composition, diversity, and function in the sediment microbiomes, while plastisphere microbiomes exhibited distinct compositions and functional profiles, specializing in pathogenicity, pollutant degradation, and biogeochemical cycling. The type of plastics and the presence of deca-BDE influenced the plastisphere composition. Changes in sediment properties and debromination activity profoundly shaped microbial communities, with deterministic assembly dominating the plastisphere. Co-contamination increased the complexity, modularity, and stability of the plastisphere networks, creating unique niches for OHRB. These findings highlight the intricate interplay between microplastics, deca-BDE, and microbiomes, with significant implications for ecosystem health and remediation efforts.
Collapse
Affiliation(s)
- Jinting Liu
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore.
| |
Collapse
|
2
|
Uddin M, Venkatesan SK, Pal SK, Vinu R, Sekar K, Kandasamy R. Accelerating biodegradation efficiency of low-density polyethylene and its hazardous dissolved organic matter using unexplored polyolefin-respiring bacteria: New insights on degradation characterization, biomolecule influence and biotransformation pathways. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138144. [PMID: 40187246 DOI: 10.1016/j.jhazmat.2025.138144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/14/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The COVID-19 outbreak has significantly increased low-density polyethylene (LDPE) waste in landfills, posing new environmental risks due to the release of hazardous dissolved organic matter (DOM). Current LDPE degradation technologies are inadequate and are restricted by a limited understanding of the biotransformation pathway. This study aims to accelerate the biodegradability of LDPE and DOM using Morganella morganii PQ533186 isolated from LDPE-laden municipal landfill. The in-vitro LDPE biodegradation demonstrated a 42.18 % weight loss within 120 days. The accelerated biodegradability of LDPE by M. morganii is attributed to the concurrent production of biocatalysts and bio-amphiphiles, coupled with effective bacterial colonization on LDPE surfaces. The FT-IR analysis reveals oxidation with enhancement in O-H (11.29-folds), CO (17.65-folds), CC (6.70-folds), C-O (8.51-folds), and C-O-C (6.37-folds) indices. The DSC and XRD analyses divulge reduced crystallinity (33.57 %) and increased interplanar d-spacing of (110) and (200) reflections from 4.09 and 3.71 Å to 4.17 and 3.80 Å, respectively. The Raman, XPS, TG-DTG, and Contact-angle measurements demonstrate reduced density, carbon content, thermal stability, and hydrophobicity. The degradation was confirmed using 1H NMR, GC-MS, and Py/GC-MS analyses. Furthermore, DOM released from LDPE biodegradation, comprising monomers and additives was biodegraded with an 84.61 % COD reduction within 6 days. The mechanistic investigation elucidated a two-stage oxidoreductase and hydrolase-mediated LDPE biotransformation pathway involving biocatalytic oxidation and DOM release. Subsequently, the released DOM undergoes terminal biocatalytic oxidation, yielding simpler non-toxic end products. The present study is the first report to present novel insights into the degradation characterization, pivotal contribution of biomolecules, and in-depth biotransformation pathways which are responsible for the accelerated degradation of both LDPE and hazardous DOM.
Collapse
Affiliation(s)
- Maseed Uddin
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Swathi Krishnan Venkatesan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Subhan Kumar Pal
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ravikrishnan Vinu
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India; Indo German Center for Sustainability, Indian Institute of Technology Madras, Chennai 600036, India
| | - Karthikeyan Sekar
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ramani Kandasamy
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
3
|
Malwe A, Longwani U, Sharma V. XenoBug: machine learning-based tool to predict pollutant-degrading enzymes from environmental metagenomes. NAR Genom Bioinform 2025; 7:lqaf037. [PMID: 40314024 PMCID: PMC12044416 DOI: 10.1093/nargab/lqaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 03/09/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025] Open
Abstract
Application of machine learning-based methods to identify novel bacterial enzymes capable of degrading a wide range of xenobiotics offers enormous potential for bioremediation of toxic and carcinogenic recalcitrant xenobiotics such as pesticides, plastics, petroleum, and pharmacological products that adversely impact ecology and health. Using 6814 diverse substrates involved in ∼141 200 biochemical reactions, we have developed 'XenoBug', a machine learning-based tool that predicts bacterial enzymes, enzymatic reaction, the species capable of biodegrading xenobiotics, and the metagenomic source of the predicted enzymes. For training, a hybrid feature set was used that comprises 1603 molecular descriptors and linear and circular fingerprints. It also includes enzyme datasets consisting of ∼3.3 million enzyme sequences derived from an environmental metagenome database and ∼16 million enzymes from ∼38 000 bacterial genomes. For different reaction classes, XenoBug shows very high binary accuracies (>0.75) and F1 scores (>0.62). XenoBug is also validated on a set of diverse classes of xenobiotics such as pesticides, environmental pollutants, pharmacological products, and hydrocarbons known to be degraded by the bacterial enzymes. XenoBug predicted known as well as previously unreported metabolic enzymes for the degradation of molecules in the validation set, thus showing its broad utility to predict the metabolism of any input xenobiotic molecules. XenoBug is available on: https://metabiosys.iiserb.ac.in/xenobug.
Collapse
Affiliation(s)
- Aditya S Malwe
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462066, India
| | - Usha Longwani
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462066, India
| | - Vineet K Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462066, India
| |
Collapse
|
4
|
Cai FM, Jiang S, Daly P, Bakhshi M, Cartwright K, Druzhinina IS. Guidelines toward ecologically-informed bioprospecting for microbial plastic degradation. Biotechnol Adv 2025; 82:108590. [PMID: 40306561 DOI: 10.1016/j.biotechadv.2025.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/24/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Biological degradation of plastics by microbial enzymes offers a sustainable alternative to traditional waste management methods that often pollute the environment. This review explores ecologically-informed bioprospecting for microorganisms possessing enzymes suitable for biological plastic waste treatment. Natural habitats enriched in plastic-like polymers, such as insect-derived polyesters, epicuticular microbial biofilms in the phyllosphere of plants in extreme environments, or aquatic ecosystems, are highlighted as promising reservoirs for bioprospecting. Anthropogenic habitats, including plastic-polluted soils and the plastisphere, have yielded potent enzymes such as PETases and cutinases, which are being exploited in biotechnology. However, bioprospecting in plastispheres and artificial environments frequently leads to the isolation of environmental opportunistic microorganisms, such as Pseudomonas aeruginosa, Aspergillus fumigatus, Parengyodontium album, or species of Fusarium, which are capable of becoming human and/or plant pathogens. These cases necessitate stringent biosecurity measures, including accurate molecular identification, ecological assessment, and containment protocols. Beyond advancing bioprospecting approaches toward a broader scope of relevant habitats, this review underscores the educational value of such screenings, specifically, in understudied natural habitats, emphasizing its potential to uncover novel enzymes and microorganisms and engage the next generation of researchers in interdisciplinary study integrating environmental microbiology, molecular biology, enzymology, polymer chemistry, and bioinformatics. Finally, we offer guidelines for microbial bioprospecting in various laboratory settings, ranging from standard environmental microbiology facilities to high-biosecurity facilities, thereby maximizing the diversity of scientists who may contribute to addressing urgent environmental challenges associated with plastic waste.
Collapse
Affiliation(s)
- Feng M Cai
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen 518107, China.
| | - Siqi Jiang
- Key Lab for Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Paul Daly
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Mounes Bakhshi
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey TW9 3AE, UK
| | - Kai Cartwright
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey TW9 3AE, UK
| | | |
Collapse
|
5
|
Kim HW, Lee J, Kim S, Yun SD, Kim KJ, Seo MJ, Son HF, Lee DJ, Park C, Chi WS, Yeom SJ. Exploring a Novel Metallophosphoesterase for Polycarbonate Degradation via Transcriptome Analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138330. [PMID: 40262317 DOI: 10.1016/j.jhazmat.2025.138330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025]
Abstract
Polycarbonate (PC), a widely used thermoplastic, poses significant environmental challenges due to its persistence and the release of bisphenol A (BPA), a known xenoestrogen. Here, we report the isolation of Bacillus subtilis JNU01 (BsJNU01), capable of utilizing PC as its sole carbon source. Through transcriptomic analysis, we identified metallophosphoesterase from BsJNU01 (BsMPPE), the first reported metallophosphoesterase capable of degrading polycarbonate by catalyzing the hydrolysis of carbonate ester bonds. This enzyme operates under mild aqueous conditions (30 °C, pH 7), releasing 30 μmol of BPA as a monomer and demonstrating effective PC degradation under environmentally friendly conditions. PC biodegradation was confirmed by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), and gas chromatography-mass spectrometry (GC-MS). Furthermore, surface and mechanical analyses revealed significant degradation and structural changes in PC films following BsMPPE treatment, with toughness showing a 40-70 % decrease compared to untreated PC films. This study represents a breakthrough in microbial plastic degradation, establishing a sustainable biocatalytic platform for PC recycling and upcycling technologies.
Collapse
Affiliation(s)
- Hyun-Woo Kim
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea
| | - Jieun Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea
| | - Seongmin Kim
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea
| | - Seung-Do Yun
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea
| | - Ki Jung Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea
| | - Min-Ju Seo
- School of Biological Sciences and Technology, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea; Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hyeoncheol Francis Son
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea; School of Biological Sciences and Technology, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea
| | - Dong-Jun Lee
- Sustainable Materials Research Team, Advanced Vehicle Platform Division, Hyundai Motor Group, Gyeonggi-do 16082, Republic of Korea
| | - Chungoo Park
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea; School of Biological Sciences and Technology, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea; Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; Institute of Systems Biology & Life Science Informatics, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea.
| | - Won Seok Chi
- Department of Polymer Engineering, Graduate School, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea; School of Polymer Science and Engineering, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea.
| | - Soo-Jin Yeom
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea; School of Biological Sciences and Technology, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea; Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; Institute of Systems Biology & Life Science Informatics, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea.
| |
Collapse
|
6
|
Shafi Kuttiyathil M, Ali L, Altarawneh M. Thermochemical Recycling and Degradation Strategies of Halogenated Polymers (F-, Cl-, Br-): A Holistic Review Coupled with Mechanistic Insights. CHEM REC 2025:e202500022. [PMID: 40195574 DOI: 10.1002/tcr.202500022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/18/2025] [Indexed: 04/09/2025]
Abstract
Handling the waste associated with halogenated polymers is a daunting task due to the well-documented emission of halogen-bearing toxicants during the disposal or recycling operation. According to the Stockholm Convention treaty, most of these products are classified as persistent organic pollutants due to their potential health hazards. This review aims to provide a holistic overview of the recent updates for treating halogenated polymeric waste through physical, chemical and biological approaches. In the line of inquiry, critical analysis of the obstacles and prospects associated with each degradation technique on the halogenated polymer has been performed, assessing based on the degradation efficiency, treatment upscaling, pollution control, and feasibility. Though many treatments show promising results, they also entail drawbacks. Thermal treatment exploiting various metal oxides, especially calcium additives, is considered the most executable technique for halogenated polymer valorization coupled with mineralization/metal extraction due to its intuitive operational feasibility and potential scalability. Strategies for combating the soaring halogenated polymeric wastes summarized herein tap into promoting a circular economy approach for their sustainable disposal and recycling.
Collapse
Affiliation(s)
- Mohamed Shafi Kuttiyathil
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain, 15551, United Arab Emirates
| | - Labeeb Ali
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain, 15551, United Arab Emirates
| | - Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain, 15551, United Arab Emirates
| |
Collapse
|
7
|
Jiang S, Wang M, Huang Y, Wen J, Hu P. Selective Degradation of Polyethylene Terephthalate Plastic Waste Using Iron Salt Photocatalysts. CHEMSUSCHEM 2025; 18:e202401920. [PMID: 39505702 DOI: 10.1002/cssc.202401920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/08/2024]
Abstract
Plastic pollution poses a significant challenge to environmental conservation. Efficient recycling of plastic is a key strategy to address this issue. Polyethylene terephthalate (PET), commonly found in plastic bottles, represents a substantial portion of plastic waste. Consequently, the efficient degradation and recycling of PET is crucial for the sustainable development of society. However, the implementation of methods for PET depolymerization and recycling typically necessitates alkaline/acidic pre-treatment and significant energy input for heating. Here, we propose a gentle, and highly efficient photocatalysis approach for selectively degrading PET plastic waste into terephthalic acid (TPA) in high yield (up to 99 %) using cost-effective iron salts. Notably, this method achieved excellent selectivity with high TON and TOF values, applying oxygen or air as environmentally friendly oxidants. In addition, the solvent can be recycled without compromising the TPA yield, and large-scale reactions can be performed smoothly.
Collapse
Affiliation(s)
- Shusheng Jiang
- Institute of Green Chemistry and Molecular Engineering, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Miao Wang
- Institute of Green Chemistry and Molecular Engineering, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yahao Huang
- Institute of Green Chemistry and Molecular Engineering, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jinglan Wen
- Institute of Green Chemistry and Molecular Engineering, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Peng Hu
- Institute of Green Chemistry and Molecular Engineering, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
8
|
Burd BS, Mussagy CU, Bebber C, Sant'Ana Pegorin Brasil G, Dos Santos LS, Guerra NB, Persinoti GF, Jucaud V, Goldbeck R, Herculano RD. Can the insects Galleria mellonella and Tenebrio molitor be the future of plastic biodegradation? THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178879. [PMID: 40022971 DOI: 10.1016/j.scitotenv.2025.178879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/24/2025] [Accepted: 02/15/2025] [Indexed: 03/04/2025]
Abstract
Plastics have been an integral part of human lives, enhancing the functionality and safety of many everyday products, contributing significantly to our overall well-being. However, petroleum-based plastics can take hundreds or even thousands of years to decompose, resulting in an unprecedented plastic waste accumulation in the environment. Widely used conventional plastic disposal methods as landfilling and incineration are also environmentally harmful, frequently leading to soil/water contamination and the release of microplastics. To overcome these limitations, researchers have been investigating novel sustainable alternatives for plastic waste management, such as the use of microorganisms, microbial-based enzymes, and, more recently, some insect larvae, being Galleria mellonella and Tenebrio molitor the most promising ones. In this review, we explore different methods of plastic waste disposal focusing on recent discoveries regarding biological plastic degradation using insects as alternative methods. We also discuss the plastic degradation mechanisms employed by G. mellonella and T. molitor larvae known so far, as salivary enzymes and the pool of microorganisms in their gut. Finally, this review highlights key challenges in plastic biodegradation, such as standardization and experimental comparability, while proposing innovative perspectives like using insects as bioreactors and exploring unexplored research directions.
Collapse
Affiliation(s)
- Betina Sayeg Burd
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 1 Araraquara Jaú Highway, 14800-903 Araraquara, SP, Brazil; Institute of Chemistry, São Paulo State University (UNESP), 55 Prof Francisco Degni Street, 14800-900 Araraquara, SP, Brazil.
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile
| | - Camila Bebber
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 1 Araraquara Jaú Highway, 14800-903 Araraquara, SP, Brazil
| | - Giovana Sant'Ana Pegorin Brasil
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 1 Araraquara Jaú Highway, 14800-903 Araraquara, SP, Brazil; Institute of Chemistry, São Paulo State University (UNESP), 55 Prof Francisco Degni Street, 14800-900 Araraquara, SP, Brazil
| | - Lindomar Soares Dos Santos
- Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, Universidade de São Paulo, University (USP), 3900 Bandeirantes Avenue, 14.040-901 Ribeirão Preto, SP, Brazil
| | - Nayrim Brizuela Guerra
- School of Science, São Paulo State University (UNESP), 14-01 Eng. Luiz Edmundo Carrijo Coube, Avenue, Bauru, SP, Brazil
| | - Gabriela Felix Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Rosana Goldbeck
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, University of Campinas, UNICAMP Monteiro Lobato no. 80, Campinas, São Paulo 13083-862, Brazil
| | - Rondinelli Donizetti Herculano
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 1 Araraquara Jaú Highway, 14800-903 Araraquara, SP, Brazil; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA.
| |
Collapse
|
9
|
Liu XH, Jin JL, Sun HT, Li S, Zhang FF, Yu XH, Cao QZ, Song YX, Li N, Lu ZH, Wang T, Liu F, Wang JM. Perspectives on the microorganisms with the potentials of PET-degradation. Front Microbiol 2025; 16:1541913. [PMID: 40143857 PMCID: PMC11938130 DOI: 10.3389/fmicb.2025.1541913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
Polyethylene terephthalate (PET), a widely used synthetic polymer in daily life, has become a major source of post-consumer waste due to its complex molecular structure and resistance to natural degradation, which has posed a significant threat to the global ecological environment and human health. Current PET-processing methods include physical, chemical, and biological approaches, however each have their limitations. Given that numerous microbial strains exhibit a remarkable capacity to degrade plastic materials, microbial degradation of PET has emerged as a highly promising alternative. This approach not only offers the possibility of converting waste into valuable resources but also contributes to the advancement of a circular economy. Therefore in this review, it is mainly focused on the cutting-edge microbial technologies and the key role of specific microbial strains such as Ideonella sakaiensis 201-F6, which can efficiently degrade and assimilate PET. Particularly noteworthy are the catalytic enzymes related to the metabolism of PET, which have been emphasized as a sustainable and eco-friendly strategy for plastic recycling within the framework of a circular economy. Furthermore, the study also elucidates the innovative utilization of degraded plastic materials as feedstock for the production of high-value chemicals, highlighting a sustainable path forward in the management of plastic waste.
Collapse
Affiliation(s)
- Xiao-huan Liu
- School of Biological Science, Jining Medical University, Jining, China
| | - Jun-li Jin
- School of Biological Science, Jining Medical University, Jining, China
| | - Hai-tong Sun
- School of Biological Science, Jining Medical University, Jining, China
| | - Shuo Li
- School of Biological Science, Jining Medical University, Jining, China
| | - Fei-fei Zhang
- School of Biological Science, Jining Medical University, Jining, China
| | - Xin-hong Yu
- School of Biological Science, Jining Medical University, Jining, China
| | - Qi-zhi Cao
- School of Biological Science, Jining Medical University, Jining, China
| | - Yu-xuan Song
- School of Biological Science, Jining Medical University, Jining, China
| | - Nan Li
- School of Biological Science, Jining Medical University, Jining, China
| | - Zhen-hua Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Tao Wang
- School of Biological Science, Jining Medical University, Jining, China
| | - Fei Liu
- School of Biological Science, Jining Medical University, Jining, China
| | - Jian-min Wang
- School of Pharmacy, Jining Medical University, Rizhao, China
| |
Collapse
|
10
|
Liu Z, Chang SH, Mailhot G. Emerging Biochemical Conversion for Plastic Waste Management: A Review. Molecules 2025; 30:1255. [PMID: 40142030 PMCID: PMC11946717 DOI: 10.3390/molecules30061255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
In recent years, vast amounts of plastic waste have been released into the environment worldwide, posing a severe threat to human health and ecosystems. Despite the partial success of traditional plastic waste management technologies, their limitations underscore the need for innovative approaches. This review provides a comprehensive overview of recent advancements in chemical and biological technologies for converting and utilizing plastic waste. Key topics include the technical parameters, characteristics, processes, and reaction mechanisms underlying these emerging technologies. Additionally, the review highlights the importance of conducting economic analyses and life cycle assessments of these emerging technologies, offering valuable insights and establishing a robust foundation for future research. By leveraging the literature from the last five years, this review explores innovative chemical approaches, such as hydrolysis, hydrogenolysis, alcoholysis, ammonolysis, pyrolysis, and photolysis, which break down high-molecular-weight macromolecules into oligomers or small molecules by cracking or depolymerizing specific chemical groups within plastic molecules. It also examines innovative biological methods, including microbial enzymatic degradation, which employs microorganisms or enzymes to convert high-molecular-weight macromolecules into oligomers or small molecules through degradation and assimilation mechanisms. The review concludes by discussing future research directions focused on addressing the technological, economic, and scalability challenges of emerging plastic waste management technologies, with a strong commitment to promoting sustainable solutions and achieving lasting environmental impact.
Collapse
Affiliation(s)
- Zhongchuang Liu
- Department of Environmental Engineering Technology, College of Power Engineering, Chongqing Electric Power College, No. 9, Electric Power Fourth Village, Jiulongpo District, Chongqing 400053, China
| | - Siu Hua Chang
- Waste Management and Resource Recovery (WeResCue) Group, Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh 13500, Penang, Malaysia;
| | - Gilles Mailhot
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne—Centre National de la Recherche Scientifique (CNRS), F-63000 Clermont-Ferrand, France
| |
Collapse
|
11
|
Esposito R, Federico S, Amato A, Viel T, Caramiello D, Macina A, Miralto M, Ambrosino L, Chiusano ML, Cocca M, Manfra L, Libralato G, Zupo V, Costantini M. Isolation and Identification of Bacterial Strains Colonizing the Surface of Biodegradable Polymers. Microorganisms 2025; 13:609. [PMID: 40142502 PMCID: PMC11944904 DOI: 10.3390/microorganisms13030609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Plastics play a key role in every sector of the economy, being used in the manufacturing of products in the fields of health, food packaging, and agriculture. Their mismanagement poses a serious threat to ecosystems and, in general, to human life. For this reason, particular attention has been paid in the last decade to the use of biodegradable polymers (BPs) as an alternative to classic plastics. In this study, we aimed to identify bacterial strains able to colonize the surface of five BPs: poly(butylene succinate) (PBS), poly(butylene succinate-co-butylene adipate) (PBSA), poly(ε-caprolactone), (PCL), poly(3-hydroxybutyrate) (PHB), and poly(lactic acid) (PLA). For this experiment, mesocosms were designed ad hoc to mimic the conditions in which the polymers can be found in marine environments: i. suspended in the water column; ii. laying over gravel; and iii. under gravel. Four bacterial samples were taken (3, 4, 10, and 12 months from the start of the experiment) from five BPs incubated in the above-mentioned three conditions. Our results demonstrated that bacteria belonging to the Proteobacteria, Actinobacteria, Firmicutes, Bacillota, Bacteroidota, and Cyanobacteria phyla were the most frequent colonizers of the surfaces of the five polymers under analysis, and could be responsible for their degradation, resulting in the evolution of strategies to degrade plastics through the secretion of specific enzymes.
Collapse
Affiliation(s)
- Roberta Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (R.E.); (S.F.); (A.A.); (T.V.); (L.M.); (G.L.)
| | - Serena Federico
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (R.E.); (S.F.); (A.A.); (T.V.); (L.M.); (G.L.)
| | - Amalia Amato
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (R.E.); (S.F.); (A.A.); (T.V.); (L.M.); (G.L.)
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Napoli, Italy
| | - Thomas Viel
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (R.E.); (S.F.); (A.A.); (T.V.); (L.M.); (G.L.)
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Napoli, Italy
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegri, 34, Pozzuoli, 80078 Naples, Italy;
| | - Davide Caramiello
- Department of Marine Animal Conservation and Public Engagement, Stazione Zoologica Anton Dohrn, Villa Comunale, 1, 80121 Naples, Italy; (D.C.); (A.M.)
| | - Alberto Macina
- Department of Marine Animal Conservation and Public Engagement, Stazione Zoologica Anton Dohrn, Villa Comunale, 1, 80121 Naples, Italy; (D.C.); (A.M.)
| | - Marco Miralto
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.M.); (L.A.); (M.L.C.)
| | - Luca Ambrosino
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.M.); (L.A.); (M.L.C.)
| | - Maria Luisa Chiusano
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (M.M.); (L.A.); (M.L.C.)
| | - Mariacristina Cocca
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegri, 34, Pozzuoli, 80078 Naples, Italy;
| | - Loredana Manfra
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (R.E.); (S.F.); (A.A.); (T.V.); (L.M.); (G.L.)
- Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, 00144 Rome, Italy
| | - Giovanni Libralato
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (R.E.); (S.F.); (A.A.); (T.V.); (L.M.); (G.L.)
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Napoli, Italy
| | - Valerio Zupo
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Ischia Marine Centre, Ischia, 80077 Naples, Italy
| | - Maria Costantini
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (R.E.); (S.F.); (A.A.); (T.V.); (L.M.); (G.L.)
| |
Collapse
|
12
|
Havaei M, Akin O, Locaspi A, John Varghese R, Minette F, Romers E, De Meester S, Van Geem KM. Beyond the Landfill: A critical review of techniques for End-of-Life Polyvinyl chloride (PVC) valorization. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 193:105-134. [PMID: 39657507 DOI: 10.1016/j.wasman.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/04/2024] [Accepted: 11/16/2024] [Indexed: 12/12/2024]
Abstract
Polyvinyl chloride (PVC) is a polymer comprised of more than 50% chlorine that offers unmatched versatility at low expense. PVC is irreplaceable in several applications, such as construction materials, medical applications, and cables. This versatility and tunable properties come at the cost of complex formulations for the product and challenging end-of-life (EoL) options for PVC waste. Pure collected and sorted PVC is already recycled successfully to some extent, yet, when PVC ends up in a mixed plastic waste stream, it can be detrimental to the recycling process. PVC waste and its effects at various concentrations remain a focal point for both scholars and policymakers. In this review, the narrative begins at the naissance of PVC and continues to investigate the EoL valorization options when the products are inevitably discarded. Strategies for PVC waste recycling and the technical and legal challenges regarding each method are discussed, focusing on the European recycling market. An effective solution to handle EoL PVC requires a combination of policies and schemes for proper collection and sorting of specific waste streams and considering all available technologies to select the right tools. This review can support appropriate policies and the selection of suitable methods of recycling PVC waste.
Collapse
Affiliation(s)
- Mohammadhossein Havaei
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark-Zwijnaarde 125, B-9052, Belgium
| | - Oğuzhan Akin
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark-Zwijnaarde 125, B-9052, Belgium
| | - Andrea Locaspi
- CRECK Modeling Lab, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Robin John Varghese
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark-Zwijnaarde 125, B-9052, Belgium
| | - Florent Minette
- Research, Technology & Engineering (RTE), INEOS Inovyn, Rue Solvay 39, B-5190 Jemeppe-sur-Sambre, Belgium
| | - Eric Romers
- Research, Technology & Engineering (RTE), INEOS Inovyn, Rue Solvay 39, B-5190 Jemeppe-sur-Sambre, Belgium
| | - Steven De Meester
- Department of Green Chemistry and Technology, Ghent University, Graaf Karel de Goedelaan 5, B-8500, Kortrijk, Belgium
| | - Kevin M Van Geem
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark-Zwijnaarde 125, B-9052, Belgium.
| |
Collapse
|
13
|
Xie M, Huang HY, Huang YT, Ye YC, Cai Z, Zhu JB. Syndioselective Ring-Opening Polymerization of β-Lactones Enabled by Dimethylbiphenyl-Salen Yttrium Complexes. ACS Macro Lett 2025; 14:57-63. [PMID: 39710990 DOI: 10.1021/acsmacrolett.4c00757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Polyhydroxyalkanoates (PHAs) have served as promising alternatives to traditional petroleum-based plastics. Chemical synthesis of stereoregular PHAs via stereocontrolled ring-opening polymerization (ROP) of racemic β-lactones was a desired strategy with a formidable challenge. Herein, we developed a class of DiMeBiPh-salen yttrium complexes that adopted a cis-α configuration for stereoselective ROP of rac-β-butyrolactones (rac-BBL) and rac-β-valerolactone (rac-BVL). Notably, catalyst Y5 promoted robust polymerization with TOF up to 104 h-1 and furnished syndiotactic P3HB, P3HV, and P(3HB)-co-P(3HV) copolymers with Pr values of up to 0.95. Varying the compositions in P(3HB)-co-P(3HV) copolymers offered an intriguing opportunity to fine tune the thermal properties. Our kinetic study supported a polymeryl exchange mechanism. This work demonstrated that the DiMeBiPh-salen system could serve as a new catalytic framework for the stereoselective ROP of β-lactones, which leverages the catalyst design for stereoselective polymerization.
Collapse
Affiliation(s)
- Min Xie
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hao-Yi Huang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Ting Huang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yun-Cong Ye
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhongzheng Cai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jian-Bo Zhu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
14
|
Najam M, Javaid S, Iram S, Pasertsakoun K, Oláh M, Székács A, Aleksza L. Microbial Biodegradation of Synthetic Polyethylene and Polyurethane Polymers by Pedospheric Microbes: Towards Sustainable Environmental Management. Polymers (Basel) 2025; 17:169. [PMID: 39861242 PMCID: PMC11769026 DOI: 10.3390/polym17020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
This study attempted to isolate and identify pedospheric microbes originating in dumpsites and utilized them for the degradation of selected synthetic polymers for the first time in a cost-effective, ecologically favorable and sustainable manner. Specifically, low-density polyethylene (LDPE) and polyurethane (PUR) were converted by the isolated fungi, i.e., Aspergillus flavus, A terreus, A. clavatus, A. nigers and bacterial coccus and filamentous microbes and assessed in a biotransformative assay under simulated conditions. Commendable biodegradative potentials were exhibited by the isolated microbes against polymers that were analyzed over a span of 30 days. Among the selected fungal microbes, the highest activity was achieved by A. niger, expressing 55% and 40% conversion of LDPE and PUR, respectively. In the case of bacterial strains, 50% and 40% conversion of LDPE and PUR degradation was achieved by coccus. Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA) were utilized to analyze the degradative patterns in terms of vibrational and thermal characteristics, and stereomicroscopic analysis was performed for the visual assessment of morphological variations. Profound structural transformations were detected in FT-IR spectra and TGA thermograms for the selected microbes. Stereomicroscopic analysis was also indicative of the remarkable transformation of the surface morphology of these polymers after degradation by microbes in comparison to the reference samples not treated with any pedospheric microbes. The results are supportive of the utilization of the selected pedospheric microbes as environmental remediators for the cleanup of persistent polymeric toxins. This current work can be further extended for the successful optimization of further augmented percentages by using other pedospheric microbes for the successful adoption of these biotechnological tools at a practical level.
Collapse
Affiliation(s)
- Maryam Najam
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, Rawalpindi 46000, Pakistan; (M.N.); (S.J.)
| | - Sana Javaid
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, Rawalpindi 46000, Pakistan; (M.N.); (S.J.)
| | - Shazia Iram
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, Rawalpindi 46000, Pakistan; (M.N.); (S.J.)
| | - Kingkham Pasertsakoun
- Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (K.P.); (M.O.); (A.S.)
| | - Marianna Oláh
- Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (K.P.); (M.O.); (A.S.)
| | - András Székács
- Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (K.P.); (M.O.); (A.S.)
| | - László Aleksza
- Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (K.P.); (M.O.); (A.S.)
- Profikomp Environmental Technologies Inc., Kühne Ede u. 7, H-2100 Gödöllő, Hungary
| |
Collapse
|
15
|
Zeng J, Yao J, Zhang W, Zhang M, Wang T, Yu X, Liu Y, Sun X, Li L. Biodegradation of commercial polyester polyurethane by a soil-borne bacterium Bacillus velezensis MB01B: Efficiency, degradation pathway, and in-situ remediation in landfill soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125300. [PMID: 39537092 DOI: 10.1016/j.envpol.2024.125300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/15/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Polyurethane (PU), a widely used and durable plastic, persists in the environment, resulting in significant waste management challenges. Therefore, developing eco-friendly degradation technologies, such as screening for efficient biodegrading microorganism strains, is urgently needed to address this issue. Bacillus velezensis MB01B, an efficient polyester PU-degrading bacterium, was isolated from landfill soil and demonstrated the ability to degrade 91.4% of 0.75% Impranil DLN within 24 h under the optimal conditions (30.5 °C and initial pH 6.5). To assess the degradation capability of MB01B, three PU substrates of increasing complexity-Impranil DLN film, polyester thermoplastic polyurethane (TPU) film, and commercial PU desk mat-were tested; after 30 days, weight losses of 24.8%, 18.3%, and 5.4% were observed, respectively. In addition, SEM images showed significant morphological changes on the surface of these PU materials after treatment with MB01B. FTIR analysis of Impranil DLN films following degradation showed reductions in key functional groups (ester and urethane); and the identification of neopentyl glycol and 1,6-hexanediol as degradation intermediates suggested MB01B possesses the capability to hydrolyze ester and urethane bonds. Concurrently, genome sequencing combined with RT-qPCR identified several enzymes, including urethanases and esterases/lipases, involved in PU degradation. Based on these results, the pathway for MB01B to degrade Impranil DLN was inferred. Finally, MB01B was successfully formulated into a solid microbial inoculum with favorable storage properties and used for in-situ degradation of the commercial PU materials (Impranil DLN films, TPU films and PU desk mats) in landfill soil, underscoring its potential for the in-situ biological treatment of PU plastic wastes.
Collapse
Affiliation(s)
- Jie Zeng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junruo Yao
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weiming Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Miaomiao Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tan Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xun Yu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Yongxuan Liu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaowen Sun
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
16
|
Razzaq S, Shahid S, Nawab Y. Applications and environmental impact of biodegradable polymers in textile industry: A review. Int J Biol Macromol 2024; 282:136791. [PMID: 39461644 DOI: 10.1016/j.ijbiomac.2024.136791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
With the increasing global population, the disposal of waste has risen, especially over the last century. The Environmental Protection Agency (EPA) reported that 11 million tons of textile-related waste were landfilled in the USA in 2018, and this amount is projected to increase to 4.5 billion tons by 2040. Bio-based polymers have gained attention due to their remarkable properties. The most important biodegradable polymers include PLA, PHA, PHB, PCL, PBS, bamboo fibers, and banana fibers. Global biopolymer production capacity is expected to rise significantly, from around 2.18 million tons in 2023 to approximately 7.43 million tons by 2028. In the textile industry, the linear waste model presents numerous challenges, such as environmental damage and resource shortages. Shifting from a linear to a circular economy is essential to address these issues. Reducing, reusing, and recycling are the three key actions and strategies that form the foundation of the circular economy. This paper presents the current state of knowledge and technological advancements in biodegradable polymers in the textile industry, along with their products and applications. The study explores the cost-effectiveness, limitations, opportunities, and advancements in their manufacturing technologies. Biodegradable polymers in the textile sector are regarded as green alternatives to non-biodegradable polymers.
Collapse
Affiliation(s)
- Sadia Razzaq
- National Center for Composite Materials, School of Engineering and Technology, National Textile University, Faisalabad 37600, Pakistan
| | - Salma Shahid
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan.
| | - Yasir Nawab
- National Center for Composite Materials, School of Engineering and Technology, National Textile University, Faisalabad 37600, Pakistan
| |
Collapse
|
17
|
Liu X, Dong X, Wang D, Xie Z. Biodeterioration of polyethylene by Bacillus cereus and Rhodococcus equi isolated from soil. Int Microbiol 2024; 27:1795-1806. [PMID: 38530479 DOI: 10.1007/s10123-024-00509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/18/2023] [Accepted: 03/10/2024] [Indexed: 03/28/2024]
Abstract
Polyethylene (PE), a non-biodegradable plastic, is widely used in agriculture as a mulch material, which causes serious plastic pollution when it is discarded. Recent studies have described the biodeterioration of PE by bacteria, but it is difficult for a single bacterial species to effectively degrade PE plastic. We isolated two strains with PE-degrading ability, Bacillus cereus (E1) and Rhodococcus equi (E3), from the soil attached to plastic waste on the south side of Mount Tai, China, using a medium with PE plastic as the only carbon source. By clear zone area analysis, we found that E1 mixed with E3 could improve the degradation of PE plastics. The mixture of E1 and E3 was incubated for 110 days in a medium containing PE and mulch film as the only carbon source, respectively. After 110 days, a decrease in pH and mass was observed. Obvious slits and depressions were observed on the surface of the PE film and the mulch films using scanning electron microscopy. The surface hydrophobicity of both films decreased, and FTIR revealed the formation of new oxidation groups on their surfaces during the degradation process and the destruction of the original CH2 long chains of PE. Besides, we found that surface of the mulch films contained more viable bacteria than the liquid medium. In conclusion, we identified two PE-degrading strains whose mixture can effectively degrade mulch film than pure PE film. Our results provide a reference for understanding PE plastic degradation pathways and their associated degradation processes.
Collapse
Affiliation(s)
- Xinbei Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Xusheng Dong
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Dandan Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Zhihong Xie
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
18
|
Martinka Maksymiak M, Andrä-Żmuda S, Sikorska W, Janeczek H, Chaber P, Musioł M, Godzierz M, Kowalczuk M, Adamus G. Structural and Thermal Characterization of Bluepha ® Biopolyesters: Insights into Molecular Architecture and Potential Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5863. [PMID: 39685298 DOI: 10.3390/ma17235863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
This study presents an in-depth molecular and structural characterization of novel biopolyesters developed under the trademark Bluepha®. The primary aim was to elucidate the relationship between chemical structure, chain architecture, and material properties of these biopolyesters to define their potential applications across various sectors. Proton nuclear magnetic resonance (1H NMR) analysis identified the biopolyesters as poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] (PHBH) copolymers, containing 4% and 10% molar content of hydroxyhexanoate (HH) units, respectively. Mass spectrometry analysis of PHBH oligomers, produced via controlled thermal degradation, further confirmed the chemical structure and molecular architecture of the PHBH samples. Additionally, multistage electrospray ionization mass spectrometry (ESI-MS/MS) provided insights into the chemical homogeneity and arrangement of comonomer units within the copolyester chains, revealing a random distribution of hydroxyhexanoate (HH) and hydroxybutyrate (HB) units along the PHBH chains. X-ray diffraction (XRD) patterns demonstrated partial crystallinity in the PHBH samples. The thermal properties, including glass transition temperature (Tg), melting temperature (Tm), and melting enthalpy (ΔHm), were found to be lower in PHBH than in poly(R)-3-hydroxybutyrate (PHB), suggesting a broader application potential for the tested PHBH biopolyesters.
Collapse
Affiliation(s)
- Magdalena Martinka Maksymiak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Silke Andrä-Żmuda
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Wanda Sikorska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Paweł Chaber
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Marta Musioł
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Marcin Godzierz
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Grazyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| |
Collapse
|
19
|
Safdar A, Ismail F, Safdar M, Imran M. Eco-friendly approaches for mitigating plastic pollution: advancements and implications for a greener future. Biodegradation 2024; 35:493-518. [PMID: 38310578 DOI: 10.1007/s10532-023-10062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
Plastic pollution has become a global problem since the extensive use of plastic in industries such as packaging, electronics, manufacturing and construction, healthcare, transportation, and others. This has resulted in an environmental burden that is continually growing, which has inspired many scientists as well as environmentalists to come up with creative solutions to deal with this problem. Numerous studies have been reviewed to determine practical, affordable, and environmentally friendly solutions to regulate plastic waste by leveraging microbes' innate abilities to naturally decompose polymers. Enzymatic breakdown of plastics has been proposed to serve this goal since the discovery of enzymes from microbial sources that truly interact with plastic in its naturalistic environment and because it is a much faster and more effective method than others. The scope of diverse microbes and associated enzymes in polymer breakdown is highlighted in the current review. The use of co-cultures or microbial consortium-based techniques for the improved breakdown of plastic products and the generation of high-value end products that may be utilized as prototypes of bioenergy sources is highlighted. The review also offers a thorough overview of the developments in the microbiological and enzymatic biological degradation of plastics, as well as several elements that impact this process for the survival of our planet.
Collapse
Affiliation(s)
- Ayesha Safdar
- Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
- The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Fatima Ismail
- Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan.
- The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan.
| | - Maryem Safdar
- University College of Conventional Medicine, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
- The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Muhammad Imran
- Institute of Advanced Study, Shenzhen University, Shenzhen, 5180600, Guangdong Province, China.
| |
Collapse
|
20
|
Zhang D, Calmanovici B, Marican H, Reisser J, Summers S. The assembly and ecological roles of biofilms attached to plastic debris of Ashmore reef. MARINE POLLUTION BULLETIN 2024; 205:116651. [PMID: 38917500 DOI: 10.1016/j.marpolbul.2024.116651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Plastic pollution in the ocean is a global environmental hazard aggravated by poor management of plastic waste and growth of annual plastic consumption. Microbial communities colonizing the plastic's surface, the plastisphere, has gained global interest resulting in numerous efforts to characterize the plastisphere. However, there are insufficient studies deciphering the underlying metabolic processes governing the function of the plastisphere and the plastic they reside upon. Here, we collected plastic and seawater samples from Ashmore Reef in Australia to examine the planktonic microbes and plastic associated biofilm (PAB) to investigate the ecological impact, pathogenic potential, and plastic degradation capabilities of PAB in Ashmore Reef, as well as the role and impact of bacteriophages on PAB. Using high-throughput metagenomic sequencing, we demonstrated distinct microbial communities between seawater and PAB. Similar numbers of pathogenic bacteria were found in both sample types, yet plastic and seawater select for different pathogen populations. Virulence Factor analysis further illustrated stronger pathogenic potential in PAB, highlighting the pathogenicity of environmental PAB. Furthermore, functional analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways revealed xenobiotic degradation and fatty acid degradation to be enriched in PABs. In addition, construction of metagenome-assembled genomes (MAG) and functional analysis further demonstrated the presence of a complete Polyethylene (PE) degradation pathway in multiple Proteobacteria MAGs, especially in Rhodobacteriaceae sp. Additionally, we identified viral population presence in PAB, revealing the key role of bacteriophages in shaping these communities within the PAB. Our result provides a comprehensive overview of the various ecological processes shaping microbial community on marine plastic debris.
Collapse
Affiliation(s)
- Dong Zhang
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; Tropical Marine Science Institute, St. John's Island National Marine Laboratory, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore
| | - Bruna Calmanovici
- UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Hana Marican
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 117456, Singapore
| | - Julia Reisser
- UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Stephen Summers
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; Tropical Marine Science Institute, St. John's Island National Marine Laboratory, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore.
| |
Collapse
|
21
|
Wang T, Yang WT, Gong YM, Zhang YK, Fan XX, Wang GC, Lu ZH, Liu F, Liu XH, Zhu YS. Molecular engineering of PETase for efficient PET biodegradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116540. [PMID: 38833982 DOI: 10.1016/j.ecoenv.2024.116540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
The widespread utilization of polyethylene terephthalate (PET) has caused a variety of environmental and health problems. Compared with traditional thermomechanical or chemical PET cycling, the biodegradation of PET may offer a more feasible solution. Though the PETase from Ideonalla sakaiensis (IsPETase) displays interesting PET degrading performance under mild conditions; the relatively low thermal stability of IsPETase limits its practical application. In this study, enzyme-catalysed PET degradation was investigated with the promising IsPETase mutant HotPETase (HP). On this basis, a carbohydrate-binding module from Bacillus anthracis (BaCBM) was fused to the C-terminus of HP to construct the PETase mutant (HLCB) for increased PET degradation. Furthermore, to effectively improve PET accessibility and PET-degrading activity, the truncated outer membrane hybrid protein (FadL) was used to expose PETase and BaCBM on the surface of E. coli (BL21with) to develop regenerable whole-cell biocatalysts (D-HLCB). Results showed that, among the tested small-molecular weight ester compounds (p-nitrophenyl phosphate (pNPP), p-Nitrophenyl acetate (pNPA), 4-Nitrophenyl butyrate (pNPB)), PETase displayed the highest hydrolysing activity against pNPP. HP displayed the highest catalytic activity (1.94 μM(p-NP)/min) at 50 °C and increased longevity at 40 °C. The fused BaCBM could clearly improve the catalytic performance of PETase by increasing the optimal reaction temperature and improving the thermostability. When HLCB was used for PET degradation, the yield of monomeric products (255.7 μM) was ∼25.5 % greater than that obtained after 50 h of HP-catalysed PET degradation. Moreover, the highest yield of monomeric products from the D-HLCB-mediated system reached 1.03 mM. The whole-cell catalyst D-HLCB displayed good reusability and stability and could maintain more than 54.6 % of its initial activity for nine cycles. Finally, molecular docking simulations were utilized to investigate the binding mechanism and the reaction mechanism of HLCB, which may provide theoretical evidence to further increase the PET-degrading activities of PETases through rational design. The proposed strategy and developed variants show potential for achieving complete biodegradation of PET under mild conditions.
Collapse
Affiliation(s)
- Tao Wang
- School of Biological Science, Jining Medical University, Jining, China
| | - Wen-Tao Yang
- School of Biological Science, Jining Medical University, Jining, China
| | - Yu-Ming Gong
- School of Biological Science, Jining Medical University, Jining, China
| | - Ying-Kang Zhang
- School of Biological Science, Jining Medical University, Jining, China
| | - Xin-Xin Fan
- School of Biological Science, Jining Medical University, Jining, China
| | - Guo-Cheng Wang
- School of Biological Science, Jining Medical University, Jining, China
| | - Zhen-Hua Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fei Liu
- School of Biological Science, Jining Medical University, Jining, China
| | - Xiao-Huan Liu
- School of Biological Science, Jining Medical University, Jining, China
| | - You-Shuang Zhu
- School of Biological Science, Jining Medical University, Jining, China.
| |
Collapse
|
22
|
Barone GD, Rodríguez-Seijo A, Parati M, Johnston B, Erdem E, Cernava T, Zhu Z, Liu X, Axmann IM, Lindblad P, Radecka I. Harnessing photosynthetic microorganisms for enhanced bioremediation of microplastics: A comprehensive review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100407. [PMID: 38544950 PMCID: PMC10965471 DOI: 10.1016/j.ese.2024.100407] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 11/11/2024]
Abstract
Mismanaged plastics, upon entering the environment, undergo degradation through physicochemical and/or biological processes. This process often results in the formation of microplastics (MPs), the most prevalent form of plastic debris (<1 mm). MPs pose severe threats to aquatic and terrestrial ecosystems, necessitating innovative strategies for effective remediation. Some photosynthetic microorganisms can degrade MPs but there lacks a comprehensive review. Here we examine the specific role of photoautotrophic microorganisms in water and soil environments for the biodegradation of plastics, focussing on their unique ability to grow persistently on diverse polymers under sunlight. Notably, these cells utilise light and CO2 to produce valuable compounds such as carbohydrates, lipids, and proteins, showcasing their multifaceted environmental benefits. We address key scientific questions surrounding the utilisation of photosynthetic microorganisms for MPs and nanoplastics (NPs) bioremediation, discussing potential engineering strategies for enhanced efficacy. Our review highlights the significance of alternative biomaterials and the exploration of strains expressing enzymes, such as polyethylene terephthalate (PET) hydrolases, in conjunction with microalgal and/or cyanobacterial metabolisms. Furthermore, we delve into the promising potential of photo-biocatalytic approaches, emphasising the coupling of plastic debris degradation with sunlight exposure. The integration of microalgal-bacterial consortia is explored for biotechnological applications against MPs and NPs pollution, showcasing the synergistic effects in wastewater treatment through the absorption of nitrogen, heavy metals, phosphorous, and carbon. In conclusion, this review provides a comprehensive overview of the current state of research on the use of photoautotrophic cells for plastic bioremediation. It underscores the need for continued investigation into the engineering of these microorganisms and the development of innovative approaches to tackle the global issue of plastic pollution in aquatic and terrestrial ecosystems.
Collapse
Affiliation(s)
| | - Andrés Rodríguez-Seijo
- Área de Edafoloxía, Departamento de Bioloxía Vexetal e Ciencia Do Solo, Facultade de Ciencias, Universidade de Vigo, 32004, Ourense, Spain
- Agroecology and Food Institute (IAA), University of Vigo – Campus Auga, 32004, Ourense, Spain
| | - Mattia Parati
- School of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
- FlexSea Ltd., London, EC2A4NE, United Kingdom
| | - Brian Johnston
- School of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
| | - Elif Erdem
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, 8010, Graz, Austria
| | - Zhi Zhu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
- Department of Chemistry—Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Xufeng Liu
- Department of Chemistry—Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Ilka M. Axmann
- Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine, University Düsseldorf, D-40001, Düsseldorf, Germany
| | - Peter Lindblad
- Department of Chemistry—Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Iza Radecka
- School of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
| |
Collapse
|
23
|
Chen X, Chen CE, Cheng S, Sweetman AJ. Bisphenol A sorption on commercial polyvinyl chloride microplastics: Effects of UV-aging, biofilm colonization and additives on plastic behaviour in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124218. [PMID: 38815887 DOI: 10.1016/j.envpol.2024.124218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Chemical additives are important components in commercial microplastics and their leaching behaviour has been widely studied. However, little is known about the potential effect of additives on the adsorption/desorption behaviour of pollutants on microplastics and their subsequent role as vectors for pollutant transport in the environment. In this study, two types of commercial polyvinyl chloride (PVC1 and PVC2) microplastics were aged by UV irradiation and biotic modification via biofilm colonization to investigate the adsorption and desorption behaviour of bisphenol A (BPA). Surface cracks and new functional groups (e.g., O-H) were found on PVC1 after UV irradiation, which increased available adsorption sites and enhanced H‒bonding interaction, resulting in an adsorption capacity increase from 1.28 μg/L to 1.85 μg/L. However, the adsorption and desorption capacity not showed significant changes for PVC2, which might be related to the few characteristic changes after UV aging with the protection of light stabilizers and antioxidants. The adsorption capacity ranged from 1.28 μg/L to 2.06 μg/L for PVC1 and PVC2 microplastics, and increased to 1.62 μg/L-2.95 μg/L after colonization by biofilms. The increased adsorption ability might be related to the N-H functional group, amide groups generated by microorganisms enhancing the affinity for BPA. The opposite effect was observed for desorption. Plasticizers can be metabolized during biofilm formation processes and might play an important role in microorganism colonization. In addition, antioxidants and UV stabilizers might also indirectly influence the colonization of microorganisms' on microplastics by controlling the degree to which PVC microplastics age under UV. The amount of biomass loading on the microplastics would further alter the adsorption/desorption behaviour of contaminants. This study provides important new insights into the evaluation of the fate of plastic particles in natural environments.
Collapse
Affiliation(s)
- Xiaoxin Chen
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Chang-Er Chen
- Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Shengming Cheng
- Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Andrew J Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
| |
Collapse
|
24
|
Liu J, Zeng D, Pan J, Hu J, Zheng M, Liu W, He D, Ye Q. Effects of polyethylene microplastics occurrence on estrogens degradation in soil. CHEMOSPHERE 2024; 355:141727. [PMID: 38499076 DOI: 10.1016/j.chemosphere.2024.141727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/10/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Growing focus has been drawn to the continuous detection of high estrogens levels in the soil environment. Additionally, microplastics (MPs) are also of growing concern worldwide, which may affect the environmental behavior of estrogens. However, little is known about effects of MPs occurrence on estrogens degradation in soil. In this study, polyethylene microplastics (PE-MPs) were chosen to examine the influence on six common estrogens (estrone (E1), 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), estriol (E3), diethylstilbestrol (DES), and 17α-ethinylestradiol (17α-EE2)) degradation. The results indicated that PE-MPs had little effect on the degradation of E3 and DES, and slightly affected the degradation of 17α-E2, however, significantly inhibited the degradation of E1, 17α-EE2, and 17β-E2. It was explained that (i) obvious oxidation reaction occurred on the surface of PE-MPs, indicating that PE-MPs might compete with estrogens for oxidation sites, such as redox and biological oxidation; (ii) PE-MPs significantly changed the bacterial community in soil, resulting in a decline in the abundance of some bacterial communities that biodegraded estrogens. Moreover, the rough surface of PE-MPs facilitated the estrogen-degrading bacterial species (especially for E1, E2, and EE2) to adhere, which decreased their reaction to estrogens. These findings are expected to deepen the understanding of the environmental behavior of typical estrogens in the coexisting system of MPs.
Collapse
Affiliation(s)
- Jiangyan Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404000, China
| | - Dong Zeng
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Jie Pan
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404000, China
| | - Jiawu Hu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Mimi Zheng
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404000, China
| | - Wangrong Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Dechun He
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China.
| | - Quanyun Ye
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China.
| |
Collapse
|
25
|
Xu L, Li Z, Wang L, Xu Z, Zhang S, Zhang Q. Progress in polystyrene biodegradation by insect gut microbiota. World J Microbiol Biotechnol 2024; 40:143. [PMID: 38530548 DOI: 10.1007/s11274-024-03932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
Polystyrene (PS) is frequently used in the plastics industry. However, its structural stability and difficulty to break down lead to an abundance of plastic waste in the environment, resulting in micro-nano plastics (MNPs). As MNPs are severe hazards to both human and environmental health, it is crucial to develop innovative treatment technologies to degrade plastic waste. The biodegradation of plastics by insect gut microorganisms has gained attention as it is environmentally friendly, efficient, and safe. However, our knowledge of the biodegradation of PS is still limited. This review summarizes recent research advances on PS biodegradation by gut microorganisms/enzymes from insect larvae of different species, and schematic pathways of the degradation process are discussed in depth. Additionally, the prospect of using modern biotechnology, such as genetic engineering and systems biology, to identify novel PS-degrading microbes/functional genes/enzymes and to realize new strategies for PS biodegradation is highlighted. Challenges and limitations faced by the application of genetically engineered microorganisms (GEMs) and multiomics technologies in the field of plastic pollution bioremediation are also discussed. This review encourages the further exploration of the biodegradation of PS by insect gut microbes/enzymes, offering a cutting-edge perspective to identify PS biodegradation pathways and create effective biodegradation strategies.
Collapse
Affiliation(s)
- Luhui Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zelin Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Liuwei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zihang Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shulin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
26
|
Singh P, Lau CSS, Siah SY, Chua KO, Ting ASY. Microbial degradation of low-density polyethylene, polyethylene terephthalate, and polystyrene by novel isolates from plastic-polluted environment. Arch Microbiol 2024; 206:188. [PMID: 38519709 DOI: 10.1007/s00203-024-03895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 03/25/2024]
Abstract
Biodegradation is an eco-friendly measure to address plastic pollution. This study screened four bacterial isolates that were capable of degrading recalcitrant polymers, i.e., low-density polyethylene, polyethylene terephthalate, and polystyrene. The unique bacterial isolates were obtained from plastic polluted environment. Dermacoccus sp. MR5 (accession no. OP592184) and Corynebacterium sp. MR10 (accession no. OP536169) from Malaysian mangroves and Bacillus sp. BS5 (accession no. OP536168) and Priestia sp. TL1 (accession no. OP536170) from a sanitary landfill. The four isolates showed a gradual increase in the microbial count and the production of laccase and esterase enzymes after 4 weeks of incubation with the polymers (independent experiment set). Bacillus sp. BS5 produced the highest laccase 15.35 ± 0.19 U/mL and showed the highest weight loss i.e., 4.84 ± 0.6% for PS. Fourier transform infrared spectroscopy analysis confirmed the formation of carbonyl and hydroxyl groups as a result of oxidation reactions by enzymes. Liquid chromatography-mass spectrometry analysis showed the oxidation of the polymers to small molecules (alcohol, ethers, and acids) assimilated by the microbes during the degradation. Field emission scanning electron microscopy showed bacterial colonization, biofilm formation, and surface erosion on the polymer surface. The result provided significant insight into enzyme activities and the potential of isolates to target more than one type of polymer for degradation.
Collapse
Affiliation(s)
- Pooja Singh
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Claudeen Sze Siang Lau
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Sze Yin Siah
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Kah Ooi Chua
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Adeline Su Yien Ting
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
27
|
Covello C, Di Vincenzo F, Cammarota G, Pizzoferrato M. Micro(nano)plastics and Their Potential Impact on Human Gut Health: A Narrative Review. Curr Issues Mol Biol 2024; 46:2658-2677. [PMID: 38534784 PMCID: PMC10968954 DOI: 10.3390/cimb46030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Microplastics and nanoplastics (MNPs) are becoming an increasingly severe global problem due to their widespread distribution and complex impact on living organisms. Apart from their environmental impact, the effects of MNPs on living organisms have also continued to attract attention. The harmful impact of MNPs has been extensively documented in marine invertebrates and larger marine vertebrates like fish. However, the research on the toxicity of these particles on mammals is still limited, and their possible effects on humans are poorly understood. Considering that MNPs are commonly found in food or food packaging, humans are primarily exposed to them through ingestion. It would be valuable to investigate the potential harmful effects of these particles on gut health. This review focuses on recent research exploring the toxicological impacts of micro- and nanoplastics on the gut, as observed in human cell lines and mammalian models. Available data from various studies indicate that the accumulation of MNPs in mammalian models and human cells may result in adverse consequences, in terms of epithelial toxicity, immune toxicity, and the disruption of the gut microbiota. The paper also discusses the current research limitations and prospects in this field, aiming to provide a scientific basis and reference for further studies on the toxic mechanisms of micro- and nanoplastics.
Collapse
Affiliation(s)
- Carlo Covello
- Center for Diagnosis and Treatment of Digestive Diseases, Gastroenterology Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.)
| | - Federica Di Vincenzo
- Center for Diagnosis and Treatment of Digestive Diseases, Gastroenterology Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.)
| | - Giovanni Cammarota
- UOC Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Marco Pizzoferrato
- UOC Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
28
|
Shah MZ, Quraishi M, Sreejith A, Pandit S, Roy A, Khandaker MU. Sustainable degradation of synthetic plastics: A solution to rising environmental concerns. CHEMOSPHERE 2024; 352:141451. [PMID: 38368957 DOI: 10.1016/j.chemosphere.2024.141451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Plastics have a significant role in various sectors of the global economy since they are widely utilized in agriculture, architecture, and construction, as well as health and consumer goods. They play a crucial role in several industries as they are utilized in the production of diverse things such as defense materials, sanitary wares, tiles, plastic bottles, artificial leather, and various other household goods. Plastics are utilized in the packaging of food items, medications, detergents, and cosmetics. The overconsumption of plastics presents a significant peril to both the ecosystem and human existence on Earth. The accumulation of plastics on land and in the sea has sparked interest in finding ways to breakdown these polymers. It is necessary to employ suitable biodegradable techniques to decrease the accumulation of plastics in the environment. To address the environmental issues related to plastics, it is crucial to have a comprehensive understanding of the interaction between microorganisms and polymers. A wide range of creatures, particularly microbes, have developed techniques to survive and break down plastics. This review specifically examines the categorization of plastics based on their thermal and biodegradable properties, as well as the many types of degradation and biodegradation. It also discusses the various types of degradable plastics, the characterization of biodegradation, and the factors that influence the process of biodegradation. The plastic breakdown and bioremediation capabilities of these microbes make them ideal for green chemistry applications aimed at removing hazardous polymers from the ecosystem.
Collapse
Affiliation(s)
- Masirah Zahid Shah
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, 410206, India
| | - Marzuqa Quraishi
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, 410206, India
| | - Anushree Sreejith
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, 410206, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306, India.
| | - Arpita Roy
- Department of Biotechnology, Sharda School of Engineering & Technology, Sharda University, Greater Noida, India.
| | - Mayeen Uddin Khandaker
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia; Faculty of Graduate Studies, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| |
Collapse
|
29
|
Parida D, Katare K, Ganguly A, Chakraborty D, Konar O, Nogueira R, Bala K. Molecular docking and metagenomics assisted mitigation of microplastic pollution. CHEMOSPHERE 2024; 351:141271. [PMID: 38262490 DOI: 10.1016/j.chemosphere.2024.141271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Microplastics, tiny, flimsy, and direct progenitors of principal and subsidiary plastics, cause environmental degradation in aquatic and terrestrial entities. Contamination concerns include irrevocable impacts, potential cytotoxicity, and negative health effects on mortals. The detection, recovery, and degradation strategies of these pollutants in various biota and ecosystems, as well as their impact on plants, animals, and humans, have been a topic of significant interest. But the natural environment is infested with several types of plastics, all having different chemical makeup, structure, shape, and origin. Plastic trash acts as a substrate for microbial growth, creating biofilms on the plastisphere surface. This colonizing microbial diversity can be glimpsed with meta-genomics, a culture-independent approach. Owing to its comprehensive description of microbial communities, genealogical evidence on unconventional biocatalysts or enzymes, genomic correlations, evolutionary profile, and function, it is being touted as one of the promising tools in identifying novel enzymes for the degradation of polymers. Additionally, computational tools such as molecular docking can predict the binding of these novel enzymes to the polymer substrate, which can be validated through in vitro conditions for its environmentally feasible applications. This review mainly deals with the exploration of metagenomics along with computational tools to provide a clearer perspective into the microbial potential in the biodegradation of microplastics. The computational tools due to their polymathic nature will be quintessential in identifying the enzyme structure, binding affinities of the prospective enzymes to the substrates, and foretelling of degradation pathways involved which can be quite instrumental in the furtherance of the plastic degradation studies.
Collapse
Affiliation(s)
- Dinesh Parida
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, India.
| | - Konica Katare
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, India.
| | - Atmaadeep Ganguly
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, West Bengal State University, Kolkata, 700118, India.
| | - Disha Chakraborty
- Department of Botany, Shri Shikshayatan College, University of Calcutta, Lord Sinha Road, Kolkata, 700071, India.
| | - Oisi Konar
- Department of Botany, Shri Shikshayatan College, University of Calcutta, Lord Sinha Road, Kolkata, 700071, India.
| | - Regina Nogueira
- Institute of Sanitary Engineering and Waste Management, Leibniz Universität, Hannover, Germany.
| | - Kiran Bala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, India.
| |
Collapse
|
30
|
Istomina A, Chelomin V, Mazur A, Zhukovskaya A, Karpenko A, Mazur M. Biodegradation of polyethylene in digestive gland homogenates of marine invertebrates. PeerJ 2024; 12:e17041. [PMID: 38426135 PMCID: PMC10903337 DOI: 10.7717/peerj.17041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Вiotic factors may be the driving force of plastic fragmentation along with abiotic factors. Since understanding the processes of biodegradation and biological depolymerization of plastic is important, a new methodological approach was proposed in this study to investigate the role of marine invertebrate digestive enzymes in plastic biodegradation. The aim of this study is to evaluate the possibility of enzymatic biodegradation of polyethylene fragments in the digestive gland homogenate of marine invertebrates differing in their feeding type (Strongylocentrotus nudus, Patiria pectinifera, Mizuhopecten yessoensis). Significant changes are found in the functional groups of the polymer after 3 days of incubation in the digestive gland homogenates of the studied marine invertebrates. A significant increase in the calculated CI (carbonyl index) and COI (сarbon-oxygen index) indices compared to the control sample was observed. The results suggest that digestive enzymes of studied organisms may play an important role in the biogeochemical cycling of plastic.
Collapse
Affiliation(s)
- Aleksandra Istomina
- V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Victor Chelomin
- V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Andrey Mazur
- V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Avianna Zhukovskaya
- V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Alexander Karpenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Marina Mazur
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
31
|
Zeb A, Liu W, Ali N, Shi R, Wang Q, Wang J, Li J, Yin C, Liu J, Yu M, Liu J. Microplastic pollution in terrestrial ecosystems: Global implications and sustainable solutions. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132636. [PMID: 37778309 DOI: 10.1016/j.jhazmat.2023.132636] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Microplastic (MPs) pollution has become a global environmental concern with significant impacts on ecosystems and human health. Although MPs have been widely detected in aquatic environments, their presence in terrestrial ecosystems remains largely unexplored. This review examines the multifaceted issues of MPs pollution in terrestrial ecosystem, covering various aspects from additives in plastics to global legislation and sustainable solutions. The study explores the widespread distribution of MPs worldwide and their potential antagonistic interactions with co-occurring contaminants, emphasizing the need for a holistic understanding of their environmental implications. The influence of MPs on soil and plants is discussed, shedding light on the potential consequences for terrestrial ecosystems and agricultural productivity. The aging mechanisms of MPs, including photo and thermal aging, are elucidated, along with the factors influencing their aging process. Furthermore, the review provides an overview of global legislation addressing plastic waste, including bans on specific plastic items and levies on single-use plastics. Sustainable solutions for MPs pollution are proposed, encompassing upstream approaches such as bioplastics, improved waste management practices, and wastewater treatment technologies, as well as downstream methods like physical and biological removal of MPs. The importance of international collaboration, comprehensive legislation, and global agreements is underscored as crucial in tackling this pervasive environmental challenge. This review may serve as a valuable resource for researchers, policymakers, and stakeholders, providing a comprehensive assessment of the environmental impact and potential risks associated with MPs.
Collapse
Affiliation(s)
- Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Nouman Ali
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Chuan Yin
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianv Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| |
Collapse
|
32
|
Aer L, Qin H, Wo P, Feng J, Tang L. Signal peptide independent secretion of bifunctional dual-hydrolase to enhance the bio-depolymerization of polyethylene terephthalate. BIORESOURCE TECHNOLOGY 2024; 391:129884. [PMID: 37852506 DOI: 10.1016/j.biortech.2023.129884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023]
Abstract
The use of polyethylene terephthalate (PET) results in a significant amount of plastic waste, which poses a threat to the environment and human health. Dual-enzyme system is promising candidate for PET depolymerization. However, its production in Escherichia coli is challenging, especially for secretory expression. Herein, a novel bifunctional dual-enzyme, TfH-FPE, was constructed through fusion of FAST-PETase and TfH. TfH modifies cell membrane permeability via phospholipid degradation, thus facilitating the secretion of TfH-FPE into the medium. After systematic optimization, purified secreted TfH-FPE reached 104 ± 5.2 mg/L, which is 32.5-fold higher than that of the secreted enzyme using a signal peptide. TfH-FPE exhibits remarkable PET depolymerization capacity compared to FAST-PETase, releasing 6-fold more product than FAST-PETase and 2-fold more product than an equimolar enzyme mixture. Collectively, this study explores a novel secretory approach for efficient production of TfH-FPE and provides a valuable tool to promote PET bio-depolymerization via multi-enzyme cascades.
Collapse
Affiliation(s)
- Lizhu Aer
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Huiling Qin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Peng Wo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Juan Feng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lixia Tang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
33
|
He Y, Deng X, Jiang L, Hao L, Shi Y, Lyu M, Zhang L, Wang S. Current advances, challenges and strategies for enhancing the biodegradation of plastic waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167850. [PMID: 37844647 DOI: 10.1016/j.scitotenv.2023.167850] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Due to its highly recalcitrant nature, the growing accumulation of plastic waste is becoming an urgent global problem. Biodegradation is one of the best possible approaches for the treatment of plastic waste in an environmentally friendly manner, but our current knowledge on the underlying mechanisms, as well as strategies for the development and enhancement of plastic biodegradation are still limited. This review aims to provide an updated and comprehensive overview of current research on plastic waste biodegradation, focusing on enhancement strategies with ongoing research significance, including the mining of highly efficient plastic-degrading microorganisms/enzymes, utilization of synergistic additives, novel pretreatment approaches, modification via molecular engineering, and construction of bacterial/enzyme consortia systems. Studying these strategies can (i) enrich the high-performance microbial/enzymes toolbox for plastic degradation, (ii) provide methods for recycling and upgrading plastics, as well as (iii) enable further molecular modification and functional optimization of plastic-degrading enzymes to realize economically viable biodegradation of plastics. To the best of our knowledge, this is the first review to discuss in detail strategies to enhance biodegradation of plastics. Finally, some recommendations for future research on plastic biodegradation are listed, hoping to provide the best direction for tackling the plastic waste dilemma in the future.
Collapse
Affiliation(s)
- Yuehui He
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xilong Deng
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Jiang
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lijuan Hao
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yong Shi
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
34
|
Karkanorachaki K, Syranidou E, Kalogerakis N. Extreme weather events as an important factor for the evolution of plastisphere but not for the degradation process. WATER RESEARCH 2023; 246:120687. [PMID: 37801984 DOI: 10.1016/j.watres.2023.120687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023]
Abstract
Marine plastics, with their negative effects on marine life and the human health, have been recently recognized as a new niche for the colonization and development of marine biofilms. Members of the colonizing communities could possess the potential for plastic biodegradation. Thus, there is an urgent need to characterize these complex and geographically variable communities and elucidate the functionalities. In this work, we characterize the fungal and bacterial colonizers of 5 types of plastic films (High Density Polyethylene, Low Density Polyethylene, Polypropylene, Polystyrene and Polyethylene Terepthalate) over the course of a 242-day incubation in the south-eastern Mediterranean and relate them to the chemical changes observed on the surface of the samples via ATR-FTIR. The 16s rRNA and ITS2 ribosomal regions of the plastisphere communities were sequenced on four time points (35, 152, 202 and 242 days). The selection of the time points was dictated by the occurrence of a severe storm which removed biological fouling from the surface of the samples and initiated a second colonization period. The bacterial communities, dominated by Proteobacteria and Bacteroidetes, were the most variable and diverse. Fungal communities, characterized mainly by the presence of Ascomycota, were not significantly affected by the storm. Neither bacterial nor fungal community structure were related to the polymer type acting as substrate, while the surface of the plastic samples underwent weathering of oscillating degrees with time. This work examines the long-term development of Mediterranean epiplastic biofilms and is the first to examine how primary colonization influences the microbial community re-attachment and succession as a response to extreme weather events. Finally, it is one of the few studies to examine fungal communities, despite them containing putative plastic degraders.
Collapse
Affiliation(s)
- Katerina Karkanorachaki
- School of Chemical and Environmental Engineering, Technical University of Crete, GR-73100, Chania, Greece
| | - Evdokia Syranidou
- School of Chemical and Environmental Engineering, Technical University of Crete, GR-73100, Chania, Greece
| | - Nicolas Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, GR-73100, Chania, Greece; Institute of GeoEnergy, Foundation for Research and Technology - Hellas, GR-73100, Chania, Greece.
| |
Collapse
|
35
|
Wang X, Li J, Lin X, Zhang Y. The s-oph enzyme for efficient degradation of polyvinyl alcohol: soluble expression and catalytic properties. Mol Biol Rep 2023; 50:8523-8535. [PMID: 37644367 DOI: 10.1007/s11033-023-08712-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Polyvinyl alcohol (PVA) is one of the most widely used water-soluble polymers with remarkable mechanical properties. However, water-soluble polymers are among the major organic pollutants of streams, river, and marine ecosystems. Once dispersed in aqueous systems, they can directly interfere with the life cycle of aquatic organisms via direct toxic effects. There is thus an urgent need for microorganisms or enzymes that can efficiently degrade them. Oxidized PVA hydrolase plays an important role in the pathway of PVA biodegradation. It is the key enzyme in the second step of the pathway for complete degradation of PVA. METHODS AND RESULTS The s-oph gene was cloned from the laboratory-isolated strain Sphingopyxis sp. M19. This gene was expressed in the Escherichia coli system pET32a/s-oph expression vector, with the products forming an inclusion body. By binding with a molecular chaperone, pET32a/s-oph/BL21 (DE3)/pGro7 was successfully constructed, which enabled the s-oph gene to be solubly expressed in E. coli. The protein encoded by the s-oph gene was purified at a yield of 16.8 mg L-1, and its catalytic activity reached 852.71 U mg-1. In the s-oph enzyme reaction system, the efficiency of PVA degradation was increased to 233.5% compared with that of controls. CONCLUSIONS The s-oph enzyme exhibited the characteristics of being able to degrade PVA with high efficiency, specificity, and stability. This enzyme has good potential for practical application in ameliorating plastic pollution and protecting the environment.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Jiaxuan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Xiaoshan Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Yi Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.
| |
Collapse
|
36
|
Kim JH, Lee SH, Lee BM, Son KH, Park HY. Biodegradation Potential of Polyethylene Terephthalate by the Two Insect Gut Symbionts Xanthomonas sp. HY-74 and Bacillus sp. HY-75. Polymers (Basel) 2023; 15:3546. [PMID: 37688172 PMCID: PMC10489954 DOI: 10.3390/polym15173546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Polyethylene terephthalate (PET) is a plastic material that is widely used in beverage bottles, food packaging, and other consumer products, which is highly resistant to biodegradation. In this study, we investigated the effects of two insect gut symbionts, Xanthomonas sp. HY-74 and Bacillus sp. HY-75, during PET biodegradation. Both strains degraded PET-containing agar plates, and the sole nutrition source assay showed that HY-74 had different degradation rates depending on the presence of specific carbon and nitrogen sources, whereas HY-75 exhibited comparable degradation across all tested conditions. The two strains biodegraded the PET film with 1.57 ± 0.21% and 1.42 ± 0.46% weight loss after 6 weeks, respectively. Changes in the morphology and structure of the PET films, such as erosion, scratching, and surface roughening, were determined using scanning electron microscopy (SEM). Further, the two strains biodegraded PET powder, broke it into its degradation products, and changed the surface functional groups. This is the first study to investigate the biodegradation of PET by Hymenoptera gut-derived microbes and offers promising insights into the potential applications of insect gut symbionts in PET waste management.
Collapse
Affiliation(s)
| | | | | | | | - Ho-Yong Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (J.-H.K.); (S.-H.L.); (B.-M.L.); (K.-H.S.)
| |
Collapse
|
37
|
Pang G, Li X, Ding M, Jiang S, Chen P, Zhao Z, Gao R, Song B, Xu X, Shen Q, Cai FM, Druzhinina IS. The distinct plastisphere microbiome in the terrestrial-marine ecotone is a reservoir for putative degraders of petroleum-based polymers. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131399. [PMID: 37062095 DOI: 10.1016/j.jhazmat.2023.131399] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Research into plastic-degrading bacteria and fungi is important for understanding how microorganisms can be used to address the problem of plastic pollution and for developing new approaches to sustainable waste management and bioplastic production. In the present study, we isolated 55 bacterial and 184 fungal strains degrading polycaprolactone (PCL) in plastic waste samples from Dafeng coastal salt marshes, Jiangsu, China. Of these, Jonesia and Streptomyces bacteria also showed potential to degrade other types of petroleum-based polymers. The metabarcoding results proved the existence of plastisphere as a distinct ecological niche regardless of the plastic types where 27 bacterial and 29 fungal amplicon sequence variants (ASVs) were found to be significantly (p < 0.05) enriched, including some belonging to Alternaria (Ascomycota, Fungi) and Pseudomonas (Gammaproteobacteria, Bacteria) that were also mined out by the method of cultivation. Further assembly analyses demonstrated the importance of deterministic processes especially the environmental filtering effect of carbon content and pH on bacteria as well as the carbon and cation content on fungi in shaping the plastisphere communities in this ecosystem. Thus, the unique microbiome of the plastisphere in the terrestrial-marine ecotone is enriched with microorganisms that are potentially capable of utilizing petroleum-based polymers, making it a valuable resource for screening plastic biodegraders.
Collapse
Affiliation(s)
- Guan Pang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuesong Li
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyue Ding
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Siqi Jiang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Peijie Chen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Zheng Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen 518107, China
| | - Renwei Gao
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Song
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Xiaowei Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng M Cai
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen 518107, China.
| | | |
Collapse
|
38
|
Stachowiak N, Kowalonek J, Kozlowska J, Burkowska-But A. Stability Studies, Biodegradation Tests, and Mechanical Properties of Sodium Alginate and Gellan Gum Beads Containing Surfactant. Polymers (Basel) 2023; 15:polym15112568. [PMID: 37299365 DOI: 10.3390/polym15112568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The excessive presence of single-use plastics is rapidly degrading our natural environment on a global scale due to their inherent resistance to decomposition. Wet wipes used for personal or household purposes contribute significantly to the accumulation of plastic waste. One potential solution to address this problem involves developing eco-friendly materials that possess the ability to degrade naturally while retaining their washing capabilities. For this purpose, the beads from sodium alginate, gellan gum, and a mixture of these natural polymers containing surfactant were produced using the ionotropic gelation method. Stability studies of the beads by observing their appearance and diameter were performed after incubation in solutions of different pH values. The images showed that macroparticles were reduced in size in an acidic medium and swelled in solution of pH-neutral phosphate-buffered saline. Moreover, all the beads first swelled and then degraded in alkaline conditions. The beads based on gellan gum and combining both polymers were the least sensitive to pH changes. The compression tests revealed that the stiffness of all macroparticles decreased with the increasing pH of the solutions in which they were immersed. The studied beads were more rigid in an acidic solution than in alkaline conditions. The biodegradation of macroparticles was assessed using a respirometric method in soil and seawater. It is important to note that the macroparticles degraded more rapidly in soil than in seawater.
Collapse
Affiliation(s)
- Natalia Stachowiak
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina St. 7, 87-100 Torun, Poland
| | - Jolanta Kowalonek
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina St. 7, 87-100 Torun, Poland
| | - Justyna Kozlowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina St. 7, 87-100 Torun, Poland
| | - Aleksandra Burkowska-But
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska St. 1, 87-100 Torun, Poland
| |
Collapse
|
39
|
Hooda S, Mondal P. Insights into the degradation of high-density polyethylene microplastics using microbial strains: Effect of process parameters, degradation kinetics and modeling. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 164:143-153. [PMID: 37059038 DOI: 10.1016/j.wasman.2023.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
The extensive distribution of microplastics and their abundance around the world has raised a global concern because of the lack of proper disposal channels as well as poor knowledge of their implications on human health. Sustainable remediation techniques are required owing to the absence of proper disposal methods. The present study explores the deterioration process of high-density polyethylene (HDPE) microplastics using various microbes along with the kinetics and modeling of the process using multiple non-linear regression models. Ten different microbial strains were used for the degradation of microplastics for a period of 30 days. Effect of process parameters on the degradation process was studied with the selected five microbial strains that presented the best degradation results. The reproducibility and efficacy of the process were tested for an extended period of 90 days. Fourier-transform infrared spectroscopy (FTIR) and field emission-scanning electron microscopy (FE-SEM) were used for the analysis of microplastics. Polymer reduction and half-life were evaluated. Pseudomonas putida achieved the maximum degradation efficiency of 12.07% followed by Rhodococcus ruber (11.36%), Pseudomonas stutzeri (8.28%), Bacillus cereus (8.26%), and Brevibacillus borstelensis (8.02%) after 90 days. Out of 14 models tested, 5 were found capable of modeling the process kinetics and based on simplicity and statistical data, Modified Michaelis-Menten model (F8; R2 = 0.97) was selected as superior to others. This study successfully establishes the potential of bioremediation of microplastics as the viable process.
Collapse
Affiliation(s)
- Sanjeevani Hooda
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Prasenjit Mondal
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
40
|
Jayan N, Skariyachan S, Sebastian D. The escalated potential of the novel isolate Bacillus cereus NJD1 for effective biodegradation of LDPE films without pre-treatment. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131623. [PMID: 37207482 DOI: 10.1016/j.jhazmat.2023.131623] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
This study focused on the biodegradation of LDPE films using a novel isolate of Bacillus obtained from soil samples collected from a 20-year-old plastic waste dump. The aim was to evaluate the biodegradability of LDPE films treated with this bacterial isolate. The results indicated a 43% weight loss of LDPE films within 120 days of treatment. The biodegradability of LDPE films was confirmed through various testing methods, including BATH, FDA, CO2 evolution tests, and changes in total cell growth count, protein content, viability, pH of the medium, and release of microplastics. The bacterial enzymes, including laccases, lipases, and proteases, were also identified. SEM analysis revealed biofilm formation and surface changes in treated LDPE films, while EDAX analysis showed a reduction in carbon elements. AFM analysis demonstrated differences in roughness compared to the control. Furthermore, wettability increased and tensile strength decreased, confirming the biodegradation of the isolate. FTIR spectral analysis showed changes in skeletal vibrations, such as stretches and bends, in the linear structure of polyethylene. FTIR imaging and GC-MS analysis also confirmed the biodegradation of LDPE films by the novel isolate identified as Bacillus cereus strain NJD1. The study highlights the potentiality of the bacterial isolate for safe and effective microbial remediation of LDPE films.
Collapse
Affiliation(s)
- Nithya Jayan
- Department of Life Sciences, University of Calicut, Malappuram, Kerala 673635, India
| | - Sinosh Skariyachan
- St. Pius X College Rajapuram, Department of Microbiology, Kasaragod, India
| | - Denoj Sebastian
- Department of Life Sciences, University of Calicut, Malappuram, Kerala 673635, India.
| |
Collapse
|
41
|
Mamtimin T, Han H, Khan A, Feng P, Zhang Q, Ma X, Fang Y, Liu P, Kulshrestha S, Shigaki T, Li X. Gut microbiome of mealworms (Tenebrio molitor Larvae) show similar responses to polystyrene and corn straw diets. MICROBIOME 2023; 11:98. [PMID: 37147715 PMCID: PMC10161430 DOI: 10.1186/s40168-023-01550-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/16/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Some insects can degrade both natural and synthetic plastic polymers, their host and gut microbes play crucial roles in this process. However, there is still a scientific gap in understanding how the insect adapted to the polystyrene (PS) diet from natural feed. In this study, we analyzed diet consumption, gut microbiota responses, and metabolic pathways of Tenebrio molitor larvae exposed to PS and corn straw (CS). RESULTS T. molitor larvae were incubated under controlled conditions (25 ± 1 °C, 75 ± 5% humidity) for 30 days by using PS foam with weight-, number-, and size-average molecular weight (Mw, Mn, and Mz) of 120.0, 73.2, and 150.7 kDa as a diet, respectively. The larvae exhibited lower PS consumption (32.5%) than CS (52.0%), and these diets had no adverse effects on their survival. The gut microbiota structures, metabolic pathways, and enzymatic profiles of PS- and CS-fed larvae showed similar responses. The gut microbiota of larvae analysis indicated Serratia sp., Staphylococcus sp., and Rhodococcus sp. were associated with both PS and CS diets. Metatranscriptomic analysis revealed that xenobiotics, aromatic compounds, and fatty acid degradation pathways were enriched in PS- and CS-fed groups; laccase-like multicopper oxidases, cytochrome P450, monooxygenase, superoxidase, and dehydrogenase were involved in lignin and PS degradation. Furthermore, the upregulated gene lac640 in both PS- and CS-fed groups was overexpressed in E. coli and exhibited PS and lignin degradation ability. CONCLUSIONS The high similarity of gut microbiomes adapted to biodegradation of PS and CS indicated the plastics-degrading ability of the T. molitor larvae originated through an ancient mechanism that degrades the natural lignocellulose. Video Abstract.
Collapse
Affiliation(s)
- Tursunay Mamtimin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China.
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou, China.
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Pengya Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Qing Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Xiaobiao Ma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Yitian Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Saurabh Kulshrestha
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | - Toshiro Shigaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China.
| |
Collapse
|
42
|
Thew CXE, Lee ZS, Srinophakun P, Ooi CW. Recent advances and challenges in sustainable management of plastic waste using biodegradation approach. BIORESOURCE TECHNOLOGY 2023; 374:128772. [PMID: 36828218 DOI: 10.1016/j.biortech.2023.128772] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Versatility and desirable attributes of synthetic plastics have greatly contributed towards their wide applications. However, vast accumulation of plastic wastes in environment as a result of their highly recalcitrant nature has given rise to plastic pollution. Existing strategies in alleviating plastic wastes accumulation are inadequate, and there is a pressing need for alternative sustainable approaches in tackling plastic pollution. In this context, plastic biodegradation has emerged as a sustainable and environmental-friendly approach in handling plastic wastes accumulation, due to its milder and less energy-intensive conditions. In recent years, extensive research effort has focused on the identification of microorganisms and enzymes with plastic-degrading abilities. This review aims to provide a timely and holistic view on the current status of plastic biodegradation, focusing on recent breakthroughs and discoveries in this field. Furthermore, current challenges associated to plastic biodegradation are discussed, and the future perspectives for continuous advancement of plastic biodegradation are highlighted.
Collapse
Affiliation(s)
- Crystal Xue Er Thew
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Zhi Sen Lee
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Penjit Srinophakun
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
43
|
Ge J, Wang M, Liu P, Zhang Z, Peng J, Guo X. A systematic review on the aging of microplastics and the effects of typical factors in various environmental media. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
44
|
Kutraite I, Malys N. Development and Application of Whole-Cell Biosensors for the Detection of Gallic Acid. ACS Synth Biol 2023; 12:533-543. [PMID: 36724292 PMCID: PMC9942251 DOI: 10.1021/acssynbio.2c00537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Gallic acid is a prevalent secondary plant metabolite distinguished as one of the most effective free-radical scavengers among phenolic acids. This compound is also known for its cytotoxic, anti-inflammatory, and antimicrobial activities. Bulk quantities of gallic acid are conventionally produced by acid hydrolysis of tannins, a costly and environmentally hazardous process. With the aim to develop more sustainable approaches, microbial bioproduction strategies have been attempted recently. To advance synthetic biology and metabolic engineering of microorganisms for gallic acid production, we characterize here a transcription factor-based inducible system PpGalR/PPP_RS13150 that responds to the extracellular gallic acid in a dose-dependent manner in Pseudomonas putida KT2440. Surprisingly, this compound does not mediate induction when PpGalR/PPP_RS13150 is used in non-native host background. We show that the activation of the inducible system requires gallate dioxygenase activity encoded by galA gene. The 4-oxalomesaconic acid, an intermediate of gallic acid-metabolism, is identified as the effector molecule that interacts with the transcription factor GalR mediating activation of gene expression. Introduction of galA gene along galR enables development of biosensors suitable for detection and monitoring of gallic acid extracellularly using non-native hosts such as E. coli and C. necator. Moreover, the P. putida-based biosensor's applicability is demonstrated by detecting and measuring gallic acid in extracts of Camellia sinensis leaves. This study reports the strategy, which can be applied for developing gallic acid biosensors using bacterial species outside Pseudomonas genus.
Collapse
Affiliation(s)
- Ingrida Kutraite
- Bioprocess
Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų Street 19, LT-50254Kaunas, Lithuania
| | - Naglis Malys
- Bioprocess
Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų Street 19, LT-50254Kaunas, Lithuania,Department
of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų Street 19, LT-50254Kaunas, Lithuania,
| |
Collapse
|
45
|
Li XL, Ma K, Xu F, Xu TQ. Advances in the Synthesis of Chemically Recyclable Polymers. Chem Asian J 2023; 18:e202201167. [PMID: 36623942 DOI: 10.1002/asia.202201167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Indexed: 01/11/2023]
Abstract
The development of modern society is closely related to polymer materials. However, the accumulation of polymer materials and their evolution in the environment causes not only serious environmental problems, but also waste of resources. Although physical processing can be used to reuse polymers, the properties of the resulting polymers are significantly degraded. Chemically recyclable polymers, a type of polymer that degrades into monomers, can be an effective solution to the degradation of polymer properties caused by physical recycling of polymers. The ideal chemical recycling of polymers, i. e., quantitative conversion of the polymer to monomers at low energy consumption and repolymerization of the formed monomers into polymers with comparable properties to the original, is an attractive research goal. In recent years, significant progress has been made in the design of recyclable polymers, enabling the regulation of the "polymerization-depolymerization" equilibrium and closed-loop recycling under mild conditions. This review will focus on the following aspects of closed-loop recycling of poly(sulfur) esters, polycarbonates, polyacetals, polyolefins, and poly(disulfide) polymer, illustrate the challenges in this area, and provide an outlook on future directions.
Collapse
Affiliation(s)
- Xin-Lei Li
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Kai Ma
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Fei Xu
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Tie-Qi Xu
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
46
|
Zhang C, Mu Y, Li T, Jin FJ, Jin CZ, Oh HM, Lee HG, Jin L. Assembly strategies for polyethylene-degrading microbial consortia based on the combination of omics tools and the "Plastisphere". Front Microbiol 2023; 14:1181967. [PMID: 37138608 PMCID: PMC10150012 DOI: 10.3389/fmicb.2023.1181967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Numerous microorganisms and other invertebrates that are able to degrade polyethylene (PE) have been reported. However, studies on PE biodegradation are still limited due to its extreme stability and the lack of explicit insights into the mechanisms and efficient enzymes involved in its metabolism by microorganisms. In this review, current studies of PE biodegradation, including the fundamental stages, important microorganisms and enzymes, and functional microbial consortia, were examined. Considering the bottlenecks in the construction of PE-degrading consortia, a combination of top-down and bottom-up approaches is proposed to identify the mechanisms and metabolites of PE degradation, related enzymes, and efficient synthetic microbial consortia. In addition, the exploration of the plastisphere based on omics tools is proposed as a future principal research direction for the construction of synthetic microbial consortia for PE degradation. Combining chemical and biological upcycling processes for PE waste could be widely applied in various fields to promote a sustainable environment.
Collapse
Affiliation(s)
- Chengxiao Zhang
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yulin Mu
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Taihua Li
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Feng-Jie Jin
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Chun-Zhi Jin
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
| | - Hyung-Gwan Lee
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
- Hyung-Gwan Lee,
| | - Long Jin
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- *Correspondence: Long Jin,
| |
Collapse
|
47
|
Yin Q, You S, Zhang J, Qi W, Su R. Enhancement of the polyethylene terephthalate and mono-(2-hydroxyethyl) terephthalate degradation activity of Ideonella sakaiensis PETase by an electrostatic interaction-based strategy. BIORESOURCE TECHNOLOGY 2022; 364:128026. [PMID: 36174890 DOI: 10.1016/j.biortech.2022.128026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The serious environmental pollution that came up with the continuously growing demand for polyethylene terephthalate (PET) has attracted global concern. The IsPETase which has shown the highest PET degradation activity under ambient temperature is a promising enzyme for PET biodegradation, while poor thermostability limited its practical application. Herein, an electrostatic interaction-based strategy was applied for rational design of IsPETase towards enhanced thermostability. The IsPETaseI139R variant displayed the highest Tm value of 56.4 °C and 3.6-times higher PET degradation activity. Molecular simulations demonstrated that the introduction of salt bridges stabilized the local structures, resulting in robust thermostability. Meanwhile, the IsPETaseS92K/D157E/R251A not only exhibited higher thermostability but also showed a 1.74-fold kcat increase towards mono-(2-hydroxyethyl) terephthalate, which ultimately achieved PET depolymerization to complete monomer TPA. Collectively, the electrostatic interaction-based strategy, together with the derived IsPETase variants, could help promote the bio-recycle of PET, reducing the severe global burden of PET waste.
Collapse
Affiliation(s)
- Qingdian Yin
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Shengping You
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China
| | - Jiaxing Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China.
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
48
|
Kim NK, Lee SH, Park HD. Current biotechnologies on depolymerization of polyethylene terephthalate (PET) and repolymerization of reclaimed monomers from PET for bio-upcycling: A critical review. BIORESOURCE TECHNOLOGY 2022; 363:127931. [PMID: 36100185 DOI: 10.1016/j.biortech.2022.127931] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The production of polyethylene terephthalate (PET) has drastically increased in the past half-century, reaching 30 million tons every year. The accumulation of this recalcitrant waste now threatens diverse ecosystems. Despite efforts to recycle PET wastes, its rate of recycling remains limited, as the current PET downcycling is mostly unremunerative. To address this problem, PET bio-upcycling, which integrates microbial depolymerization of PET followed by repolymerization of PET-derived monomers into value-added products, has been suggested. This article critically reviews current understanding of microbial PET hydrolysis, the metabolic mechanisms involved in PET degradation, PET hydrolases, and their genetic improvement. Furthermore, this review includes the use of meta-omics approaches to search PET-degrading microbiomes, microbes, and putative hydrolases. The current development of biosynthetic technologies to convert PET-derived materials into value-added products is also comprehensively discussed. The integration of various depolymerization and repolymerization biotechnologies enhances the prospects of a circular economy using waste PET.
Collapse
Affiliation(s)
- Na-Kyung Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Sang-Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea.
| |
Collapse
|
49
|
Effect of seeding biofloc on the nitrification establishment in moving bed biofilm reactor (MBBR). AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Marczak D, Lejcuś K, Kulczycki G, Misiewicz J. Towards circular economy: Sustainable soil additives from natural waste fibres to improve water retention and soil fertility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157169. [PMID: 35798103 DOI: 10.1016/j.scitotenv.2022.157169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Human activity is accompanied by the introduction of excessive amounts of artificial materials, including geosynthetics, into the environment, causing global environmental pollution. Moreover, climate change continues to negatively affect global water resources. With the intensification of environmental problems, material reusability and water consumption limitations have been proposed. This study replaced synthetic soil additives with biodegradable materials and analysed the potential and sustainable processing of natural fibrous materials, which form problematic waste. Waste fibres are the basis of innovative soil water storage technologies in the form of biodegradable and water-absorbing geocomposites (BioWAG). We analysed the influence of BioWAGs on plant vegetation and the environment through a three-year field experiment. Furthermore, biomass increases, drought effect reductions, and biodegradation mechanisms were analysed. Natural waste fibres had a positive influence, as they released easily accessible nutrients into the soil during biodegradation. BioWAGs had a positive influence on the biometric parameters of grass, increasing biomass growth by 430 %. Our results indicated that this is an effective method of waste fibre management that offers the possibility to manufacture innovative, environmentally friendly materials in compliance with the objectives of circular economy and the expectations of users.
Collapse
Affiliation(s)
- Daria Marczak
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, Wrocław 50-363, Poland
| | - Krzysztof Lejcuś
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, Wrocław 50-363, Poland.
| | - Grzegorz Kulczycki
- Wrocław University of Environmental and Life Sciences, Department of Plant Nutrition, Wrocław 50-363, Poland
| | - Jakub Misiewicz
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, Wrocław 50-363, Poland
| |
Collapse
|