1
|
Han Y, Zhou S, Yang Y, Hu S, Zhang W, Shen G, Peng C. Further negative effect of fibrous microplastics to the bioaccumulation and toxicity of decabromodiphenyl ethane on zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 980:179577. [PMID: 40319805 DOI: 10.1016/j.scitotenv.2025.179577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 04/06/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Co-pollution of microplastics (MPs) and novel brominated flame retardants (NBFRs) in aquatic environments is becoming increasingly common in aquatic environments, raising concerns about their comprehensive ecological impacts. This study investigated the effects of fibrous polyethylene terephthalate (PET) MPs on the bioaccumulation and toxicity of decabromodiphenyl ethane (DBDPE) in zebrafish (Danio rerio). In a 28-day water exposure experiment, co-exposure of fibrous MPs and DBDPE significantly increased the bioavailability of DBDPE in zebrafish and prolonged the half-life of DBDPE in vivo. The elimination rates of DBDPE concentration in muscles of single DBDPE exposure and co-exposure groups were 61.58 % and 56.63 %, respectively. Additionally, the co-exposure exacerbated intestinal damage, including structural deterioration and nutrients depletion, disrupted gut microbiota, promoted the enrichment of genes related to reproductive toxicity, and affected the gut-brain axis, indicating complex toxic interactions in zebrafish. Furthermore, genera of Aurantimicrobium, Cypionkella, and Gemmobacter were the gut microbes significantly associated with main differentially expressed genes(DEGs)in the brain. This study emphasized the exacerbating role of fibrous MPs in DBDPE toxicity, providing new insights into the ecological risks posed by the coexistence of MPs and NBFRs in aquatic ecosystems.
Collapse
Affiliation(s)
- Yanna Han
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shanqi Zhou
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Xianghu Laboratory, Hangzhou 311231, China
| | - Yuhe Yang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, China
| | - Wei Zhang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Genxiang Shen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, China
| | - Cheng Peng
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, China.
| |
Collapse
|
2
|
Wang R, Zeng W, Miao H, Gong Q, Peng Y. Novel mixotrophic denitrification biofilter for efficient nitrate removal using dual electron donors of polycaprolactone and thiosulfate. BIORESOURCE TECHNOLOGY 2025; 417:131836. [PMID: 39557099 DOI: 10.1016/j.biortech.2024.131836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/27/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
A novel mixotrophic denitrification biofilter for nitrate removal using polycaprolactone and thiosulfate (MD-PT) as electron donors was investigated. MD-PT achieved high nitrate removal efficiency of approximately 99.8 %. The nitrate removal rates of MD-PT reached 1820 g N/m3/d, which was 304 g N/m3/d higher than that of autotrophic denitrification biofilter using thiosulfate (AD-T). Autotrophic and heterotrophic denitrification pathways in MD-PT were responsible for 67.6-94.5 % and 4.7-32.4 % of the nitrate removal, respectively. The production of SO42- in MD-PT was lower than that in AD-T, and the effluent pH was maintained at approximately 7.3 without acid-base neutralization. The abundance of key genes involved in carbon, nitrogen, and sulfur transformation was enhanced, which improved the nitrate removal of MD-PT. Alicycliphilus and Simplicispira related to organic compounds degradation were enriched after the addition of polycaprolactone. This research provided new insights into mixotrophic denitrification systems.
Collapse
Affiliation(s)
- Ruikang Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Haohao Miao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Qingteng Gong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
3
|
Huang Z, Hong Y, Cui Y, Guo H, Long Y, Ye J. Efficient adsorption of ofloxacin in a novel nanocomposite formed by nano-hexagonal boron nitride fused with zeolite imidazolite skeleton-8: Experimental and molecular dynamics simulation studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117536. [PMID: 39675073 DOI: 10.1016/j.ecoenv.2024.117536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
With the widespread application of antibiotics in the medical field, associated wastewater pollution has become a critical environmental issue, creating potential risks to ecosystems and public health. This study synthesized three novel nanocomposite materials, ZIF-8@h-BN-X, using an in-situ growth method by adjusting h-BN content. Compared to pure two-dimensional hexagonal boron nitride (h-BN), their adsorption capacities for ofloxacin (OFL) in solution were evaluated. Results showed that zeolitic imidazolate framework-8 (ZIF-8) attached and grew on the h-BN surface, altering surface functional groups and significantly enhancing the nanocomposite's adsorption effect on OFL. Adsorption capacity depended on the initial h-BN content, with lower X content resulting in more active sites and stronger adsorption capacity. Equilibrium adsorption capacities were 145.46, 124.91, and 58.16 mg·g-1 for X values of 29.82 %, 45.93 %, and 62.95 %, respectively. Molecular dynamics simulations revealed interaction energies of -109.13 kcal·mol-1 between ZIF-8@h-BN-X and OFL, compared to -84.78 kcal·mol-1 between pure h-BN and OFL, demonstrating the superior adsorption performance of ZIF-8@h-BN-X. OFL adsorption on ZIF-8@h-BN-X followed the Langmuir isotherm model and pseudo-second-order adsorption kinetics. Thermodynamic parameters indicated that the adsorption process of ZIF-8@h-BN-X was exothermic and spontaneous when compared to h-BN alone. This study highlights the significant potential of ZIF-8@h-BN-X in treating antibiotic-contaminated wastewater, while providing theoretical and practical insights for developing novel, efficient two-dimensional nanocomposite adsorbents.
Collapse
Affiliation(s)
- Zefang Huang
- School of Environment and Climate, Jinan University, Guangzhou 510630, China
| | - Yuankai Hong
- School of Environment and Climate, Jinan University, Guangzhou 510630, China
| | - Yiqun Cui
- School of Environment and Climate, Jinan University, Guangzhou 510630, China
| | - Huiying Guo
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Yan Long
- School of Environment and Climate, Jinan University, Guangzhou 510630, China
| | - Jinshao Ye
- School of Environment and Climate, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
4
|
Le ND, Dinh TTH, Vu TH, Le PT, Nguyen TMH, Hoang TTH, Rochelle-Newall E, Phung TXB, Duong TT, Luu THT, Kieu TLP, Nguyen TAH, Nguyen TD, Le TPQ. Occurrence and ecological risks of antibiotics and antiparasitics in surface water in urban lakes in Hanoi city, Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1447-1465. [PMID: 39733033 DOI: 10.1007/s11356-024-35726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/01/2024] [Indexed: 12/30/2024]
Abstract
The presence of antibiotics in the environment is of significant concern due to their adverse effects on aquatic ecosystems. This study provides an assessment of potential ecological risks (RQ) associated with the concentrations of eight antibiotics and antiparasitics (amoxicillin-AMO, azithromycin-AZI, ciprofloxacine-CIP, ofloxacine-OFL, oxfendazole-OXF, lincomycin-LIN, sulfacetamide-SCE and sulfamethoxazole-SME) in the surface water of 13 urban lakes in Hanoi city, Vietnam during the period 2021-2023. The findings revealed considerable variations in the total concentrations of these 8 substances (TAB), ranging from below the method detection limit (< MDL) to 2240 ng L-1 with an average of 330.4 ng L-1. Among the 8 antibiotics and antiparasitics examined, OXF, AMO, and SCE were undetectable, while the others were present at a range of concentrations (in ng L-1): OFL: 129 (< MDL-1530); CIP: 87.1 (< MDL-608); LIN: 72.7 (< MDL-676); SME: 41.5 (< MDL-504); AZI: 0.03 (< MDL-1). The calculated RQ values for these antibiotics in the Hanoi lakes indicated a high ecological risk for OFL and CIP to bacteria, a medium to high risk for SME for phytoplankton, a high risk for LIN to phytoplankton, while the risk for invertebrates was deemed negligible for all antibiotics across all lakes. The strong, positive correlation between TAB concentrations and different microbial and environmental variables (Escherichia coli, ammonium, phosphate, and chemical oxygen demand) suggests that untreated domestic wastewater is the primary pollution source in these Hanoi lakes. These results should be used to raise public awareness and to encourage the implementation of strategies targeted at managing antibiotic use. They also underscore the need to reduce inputs of untreated, antibiotic-containing wastewater into urban lakes, such as those in Hanoi and advocate for the establishment of national limits for antibiotic concentrations in surface water.
Collapse
Affiliation(s)
- Nhu Da Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi, Vietnam
| | - Thi Thanh Huyen Dinh
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
- Hanoi National University of Education, 136 Xuan Thuy, Cau Giay District, Hanoi, Vietnam
| | - Thi Huong Vu
- Hanoi National University of Education, 136 Xuan Thuy, Cau Giay District, Hanoi, Vietnam
| | - Phuong Thu Le
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi, Vietnam
| | - Thi Mai Huong Nguyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Thi Thu Ha Hoang
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Emma Rochelle-Newall
- Sorbonne Université, Université Paris-Est Créteil, IRD, CNRS, INRAe, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | | | - Thi Thuy Duong
- Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Thi Huyen Trang Luu
- National Institute for Food Control (NIFC), 65 Pham Than Duat, Hanoi, Vietnam
| | - Thi Lan Phuong Kieu
- National Institute for Food Control (NIFC), 65 Pham Than Duat, Hanoi, Vietnam
| | - Thi Anh Huong Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University-Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Tien Dat Nguyen
- Center for High Technology Research and Development, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Thi Phuong Quynh Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi, Vietnam.
| |
Collapse
|
5
|
Wang G, Geng Q, Xu L, Li X, Pan X, Zheng J, He R, He M, Xu X, Zhang S. Rice husk biochar resuscitates the microecological functions of heavy-metal contaminated soil after washing by enriching functional bacteria. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136430. [PMID: 39522155 DOI: 10.1016/j.jhazmat.2024.136430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/15/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Biochar has great potential for simultaneously improving soil ecological functions and eliminating environmental pollutants. However, studies on this strategy in the restoration of ecological functions in chelator-washed soil are lacking, and the effect of biochar on the structure, functions, and microbial interactions of washed soil microbiomes are unclear. Hence, the effect of rice husk biochar (RHB, 2 %) on the physicochemical properties, heavy metal fractions, and microbial community structure of glutamate-N, N-diacetic acid (GLDA)- and ethylenediaminetetraacetic acid (EDTA)- washed remediated soil were investigated. Results showed that the RHB addition restored the washed soil physical structure (pores and agglomerates) and meanwhile, the soil colloidal sheet sweeps increased by 20.49 % and 102.07 % in the z-axis, respectively. Additionally, RHB significantly increased washed soil pH (P < 0.05) and alkaline phosphatase and urease activities, while decreased acid phosphatase and glucosidase activities. The Observed-species and Shannon index were significantly higher in soil treated by RHB combined with GLDA and EDTA than those treated with GLDA and EDTA alone (P < 0.05). GLDA washing coupled RHB treatment enriched key bacterial groups such as MND1, Chelativorans, and Ellin6067, while EDTA washing coupled RHB treatment enriched Sreroidobacter, Micromonospora, and Reyranella, that both related to C-, N-, and P- cycles. Importantly, RHB addition could enrich functional bacteria by increasing bacterial resistance, including glucose metabolic homeostasis and metal ion resistance. The observed enrichment of functional bacteria provided evidence for the enhancement of soil nutrient cycles, indicative of improved soil functions by combination of chelator washing and biochar amended.
Collapse
Affiliation(s)
- Guiyin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang 611130, China
| | - Qing Geng
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, China
| | - Longfei Xu
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, China.
| | - Xia Li
- Institute of Quality Standard and Testing Technology Research of Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Xiaomei Pan
- Chengdu Agricultural College, Wenjiang 611130, China
| | - Jinjie Zheng
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, China
| | - Ruiqi He
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, China
| | - Mingdong He
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, China
| | - Xiaoxun Xu
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang 611130, China
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang 611130, China
| |
Collapse
|
6
|
Wang SX, Yao W, Yang CX, He WL, Li J, Huang BC, Jin RC. The nexus between aeration intensity and organic carbon capture in contact-stabilization process: Insights from molecular structure transition of dissolved organic matters. WATER RESEARCH 2024; 268:122769. [PMID: 39536641 DOI: 10.1016/j.watres.2024.122769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/01/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Traditional energy-intensive pollution control pattern poses great challenges to the sustainable development of urban cities, necessitating the implementation of more compact and cost-effective biological treatment technology. High-rate contact stabilization (HiCS) process can effectively capture low-concentration organic carbon matters from municipal wastewater. However, the role of dissolved oxygen (DO) concentration at stabilization phase-a critical determinant of carbon capture efficiency-remains poorly understood, thus hindering its operation optimization and application. This work investigated the impact of DO content at the stabilization phase on the effluent quality and carbon capture efficiency of HiCS process from the perspectives of sludge dissolved organic matter (DOM) composition and microbial metabolism activity changes. The results showed that optimal carbon capture efficiency (52.1 %) and the lowest effluent chemical oxygen demand concentration were achieved at a DO concentration of 1 mg/L. Elevated DO levels would increase the aromaticity of DOM in sludge, rendering it more recalcitrant to microbial degradation. In addition, higher DO concentration induced a metabolic shift towards endogenous respiration among the microbial community, leading to the increased release of DOM and microbial metabolites, which in turn deteriorated the effluent quality. The findings of this work highlight the necessity of controlling appropriate aeration intensity when applying HiCS in practical application, to both effectively minimize organic carbon mineralization and operational energy consumption while without sacrificing pollutant removal performance.
Collapse
Affiliation(s)
- Shi-Xu Wang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310018, China
| | - Wei Yao
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310018, China
| | - Chao-Xi Yang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310018, China
| | - Wen-Long He
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310018, China
| | - Jing Li
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310018, China
| | - Bao-Cheng Huang
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China; Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou 311121, China.
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| |
Collapse
|
7
|
Hu Y, Sun S, Gu X, Li Z, Zhang J, Xing Y, Wang L, Zhang W. Linking the removal of enrofloxacin to the extracellular polymers of microalgae in water bodies: A case study focusing on the shifts in microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48062-48072. [PMID: 39017865 DOI: 10.1007/s11356-024-34238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
Microalgae can promote antibiotic removal, which has attracted growing attention. However, its synergistic removal performance with bacteria in antibiotic pollutants is still poorly understood. In this study, firstly, we selected two green algae (Dictyosphaerium sp. and Chlorella sp.) and exposed them to Enrofloxacin (ENR) to observe their extracellular polysaccharides (EPS) concentration dynamic and the removal of antibiotics. Secondly, EPS was extracted and added to in situ lake water (no algae) to investigate its combined effect with bacteria. The results indicate that both Dictyosphaerium sp. and Chlorella sp. exhibited high tolerance to ENR stress. When the biomass of microalgae was low, ENR could significantly stimulate algae to produce EPS. The removal rates of Dictyosphaerium sp. and Chlorella sp. were 15.8% and 10.5%, respectively. The addition of EPS can both alter the microbial community structure in the lake water and promote the removal of ENR. The LEfSe analysis showed that there were significant differences in the microbial marker taxa, which promoted the increase of special functional bacteria for decomposing ENR, between the EPS-added group and the control group. The EPS of Dictyosphaerium sp. increased the abundance of Moraxellaceae and Spirosomaceae, while the EPS of Chlorella sp. increased the abundance of Sphingomonadaceae and Microbacteriaceae. Under the synergistic effect, Chlorella sp. achieved a maximum removal rate of 24.2%, while Dictyosphaerium sp. achieved a maximum removal rate of 28.9%. Our study provides new insights into the removal performance and mechanism of antibiotics by freshwater microalgae in water bodies and contribute to the development of more effective water treatment strategies.
Collapse
Affiliation(s)
- Youyin Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Shangsheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuewei Gu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Ziyi Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jialin Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Yawei Xing
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Liqing Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
8
|
Wang J, Ran B, Peng Y, An Q, Zhao B. Evaluation of aerobic granulation performance bioaugmented with the auto-aggregating bacterium Pseudomonas stutzeri strain XL-2 with heterotrophic nitrification-aerobic denitrification capacity. BIORESOURCE TECHNOLOGY 2024; 403:130869. [PMID: 38777236 DOI: 10.1016/j.biortech.2024.130869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
In this study, the possibility of an auto-aggregating bacterium Pseudomonas strain XL-2 with heterotrophic nitrification-aerobic denitrification capacity for improving granulation and nitrogen removal was evaluated. The results showed that the supplementation of strain XL-2 promoted granulation, making R1 (experimental group with strain XL-2) dominated by granules at 14 d, which was 12 days earlier than R2 (control group without strain XL-2). This was attributed to the promotion of extracellular polymeric substances (EPS) secretion, particularly proteins by adding strain XL-2, thereby improving the hydrophobicity of sludge and altering the proteins secondary structures to facilitate aggregation. Meanwhile, adding strain XL-2 improved simultaneous nitrification and denitrification efficiency of R1. Microbial community analysis indicated that strain XL-2 successfully proliferated in aerobic granule sludge and might induce the enrichment of genera such as Flavobacterium and Paracoccus that were favorable for EPS secretion and denitrification, jointly promoting granulation and enhancing nitrogen removal efficiency.
Collapse
Affiliation(s)
- Jinyi Wang
- The Key Laboratory of Eco-Environment in Three Gorges Reservoir Region, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Binbin Ran
- The Key Laboratory of Eco-Environment in Three Gorges Reservoir Region, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yongxue Peng
- The Key Laboratory of Eco-Environment in Three Gorges Reservoir Region, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Qiang An
- The Key Laboratory of Eco-Environment in Three Gorges Reservoir Region, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Bin Zhao
- The Key Laboratory of Eco-Environment in Three Gorges Reservoir Region, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
9
|
Zhou J, Kang J, Lin C, Xu Q, Yang W, Fan K, Li J. Antibiotics in Surface Sediments from the Anning River in Sichuan Province, China: Occurrence, Distribution, and Risk Assessment. TOXICS 2024; 12:411. [PMID: 38922091 PMCID: PMC11209513 DOI: 10.3390/toxics12060411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024]
Abstract
The occurrence, distribution, and ecological risk assessment of 36 antibiotics from five groups, including macrolides (MLs), fluoroquinolones (FQs), tetracyclines (TCs), amphenicols (APs), and sulfonamides (SAs), were investigated for the first time in the Anning River, Sichuan Province, China. The results show that antibiotics were widely present in the sediments of the Anning River, with a total of 22 antibiotics detected. FQs were among the most abundant antibiotics, followed by TCs, MLs, APs, and SAs. The total concentrations of antibiotics in surface sediments varied from 0.05 to 53.35 ng/g, with an average of 8.09 ng/g. Among these groups, MLs, FQs, and TCs emerged as the predominant classes of antibiotics. The midstream sediments showed the highest residual levels of antibiotics, with lower levels observed in the downstream and upstream sediments. Anthropogenic activities, such as human clinical practices and animal breeding, might be sources of antibiotics released into the river. An ecological risk assessment revealed that trimethoprim from the SA group exhibited high risks, and MLs showed medium risks in the Anning River, whereas most antibiotics presented minimal to low risks. This study provides valuable information on antibiotic pollution in the upstream region of the Yangtze River, and future management measures are needed for the Anning River.
Collapse
Affiliation(s)
- Junlie Zhou
- School of Environment & Resource, Xichang University, Xichang 615000, China
| | - Jianglin Kang
- School of Environment & Resource, Xichang University, Xichang 615000, China
| | - Chunyan Lin
- School of Environment & Resource, Xichang University, Xichang 615000, China
| | - Qi Xu
- School of Environment & Resource, Xichang University, Xichang 615000, China
| | - Wanrong Yang
- School of Environment & Resource, Xichang University, Xichang 615000, China
| | - Ke Fan
- School of Environment & Resource, Xichang University, Xichang 615000, China
| | - Jinrong Li
- School of Sciences, Xichang University, Xichang 615000, China
| |
Collapse
|
10
|
Zhao Y, Zhang J, Chen Z, Wang Q. Bio-promoter mediated denitrification recovery from Cd(II) stress: Microbial activity resilience, electron behavior enhancement and microbial community evolution. BIORESOURCE TECHNOLOGY 2024; 402:130780. [PMID: 38703963 DOI: 10.1016/j.biortech.2024.130780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Denitrification is fragile to toxic substances, while currently there are few regulation strategies for toxic substance-stressed denitrification. This study proposed a combined bio-promoter composed of basic bio-promoter (cytokinin, biotin, L-cysteine, and flavin adenine dinucleotide) and phosphomolybdic acid (PMo12) to recover cadmium(II) (Cd(II)) stressed denitrification. By inhibiting 58.02% and 48.84% of nitrate reductase and nitrite reductase activities, Cd(II) caused all the influent nitrogen to accumulate as NO3--N and NO2--N. Combined bio-promoter shortened the recovery time by 21 cycles and improved nitrogen removal efficiency by 10% as the synergistic effect of basic bio-promoter and PMo12. Basic bio-promoter enhanced antioxidant enzyme activities for reactive oxygen species clearance and recovered 23.30% of nicotinamide adenine dinucleotide for sufficient electron donors. Meanwhile, PMo12 recovered electron carriers contents, increasing the electron transfer activity by 60.81% compared with self-recovery. Bio-promoters enhanced the abundance of denitrifiers Seminibacterium and Dechloromonas, which was positively correlated with rapid recovery of denitrification performance.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jinshuang Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhihui Chen
- China Water Resources Bei Fang Investigation, Design & Research CO.LTD, China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
11
|
Mu X, Zhang S, Lu J, Huang Y, Ji J. Fate and removal of fluoroquinolone antibiotics in mesocosmic wetlands: Impact on wetland performance, resistance genes and microbial communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:133740. [PMID: 38569335 DOI: 10.1016/j.jhazmat.2024.133740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/09/2024] [Accepted: 02/05/2024] [Indexed: 04/05/2024]
Abstract
The fate of fluoroquinolone antibiotics norfloxacin and ofloxacin were investigated in mesocosmic wetlands, along with their effects on nutrients removal, antibiotic resistance genes (ARGs) and epiphytic microbial communities on Hydrilla verticillate using bionic plants as control groups. Approximately 99% of norfloxacin and ofloxacin were removed from overlaying water, and H. verticillate inhibited fluoroquinolones accumulation in surface sediments compared to bionic plants. Partial least squares path modeling showed that antibiotics significantly inhibited the nutrient removal capacity (0.55) but had no direct effect on plant physiology. Ofloxacin impaired wetland performance more strongly than norfloxacin and more impacted the primary microbial phyla, whereas substrates played the most decisive role on microbial diversities. High antibiotics concentration shifted the most dominant phyla from Proteobacteria to Bacteroidetes and inhibited the Xenobiotics biodegradation function, contributing to the aggravation in wetland performance. Dechloromonas and Pseudomonas were regarded as the key microorganisms for antibiotics degradation. Co-occurrence network analysis excavated that microorganisms degrade antibiotics mainly through co-metabolism, and more complexity and facilitation/reciprocity between microbes attached to submerged plants compared to bionic plants. Furthermore, environmental factors influenced ARGs mainly by altering the community dynamics of differential bacteria. This study offers new insights into antibiotic removal and regulation of ARGs accumulation in wetlands with submerged macrophyte.
Collapse
Affiliation(s)
- Xiaoying Mu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Songhe Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Jianhui Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yangrui Huang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianghao Ji
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Ma N, Zhang H, Yuan L, Li Y, Yang W, Huang Y. Characterization and removal mechanism of fluoroquinolone-bioremediation by fungus Cladosporium cladosporioides 11 isolated from aquacultural sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29525-29535. [PMID: 38575819 DOI: 10.1007/s11356-024-33142-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Antibiotics have been widely detected in aquatic environments, and fungal biotransformation receives considerable attention for antibiotic bioremediation. Here, a fungus designated Cladosporium cladosporioides 11 (CC11) with effective capacity to biotransform fluoroquinolones was isolated from aquaculture pond sediments. Enrofloxacin (ENR), ciprofloxacin (CIP) and ofloxacin (OFL) were considerably abated by CC11, and the antibacterial activities of the fluoroquinolones reduced significantly after CC11 treatment. Transcriptome analysis showed the removal of ENR, CIP and OFL by CC11 is a process of enzymatic degradation and biosorption which consists well with ligninolytic enzyme activities and sorption experiments under the same conditions. Additionally, CC11 significantly removed ENR in zebrafish culture water and reduced the residue of ENR in zebrafish. All these results evidenced the potential of CC11 as a novel environmentally friendly process for the removal of fluoroquinolones from aqueous systems and reduce fluoroquinolone residues in aquatic organisms.
Collapse
Affiliation(s)
- Ning Ma
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China
| | - Hongyu Zhang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China
| | - Wenbo Yang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China.
| |
Collapse
|
13
|
Fu M, Qiu S, Wang J, Zhu Y, Yuan M, Wang L. Tourmaline mediated enhanced autotrophic denitrification: The mechanisms of electron transfer and Paracoccus enrichment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169847. [PMID: 38185169 DOI: 10.1016/j.scitotenv.2023.169847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Autotrophic denitrification (AD) without carbon source is an inevitable choice for denitrification of municipal wastewater under the carbon peaking and carbon neutrality goals. This study first employed sulfur-tourmaline-AD (STAD) as an innovative nitrate removal trial technique in wastewater. STAD demonstrated a 2.23-fold increase in nitrate‑nitrogen (NO3--N) removal rate with reduced nitrite‑nitrogen (NO2--N) accumulation, effectively removing 99 % of nitrogen pollutants compared to sulfur denitrification. Some denitrifiers microorganisms that could secrete tyrosine, tryptophan, and aromatic protein (extracellular polymeric substances (EPS)). Moreover, according to the EPS composition and characteristics analysis, the secretion of loosely bound extracellular polymeric substances (LB-EPS) that bound to the bacterial endogenous respiration and enriched microbial abundance, was produced more in the STAD system, further improving the system stability. Furthermore, the addition of tourmaline (Tm) facilitated the discovery of a new genus (Paracoccus) that enhanced nitrate decomposition. Applying optimal electron donors through metabolic pathways and the microbial community helps to strengthen the AD process and treat low carbon/nitrogen ratio wastewater efficiently.
Collapse
Affiliation(s)
- Mengqi Fu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China
| | - Shan Qiu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China.
| | - Jue Wang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China
| | - Yingshi Zhu
- Zhejiang Environment Technology Co., Ltd, Hangzhou 311100, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Mu Yuan
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China
| | - Liang Wang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China
| |
Collapse
|
14
|
Gao J, Wu J, Chen S, Chen Y. Nitrogen removal from pharmaceutical wastewater using simultaneous nitrification-denitrification coupled with sulfur denitrification in full-scale system. BIORESOURCE TECHNOLOGY 2024; 393:130066. [PMID: 37984670 DOI: 10.1016/j.biortech.2023.130066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Fermentation pharmaceutical wastewater (FPW) containing excessive ammonium and low chemical oxygen demand (COD)/nitrogen ratio (C/N ratio) brings serious environmental risks. The stepwise nitrogen removal was achieved in a full-scale anaerobic/aerobic/anoxic treatment system with well-constructed consortia, that enables simultaneous partial nitrification-denitrification coupled with sulfur autotrophic denitrification (SPND-SAD) (∼99 % (NH4+-N) and ∼98 % (TN) removals) at the rate of 0.8-1.2 kg-N/m3/d. Inoculating simultaneous nitrification-denitrification (SND) consortia in O1 tank decreased the consumed ΔCOD and ΔCOD/ΔTN of A1 + O1 tank, resulting in the occurrence of short-cut SND at low C/N ratio. In SAD process (A2 tank), bio-generated polysulfides reacted with HS- to rearrange into shorter polysulfides, enhancing sulfur bioavailability and promoting synergistic SAD removal. PICRUSt2 functional prediction indicated that bioaugmentation increased genes related to Nitrogen/Sulfur/Carbohydrate/Xenobiotics metabolism. Key functional gene analysis highlighted the enrichment of nirS and soxB critical for SPND-SAD system. This work provides new insights into the application of bioaugmentation for FPW treatment.
Collapse
Affiliation(s)
- Jian Gao
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Jingyu Wu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Shuyan Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
15
|
Qiao Z, Sheng Y, Wang G, Chen X, Liao F, Mao H, Zhang H, He J, Liu Y, Lin Y, Yang Y. Deterministic factors modulating assembly of groundwater microbial community in a nitrogen-contaminated and hydraulically-connected river-lake-floodplain ecosystem. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119210. [PMID: 37801950 DOI: 10.1016/j.jenvman.2023.119210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
The river-lake-floodplain system (RLFS) undergoes intensive surface-groundwater mass and energy exchanges. Some freshwater lakes are groundwater flow-through systems, serving as sinks for nitrogen (N) entering the lake. Despite the threat of cross-nitrogen contamination, the assembly of the microbial communities in the RLFS was poorly understood. Herein, the distribution, co-occurrence, and assembly pattern of microbial community were investigated in a nitrogen-contaminated and hydraulically-connected RLFS. The results showed that nitrate was widely distributed with greater accumulation on the south than on the north side, and ammonia was accumulated in the groundwater discharge area (estuary and lakeshore). The heterotrophic nitrifying bacteria and aerobic denitrifying bacteria were distributed across the entire area. In estuary and lakeshore with low levels of oxidation-reduction potential (ORP) and high levels of total organic carbon (TOC) and ammonia, dissimilatory nitrate reduction to ammonium (DNRA) bacteria were enriched. The bacterial community had close cooperative relationships, and keystone taxa harbored nitrate reduction potentials. Combined with multivariable statistics and self-organizing map (SOM) results, ammonia, TOC, and ORP acted as drivers in the spatial evolution of the bacterial community, coincidence with the predominant deterministic processes and unique niche breadth for microbial assembly. This study provides novel insight into the traits and assembly of bacterial communities and potential nitrogen cycling capacities in RLFS groundwater.
Collapse
Affiliation(s)
- Zhiyuan Qiao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Yizhi Sheng
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China.
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China.
| | - Xianglong Chen
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Fu Liao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Hairu Mao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Hongyu Zhang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Jiahui He
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Yingxue Liu
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Yilun Lin
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Ying Yang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| |
Collapse
|
16
|
Lin R, Zhao Y, Jiang M, Cun D, Xiong Y, Zhu Y, Chang J. Agricultural runoff treatment by constructed wetlands filled with iron-carbon composites in winter: Performance augmentation by organic solids and denitrifying bacteria addition. BIORESOURCE TECHNOLOGY 2023; 387:129692. [PMID: 37619820 DOI: 10.1016/j.biortech.2023.129692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Iron-carbon composite-filled constructed wetlands (Fe-C CWs) were employed to treat agricultural runoff in the winter season in this study, and organic substrates and phosphate-accumulating denitrifying bacteria were supplemented to improve the treatment performance. Fe-C CWs performed significantly better in pollutant removal than the control system filled with only gravel by effectively driving autotrophic denitrification, Fe-based dephosphorization and organic degradation. Organic substrate and functional bacteria addition further augmented the performance, and immobilized bacterial cells were more effective than free cells. Fe-C and organic substrates decreased the greenhouse gas emission fluxes of the CWs, and denitrifier inoculation alleviated N2O emission. The microbial community in the Fe-C substrates showed a very distinct distribution pattern compared to that in the gravel, with notably higher proportions of Trichococcus, Thauera and Dechloromonas. Bioaugmented Fe-C-based CWs are highly promising for agricultural runoff treatment, especially at low temperatures.
Collapse
Affiliation(s)
- Rufeng Lin
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming 650500, China
| | - Yonggui Zhao
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Ming Jiang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming 650500, China
| | - Deshou Cun
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Yanwei Xiong
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Yaosong Zhu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Junjun Chang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China.
| |
Collapse
|
17
|
Xu Z, Ze S, Chen X, Song X, Wang Y. Mutual influence mechanism of nitrate and sulfamethoxazole on their biotransformation in poly (3-hydroxybutyrate-3-hydroxyvalerate) supported denitrification biofilter for a long-term operation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118897. [PMID: 37683386 DOI: 10.1016/j.jenvman.2023.118897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/16/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Nitrate and SMX both play a critical role in their biotransformation in biodegradable polymer-supported denitrification biofilters. However, the mutual influences of nitrate and SMX on their biotransformation for long-term operation remained obscure. Results showed SMX and nitrate had divergent effects on SMX removal. SMX removal rates was positively related with its loading rates, whereas they were negatively related to NLRs. The most abundant metabolite C10H14O3N3S (the reduced form of SMX moiety) from the N-O bond cleavage pathway by UHPLC-LTQ-Orbitrap-MS/MS and effluent TOC variations confirmed the presence of electron donor competition between nitrate and SMX. SMX less than 1000 μg/L had a negligible influence on denitrification performance. Denitrifiers such as Azospira and Denitratisoma were still enriched after chronic exposure, and nosZ/narG positively correlated with sul1/sul2 resistance genes, which were both responsible for the negligible influence of SMX. This work could guide the operational management of denitrification biofilters for simultaneous nitrate and antibiotics removal.
Collapse
Affiliation(s)
- Zhongshuo Xu
- Donghua University, College of Environmental Science and Engineering, Shanghai, 201600, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Siwen Ze
- Donghua University, College of Environmental Science and Engineering, Shanghai, 201600, China
| | - Xueting Chen
- Shanghai Fisheries Research Institute, Shanghai Fisheries Technical Extension Station, Shanghai, 200433, China
| | - Xinshan Song
- Donghua University, College of Environmental Science and Engineering, Shanghai, 201600, China
| | - Yuhui Wang
- Donghua University, College of Environmental Science and Engineering, Shanghai, 201600, China.
| |
Collapse
|
18
|
Li C, Zhang Y, Ling Y, Wang H, Wang H, Yan G, Duan L, Dong W, Chang Y. Novel slow-release carbon source improves anodic denitrification and electricity generation efficiency in microbial fuel cells. ENVIRONMENTAL RESEARCH 2023; 236:116644. [PMID: 37454797 DOI: 10.1016/j.envres.2023.116644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
MFC anodic denitrification is more suitable for the coexistence of organic matter and nitrate in actual sewage, but the traditional carbon source has some problems such as high cost and difficulty of dosage control in MFC. Herein, corncob and polycaprolactone (PCL) were mechanically pulverized and mixed in the system of polyvinyl alcohol and sodium alginate, and cross-linked to prepare slow-release carbon source fillers (CPSP), which were added to the MFC anolyte to realize the coupling of solid-phase denitrification and anodic denitrification. Results showed the start-up period of MFC experimental group (MFC-C) with CPSP was slightly longer than the control group (MFC-0), but MFC-C's maximum output voltage (648.4 mV) and power density (2738 mW/m3) could be increased by 5% and 15% higher than that of MFC-0 (P < 0.05). The degradation process of MFC substrate in unit cycle was mainly divided into nitrogen removal stage (0-8 h) and electricity generation stage (8-48 h). The NO3--N and COD degradation and power generation kinetic processes of MFC conformed to the Han-Levenspiel model. Kinetics experiments showed CPSP can improve the affinity and tolerance of MFC to NO3--N, also it can alleviate the pressure of electron competition in anolyte and improve coulombic efficiency. In addition, microbial communities were significantly changed under the effect of CPSP (P < 0.001). Meanwhile, CPSP can promote the synthesis of denitrification functional genes. This study provides a new strategy to improve the performance of MFC by the addition of novel denitrification carbon source.
Collapse
Affiliation(s)
- Congyu Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yanjie Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Yu Ling
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Haiyan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| | - Huan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Guokai Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Weiyang Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Yang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| |
Collapse
|
19
|
Liu M, Yu X, Yang M, Shu W, Cao F, Liu Q, Wang J, Jiang Y. The co-presence of polystyrene nanoplastics and ofloxacin demonstrates combined effects on the structure, assembly, and metabolic activities of marine microbial community. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132315. [PMID: 37604038 DOI: 10.1016/j.jhazmat.2023.132315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Nanoplastic is increasing in environments and can address toxic effects on various organisms. Particle size, concentration, and surface functionalization most influence nanoplastic toxicity. Besides, nanoplastic can adsorb other contaminants (e.g., antibiotics) to aggravate its adverse effects. The combined effects of nanoplastics and antibiotics on planktonic/benthic microbial communities, however, are still largely unknown. In this study, the combined effects of polystyrene nanoplastic and ofloxacin on the structure, assembly, and metabolic activities of marine microbial communities were investigated based on amplicon sequencing data. The results mainly demonstrate that: (1) nanoplastic and ofloxacin have greater impacts on prokaryotic communities than eukaryotic ones; (2) niche breadths of planktonic prokaryotes and benthic eukaryotes were shrank with both high nanoplastic and ofloxacin concentrations; (3) increased ofloxacin mainly reduces nodes/edges of co-occurrence networks, while nanoplastic centralizes network modularity; (4) increased nanoplastic under high ofloxacin concentration induces more differential prokaryotic pathways in planktonic communities, while benthic communities are less influenced. The present work indicates that co-presence of nanoplastics and ofloxacin has synergistic combined effects on community structure shifts, niche breadth shrinking, network simplifying, and differential prokaryotic pathways inducing in marine microbial communities, suggesting nanoplastics and its combined impacts with other pollutions should be paid with more concerns.
Collapse
Affiliation(s)
- Mingjian Liu
- MoE Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaowen Yu
- MoE Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Mengyao Yang
- MoE Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wangxinze Shu
- MoE Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Furong Cao
- MoE Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Qian Liu
- MoE Laboratory of Marine Chemistry Theory and Technology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266101, China.
| | - Jun Wang
- MoE Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yong Jiang
- MoE Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
20
|
Lyu Y, Xu X, Yuan Y, Wang Z, Hu J, Chen Q, Sun W. Antibiotic profiles and their relationships with multitrophic aquatic communities in an urban river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161678. [PMID: 36682555 DOI: 10.1016/j.scitotenv.2023.161678] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Antibiotics have garnered worldwide attention due to their omnipresence and detrimental effects on aquatic organisms, yet their potential relationships with multitrophic aquatic communities in natural rivers remain largely unknown. Here, we examined 107 antibiotics in water and sediment from an urban river in Chengdu, Sichuan province (China). The bacterial, algal, macroinvertebrates, and fish communities were synchronously measured based on the environmental DNA (eDNA) metabarcoding approach, and their relationships with antibiotics were further investigated. The results showed that the total antibiotic concentrations ranged from 1.12 to 377 ng/L and from 7.95 to 145 ng/g in water and sediment, respectively. Significant seasonal variations in the concentrations and compositions of antibiotics in water were observed. eDNA metabarcoding revealed great compositional variations of bacterial, algal, macroinvertebrates, and fish communities along the river, and antibiotics had significant negative relationships with the community diversities of aquatic organisms (p < 0.05) except for fish. Meanwhile, significant negative correlations were observed between antibiotic concentrations and the relative abundances of essential metabolism pathways of bacteria, e.g., energy metabolism (p < 0.05), carbohydrate metabolism (p < 0.05), and lipid metabolism (p < 0.01). Moreover, antibiotics demonstrated greater effects on the function of bacterial community compared with environmental variables. The findings highlight the significance of eDNA metabarcoding approach in revealing the relationships between aquatic communities and antibiotics, and call for further studies on the effects of antibiotics on multitrophic aquatic communities in natural waters.
Collapse
Affiliation(s)
- Yitao Lyu
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Xuming Xu
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Yibin Yuan
- College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China; Chengdu Research Academy of Environmental Protection Science, Chengdu 610072, China
| | - Zhaoli Wang
- Chengdu Research Academy of Environmental Protection Science, Chengdu 610072, China
| | - Jingrun Hu
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Qian Chen
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Weiling Sun
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
21
|
Ye J, Mao Y, Meng L, Li J, Li X, Xiao L, Zhang Y, Wang F, Deng H. Polycaprolactone-Modified Biochar Supported Nanoscale Zero-Valent Iron Coupling with Shewanella putrefaciens CN32 for 1,1,1-Trichloroethane Removal from Simulated Groundwater: Synthesis, Optimization, and Mechanism. Molecules 2023; 28:molecules28073145. [PMID: 37049906 PMCID: PMC10095663 DOI: 10.3390/molecules28073145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
1,1,1-Trichloroethane (1,1,1-TCA) is a typical organochloride solvent in groundwater that poses threats to human health and the environment due to its carcinogenesis and bioaccumulation. In this study, a novel composite with nanoscale zero-valent iron (nZVI) supported by polycaprolac-tone (PCL)-modified biochar (nZVI@PBC) was synthesized via solution intercalation and liquid-phase reduction to address the 1,1,1-TCA pollution problem in groundwater. The synergy effect and improvement mechanism of 1,1,1-TCA removal from simulated groundwater in the presence of nZVI@PBC coupling with Shewanella putrefaciens CN32 were investigated. The results were as follows: (1) The composite surface was rough and porous, and PCL and nZVI were loaded uniformly onto the biochar surface as micro-particles and nanoparticles, respectively; (2) the optimal mass ratio of PCL, biochar, and nZVI was 1:7:2, and the optimal composite dosage was 1.0% (w/v); (3) under the optimal conditions, nZVI@PBC + CN32 exhibited excellent removal performance for 1,1,1-TCA, with a removal rate of 82.98% within 360 h, while the maximum removal rate was only 41.44% in the nZVI + CN32 treatment; (4) the abundance of CN32 and the concentration of adsorbed Fe(II) in the nZVI@PBC + CN32 treatment were significantly higher than that in control treatments, while the total organic carbon (TOC) concentration first increased and then decreased during the culture process; (5) the major improvement mechanisms include the nZVI-mediated chemical reductive dechlorination and the CN32-mediated microbial dissimilatory iron reduction. In conclusion, the nZVI@PBC composite coupling with CN32 can be a potential technique to apply for 1,1,1-TCA removal in groundwater.
Collapse
Affiliation(s)
- Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yacen Mao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Liang Meng
- Key Lab of Eco-Restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang 110044, China
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
- Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai 201722, China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, China
| | - Junjie Li
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
- Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai 201722, China
| | - Xilin Li
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
- Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai 201722, China
| | - Lishan Xiao
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
- Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai 201722, China
| | - Ying Zhang
- The Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Fenghua Wang
- School of Geographical Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Huan Deng
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
22
|
Liu D, Zhang Y, Yang Q, Li Y, Li J, Liao X. Fate of ofloxacin in rural wastewater treatment facility: Removal performance, pathways and microbial characteristics. BIORESOURCE TECHNOLOGY 2023; 371:128611. [PMID: 36640816 DOI: 10.1016/j.biortech.2023.128611] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Ofloxacin (OFL) with high biological activity and antimicrobial degradation is a kind of the typical high concentration and environmental risk antibiotics in rural sewage. In this paper, a combined rural sewage treatment facility based on anaerobic baffled reactor and integrated constructed wetlands was built and the removal performance, pathway and mechanism for OFL and conventional pollutants were evaluated. Results showed that the OFL and TN removal efficiency achieved 91.78 ± 3.93 % and 91.44 ± 4.15 %, respectively. Sludge adsorption was the primary removal pathway of OFL. Metagenomics analysis revealed that Proteobacteria was crucial in OFL removal. baca was the dominated antibiotic resistance genes (ARGs). Moreover, carbon metabolism with a high abundance was conductive to detoxify OFL to enhance system stability and performance. Co-occurrence network analysis further elucidated that mutualism was the main survival mode of microorganisms. Denitrifers Microbacterium, Geobacter and Ignavibacterium, were the host of ARGs and participated in OFL biodegradation.
Collapse
Affiliation(s)
- Dengping Liu
- College of Resources and Environment, Southwest University, Chongqing 400715, China; College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China
| | - Yuduo Zhang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China
| | - Qilin Yang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China
| | - Yancheng Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China.
| | - Jiang Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China
| | - Xun Liao
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China
| |
Collapse
|
23
|
Wu H, Li A, Yang X, Wang J, Liu Y, Zhan G. The research progress, hotspots, challenges and outlooks of solid-phase denitrification process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159929. [PMID: 36356784 DOI: 10.1016/j.scitotenv.2022.159929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/30/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen pollution is one of the main reasons for water eutrophication. The difficulty of nitrogen removal in low-carbon wastewater poses a huge potential threat to the ecological environment and human health. As a clean biological nitrogen removal process, solid-phase denitrification (SPD) was proposed for long-term operation of low-carbon wastewater. In this paper, the progress, hotspots, and challenges of the SPD process based on different solid carbon sources (SCSs) are reviewed. Compared with synthetic SCS and natural SCS, blended SCSs have more application potential and have achieved pilot-scale application. Differences in SCSs will lead to changes in the enrichment of hydrolytic microorganisms and hydrolytic genes, which indirectly affect denitrification performance. Moreover, the denitrification performance of the SPD process is also affected by the physical and chemical properties of SCSs, pH of wastewater, hydraulic retention time, filling ratio, and temperature. In addition, the strengthening of the SPD process is an inevitable trend. The strengthening measures including SCSs modification and coupled electrochemical technology are regarded as the current research hotspots. It is worth noting that the outbreak of the COVID-19 epidemic has led to the increase of disinfection by-products and antibiotics in wastewater, which makes the SPD process face challenges. Finally, this review proposes prospects to provide a theoretical basis for promoting the efficient application of the SPD process and coping with the challenge of the COVID-19 epidemic.
Collapse
Affiliation(s)
- Heng Wu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Anjie Li
- College of Grassland and Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xu Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Jingting Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yiliang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| |
Collapse
|
24
|
Qi X, Tao S. MWCNT modified Ni-Fe LDH/BiVO 4 heterojunction: boosted visible-light-driven photoelectrochemical aptasensor for ofloxacin detection. RSC Adv 2022; 12:24269-24277. [PMID: 36128518 PMCID: PMC9412155 DOI: 10.1039/d2ra03981h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Sensitivity and selectivity, which can be identified by the photosensitivity of materials and the identification of elements, are two important factors for a photoelectrochemical aptasensor (PEC aptasensor). Herein, a patent PEC aptasensor for specifically detecting ofloxacin (OFL) was exploited, and a visible-light-active MWCNT/LDH/BiVO4 heterostructure was introduced as a photoactive material and identification elements, respectively. The combination of LDH with BiVO4 enhanced the photocurrent response, and MWCNT provided higher electron conductivity, which are advantageous for structuring PEC sensors. Furthermore, the two-pot synthesis of MWCNT/LDH/BiVO4 has the advantage of possessing an environmentally friendly character. Under optimal conditions, the photocurrent response of MWCNT/LDH/BiVO4 presents a linear trend with OFL concentration from 0.1 to 16 000 nM, and the limit of detection (S/N = 3) is as low as 0.03 nM. This new PEC sensing device afforded an ultra-sensitive sensor which has high selectivity and stability for detecting OFL.
Collapse
Affiliation(s)
- Xuejun Qi
- School of Architecture and Civil Engineering, Xihua University Chengdu 610039 PR China
| | - Shuyan Tao
- School of Architecture and Civil Engineering, Xihua University Chengdu 610039 PR China
| |
Collapse
|