1
|
Wang Z, Wang Z, Wang L, Sun D. Ammoniation of filter residues from corn straw filtering the microalgae cultured in urine wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124557. [PMID: 39978020 DOI: 10.1016/j.jenvman.2025.124557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/27/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Microalgae rich in enzymatic proteins and trace minerals are an increasingly favorable feed additive. Nevertheless, the harvesting and drying expenditures account for 20%-30% of the total microalgae production costs, restricting microalgae's extensive application. Unprocessed microalgae could directly participate in straw ammonification feed production by filtering microalgae solution using straw and then ammoniating the filter residues containing straw and microalgae. The microalgal biomass and turbidity removals decreased with the increase in microalgae solution volume during filtration. In contrast, they increased and gradually stabilized with the rise in corn straw height and bulk density but first increased and then decreased with the enlarging of corn straw particle size. The predominant microorganisms shifted from Actinobacteriota and Proteobacteria to the Firmicutes that can hydrolyze corn straw, containing Carnobacterium, Bacillus, and Sporosarcina, as well as Cyanobacteria generating potential Microcystin disappeared after filtration. The maximal biomass and turbidity removals after filtration reached 82.54% and 78.38% under the microalgae solution volume of 520 mL and the corn straw height, bulk density, and particle size of 45 cm, 0.20 g/cm3, and 2 mm. Ammoniation treatment increased the crude protein content while decreasing the ether extract and lignocellulose contents of corn straw, and the protein- and lipid-rich microalgae further slightly increased the dry matter, crude protein, and ether extract contents in the ammoniated corn straw. A urea addition ratio of 3%-5% at 30-40 °C for 12-16 days was favorable ammoniation conditions. Although the original microalgae were from urine wastewater cultivation, the total bacterial counts in the microalgae-containing corn straw after ammoniation were below the maximum safety threshold specified in feed standards, and the alpha diversity indices and genera species of bacteria increased, thereby enhancing the efficiency of corn straw ammoniation. Firmicutes, Actinobacteriota, and Proteobacteria degrading lignocellulose, protein, and lipid predominated during ammoniation, involving Saccharopolyspora, Sporosarcina, Bacillus, Carnobacterium, Allorhizobium-Neorhizobium-Pararhizc, Staphylococcus, Planococcus, Curtobacterium, and Pseudomonas. The involvement of unprocessed microalgae in straw ammoniation through straw filtration was a favorable approach, holding substantial significance for accelerating the low-cost application of microalgae as feedstuff and the prosperity of the straw feed industry.
Collapse
Affiliation(s)
- Zhongjiang Wang
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Ziyue Wang
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Lili Wang
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Dongsheng Sun
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
2
|
Xiao R, Tian C, Wang H, Zhang H, Chen H, Chou HH. Two-stage continuous cultivation of microalgae overexpressing cytochrome P450 improves nitrogen and antibiotics removal from livestock and poultry wastewater. BIORESOURCE TECHNOLOGY 2025; 418:131994. [PMID: 39694106 DOI: 10.1016/j.biortech.2024.131994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/06/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Improper treatment of livestock and poultry wastewater (LPWW) rich in ammonium nitrogen (NH4-N) and antibiotics leads to eutrophication, and contributes to the risk of creating drug-resistant pathogens. The design-build-test-learn strategy was used to engineer a continuous process using Chlorella vulgaris to remove NH4-N and antibiotics. The optimized system removed NH4-N at a rate of 306 mg/L/d, degraded 99 % of lincomycin, and reduced the hydraulic retention time to 4 days. The physiological, metabolic, and genetic mechanisms used by microalgae to tolerate LPWW, remove NH4-N, and degrade antibiotics were elucidated. A new cytochrome P450 enzyme important for NH4-N and antibiotic removal was identified. Finally, application of synthetic biology improved the NH4-N removal rate to 470 mg/L/d, which is the highest removal rate using microalgae reported to date. This research contributes to the mechanistic understanding of wastewater detoxification by microalgae, and the goal of achieving a circular bioeconomy for nutrient and water recycling.
Collapse
Affiliation(s)
- Rui Xiao
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China; Department of Environmental Engineering and Earth Science, Clemson University, South Carolina 29634, United States
| | - Chang Tian
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China
| | - Haijun Wang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
| | - Hui Zhang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
| | - Huan Chen
- Department of Environmental Engineering and Earth Science, Clemson University, South Carolina 29634, United States
| | - Howard H Chou
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China.
| |
Collapse
|
3
|
Sun Y, Li P, Huang Y, Xia A, Zhu X, Zhu X, Liao Q. Synergistic treatment of digested wastewater with high ammonia nitrogen concentration using straw and microalgae. BIORESOURCE TECHNOLOGY 2024; 412:131406. [PMID: 39222863 DOI: 10.1016/j.biortech.2024.131406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Microalgae as a promising approach for wastewater treatment, has challenges in directly treating digested piggery wastewater (DPW) with high ammonia nitrogen (NH4+-N) concentration. To improve the performance of microalgae in DPW treatment, straw was employed as a substrate to form a straw-microalgae biofilm. The results demonstrated that the straw-microalgae biofilm achieved the highest NH4+-N removal rate of 193.2 mg L-1 d-1, which was 28.8 % higher than that of culture system without straw. The final NH4+-N concentration in the effluent met the discharge standard of 5 mg L-1. Furthermore, the total organic carbon (TOC) released from straw facilitated bacterial proliferation and the secretion of extracellular polymeric substances (EPS). The EPS and TOC increased the suspension viscosity and surface tension, thereby enhancing the residence time of CO2 in the liquid phase and promoting CO2 fixation. This study presented a novel method for the biological treatment of high-ammonia-nitrogen DPW.
Collapse
Affiliation(s)
- Yabo Sun
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Peirong Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
4
|
Vieira SR, Silva JBAD, Pessôa LC, Nascimento RQ, Galván KLP, Souza COD, Cardoso LG, Santana JS, Assis DDJ. Cellulose processing using ionic liquids: An analysis of patents and technological trends. Heliyon 2024; 10:e39590. [PMID: 39502241 PMCID: PMC11535348 DOI: 10.1016/j.heliyon.2024.e39590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
The production of cellulose derivatives using ionic liquid (IL) as solvents and catalysts has become prominent over the last few years, since the process eliminates the use of toxic substances. This study aimed to map and understand the trends in cellulose processing using ILs by a patent analytic approach and technology life cycle modeling. The documents were searched on the Espacenet® and Orbit® platforms.The majority of innovations have come from companies based in developed countries. The data fitted to the sigmoid BiDoseResp model and the life cycle S-curve showed a market in an early stage of maturity. This mapping brings information that subsidizes decision-making regarding investments, research, and innovations aimed at IL-mediated cellulose treatment. Potential markets mostly use ILs of the imidazolium family in polymer chemistry, machinery, and biotechnology technologies. However, medical and pharmaceutical technologies and microstructure and nanostructure applications are still emerging, fostering perspectives for innovation.
Collapse
Affiliation(s)
- Suellen Rocha Vieira
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia (UFBA), 40210-630, Salvador, Bahia, Brazil
| | - Jania Betânia Alves da Silva
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia (UFBA), 40210-630, Salvador, Bahia, Brazil
- Center for Exact and Technological Sciences, Collegiate of Mechanical Engineering, Federal University of Recôncavo of Bahia (UFRB), 44380-000, Cruz das Almas, Bahia, Brazil
| | - Luiggi Cavalcanti Pessôa
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia (UFBA), 40210-630, Salvador, Bahia, Brazil
| | - Renata Quartieri Nascimento
- Graduate Program in Biotechnology-Northeast Biotechnology Network (RENORBIO), Federal University of Bahia (UFBA), 40231-300, Salvador, Bahia, Brazil
| | - Karina Lizzeth Pedraza Galván
- Graduate Program in Biotechnology-Northeast Biotechnology Network (RENORBIO), Federal University of Bahia (UFBA), 40231-300, Salvador, Bahia, Brazil
| | - Carolina Oliveira de Souza
- Graduate Program in Biotechnology-Northeast Biotechnology Network (RENORBIO), Federal University of Bahia (UFBA), 40231-300, Salvador, Bahia, Brazil
- Graduate Program in Food Science (PGAli)–College of Pharmacy, Federal University of Bahia (UFBA), 40110-100, Salvador, Bahia, Brazil
- Department of Bromatological Analysis, College of Pharmacy, Federal University of Bahia (UFBA), 40110-100, Salvador, Bahia, Brazil
| | - Lucas Guimarães Cardoso
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia (UFBA), 40210-630, Salvador, Bahia, Brazil
- Department of Engineering, University Salvador (UNIFACS), 41820-021, Salvador, Bahia, Brazil
| | - Jamille Santos Santana
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia (UFBA), 40210-630, Salvador, Bahia, Brazil
| | - Denilson de Jesus Assis
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia (UFBA), 40210-630, Salvador, Bahia, Brazil
- Department of Engineering, University Salvador (UNIFACS), 41820-021, Salvador, Bahia, Brazil
| |
Collapse
|
5
|
Kumar A, Mishra S, Singh NK, Yadav M, Padhiyar H, Christian J, Kumar R. Ensuring carbon neutrality via algae-based wastewater treatment systems: Progress and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121182. [PMID: 38772237 DOI: 10.1016/j.jenvman.2024.121182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
The emergence of algal biorefineries has garnered considerable attention to researchers owing to their potential to ensure carbon neutrality via mitigation of atmospheric greenhouse gases. Algae-derived biofuels, characterized by their carbon-neutral nature, stand poised to play a pivotal role in advancing sustainable development initiatives aimed at enhancing environmental and societal well-being. In this context, algae-based wastewater treatment systems are greatly appreciated for their efficacy in nutrient removal and simultaneous bioenergy generation. These systems leverage the growth of algae species on wastewater nutrients-including carbon, nitrogen, and phosphorus-alongside carbon dioxide, thus facilitating a multifaceted approach to pollution remediation. This review seeks to delve into the realization of carbon neutrality through algae-mediated wastewater treatment approaches. Through a comprehensive analysis, this review scrutinizes the trajectory of algae-based wastewater treatment via bibliometric analysis. It subsequently examines the case studies and empirical insights pertaining to algae cultivation, treatment performance analysis, cost and life cycle analyses, and the implementation of optimization methodologies rooted in artificial intelligence and machine learning algorithms for algae-based wastewater treatment systems. By synthesizing these diverse perspectives, this study aims to offer valuable insights for the development of future engineering applications predicated on an in-depth understanding of carbon neutrality within the framework of circular economy paradigms.
Collapse
Affiliation(s)
- Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Saurabh Mishra
- Institute of Water Science and Technology, Hohai University, Nanjing China, 210098, China.
| | - Nitin Kumar Singh
- Department of Chemical Engineering, Marwadi University, Rajkot, Gujarat, India.
| | - Manish Yadav
- Central Mine Planning and Design Institute Limite, Bhubaneswar, India.
| | | | - Johnson Christian
- Environment Audit Cell, R. D. Gardi Educational Campus, Rajkot, Gujarat, India.
| | - Rupesh Kumar
- Jindal Global Business School (JGBS), O P Jindal Global University, Sonipat, 131001, Haryana, India.
| |
Collapse
|
6
|
Huang L, Zhao X, Wu K, Liang C, Liu J, Yang H, Yin F, Wang C, Yang B, Zhang W. Enhancing biomass and lipid accumulation by a novel microalga for unsterilized piggery biogas slurry remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31097-31107. [PMID: 38625472 DOI: 10.1007/s11356-024-33179-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
The cost and efficiency of an algal-BS treatment system are determined by the specific microalgal species and BS pretreatment method. This study examines the growth of a novel algae Chlorella sp. YSD-2 and the removal of nutrients from the BS using different pretreatment methods, including dilution ratio and sterilization. The highest biomass production (1.84 g L-1) was achieved in the 1:2 unsterilized biogas slurry, which was 2.03 times higher than that in the sterilized group, as well as higher lipid productivity (17.29 mg L-1 d-1). Nevertheless, the sterilized biogas slurry at a 1:1 dilution ratio exhibited the most notable nutrient-removal efficiency, with COD at 71.97%, TP at 91.32%, and TN at 88.80%. Additionally, the analysis of 16S rRNA sequencing revealed a significant alteration in the indigenous bacterial composition of the biogas slurry by microalgal treatment, with Proteobacteria and Cyanobacteria emerging as the predominant phyla, and unidentified_Cyanobacteria as the primary genus. These findings suggest that Chlorella sp. YSD-2 exhibits favorable tolerance and nutrient-removal capabilities in unsterilized, high-strength biogas slurry, along with high productivity of biomass and lipids. Consequently, these results offer a theoretical foundation for the development of an efficient and economically viable treatment method for algal-BS.
Collapse
Affiliation(s)
- Li Huang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Faculty of Environment and Chemical Engineering, Kunming Metallurgy College, Kunming, 650000, People's Republic of China
| | - Xingling Zhao
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Kai Wu
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Chengyue Liang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Jing Liu
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Hong Yang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Fang Yin
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Changmei Wang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Bin Yang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Wudi Zhang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China.
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China.
| |
Collapse
|
7
|
Silva-Gálvez AL, López-Sánchez A, Camargo-Valero MA, Prosenc F, González-López ME, Gradilla-Hernández MS. Strategies for livestock wastewater treatment and optimised nutrient recovery using microalgal-based technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120258. [PMID: 38387343 DOI: 10.1016/j.jenvman.2024.120258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
Global sustainable development faces several challenges in addressing the needs of a growing population. Regarding food industries, the heightening pressure to meet these needs has resulted in increased waste generation. Thus, recognising these wastes as valuable resources is crucial to integrating sustainable models into current production systems. For instance, the current 24 billion tons of nutrient-rich livestock wastewater (LW) generated yearly could be recovered and valorised via biological uptake through microalgal biomass. Microalgae-based livestock wastewater treatment (MbLWT) has emerged as an effective technology for nutrient recovery, specifically targeting carbon, nitrogen, and phosphorus. However, the viability and efficacy of these systems rely on the characteristics of LW, including organic matter and ammonium concentration, content of suspended solids, and microbial load. Thus, this systematic literature review aims to provide guidance towards implementing an integral MbLWT system for nutrient control and recovery, discussing several pre-treatments used in literature to overcome the challenges regarding LW as a suitable media for microalgae cultivation.
Collapse
Affiliation(s)
- Ana Laura Silva-Gálvez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico; BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Anaid López-Sánchez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico
| | - Miller Alonso Camargo-Valero
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK; Departamento de Ingeniería Química, Universidad Nacional de Colombia, Campus La Nubia, Manizales, Colombia
| | - Franja Prosenc
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Martín Esteban González-López
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico.
| | - Misael Sebastián Gradilla-Hernández
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico.
| |
Collapse
|
8
|
Tang J, Yang H, Pu Y, Hu Y, Qu X, Chen S, Wang XC, Ngo HH, Li Y, Abomohra A. Bioenergy production from swine wastewater based on a combined process of anaerobic dynamic membrane reactor and microalgae cultivation: Feasibility and performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165621. [PMID: 37478944 DOI: 10.1016/j.scitotenv.2023.165621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/16/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023]
Abstract
Enhanced methane production and sustainable reduction of pollutants from anaerobic digestate are crucial for swine wastewater treatment. In this study, anaerobic dynamic membrane bioreactor (AnDMBR) was introduced to enhance methane production, then microalgae were cultivated on the digestate for nutrients recovery and lipid production. Results showed that pollutants can be effectively removed under various hydraulic retention time (HRT) conditions during long-term operation. Methanogenesis was enhanced with the reduction of HRT from 20 days to 10 days (0.23 L-CH4/g-CODremoved), but inhibited by shortening HRT to 5 days (0.09 L-CH4/g-CODremoved). Ammonia and phosphate in the digestate were effectively removed after microalgae cultivation. In addition, the highest microalgal biomass and lipid productivity (1.7 g/L and 17.5 mg/(L·d), respectively) were obtained using digestate ratio of 20 %, while microalgal growth was seriously restricted at high digestate content (>50 %). This work provides a prospective pathway for pollutants control and energy production from swine wastewater through integrating of AnDMBR technology with microalgae cultivation.
Collapse
Affiliation(s)
- Jialing Tang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Hao Yang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Yunhui Pu
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China; College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China
| | - Xiangjiang Qu
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Si Chen
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yuyou Li
- Department of Civil and Environmental Engineering, Tohoku University, Sendai 9808579, Japan
| | - Abdelfatah Abomohra
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China; Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609 Hamburg, Germany.
| |
Collapse
|
9
|
Zhang Y, Wang JH, Zhang JT, Chi ZY, Kong FT, Zhang Q. The long overlooked microalgal nitrous oxide emission: Characteristics, mechanisms, and influencing factors in microalgae-based wastewater treatment scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159153. [PMID: 36195148 DOI: 10.1016/j.scitotenv.2022.159153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Microalgae-based wastewater treatment is particularly advantageous in simultaneous CO2 sequestration and nutrients recovery, and has received increasing recognition and attention in the global context of synergistic pollutants and carbon reduction. However, the fact that microalgae themselves can generate the potent greenhouse gas nitrous oxide (N2O) has been long overlooked, most previous research mainly regarded microalgae as labile organic carbon source or oxygenic approach that interfere bacterial nitrification-denitrification and the concomitant N2O production. This study, therefore, summarized the amount and rate of N2O emission in microalgae-based systems, interpreted in-depth the multiple pathways that lead to NO formation as the key precursor of N2O, and the pathways that transform NO into N2O. Reduction of nitrite could take place in either the cytoplasm or the mitochondria to form NO by a series of enzymes, while the NO could be enzymatically reduced to N2O at the chloroplasts or the mitochondria respectively under light and dark conditions. The influences of abiotic factors on microalgal N2O emission were analyzed, including nitrogen types and concentrations that directly affect the nitrogen transformation routes, illumination and oxygen conditions that regulate the enzymatic activities related to N2O generation, and other factors that indirectly interfere N2O emission via NO regulation. The uncertainty of microalgae-based N2O emission in wastewater treatment scenarios were emphasized, which would be particularly impacted by the complex competition between microalgae and ammonia oxidizing bacteria or nitrite oxidizing bacteria over ammonium or inorganic carbon source. Future studies should put more efforts in improving the compatibility of N2O emission results expressions, and adopting consistent NO detection methods for N2O emission prediction. This review will provide much valuable information on the characteristics and mechanisms of microalgal N2O emission, and arouse more attention to the non-negligible N2O emission that may impair overall greenhouse gas reduction efficiency in microalgae-based wastewater treatment systems.
Collapse
Affiliation(s)
- Ying Zhang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Han Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China.
| | - Jing-Tian Zhang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Zhan-You Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Fan-Tao Kong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Qian Zhang
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China
| |
Collapse
|
10
|
Alazaiza MYD, Albahnasawi A, Ahmad Z, Bashir MJK, Al-Wahaibi T, Abujazar MSS, Abu Amr SS, Nassani DE. Potential use of algae for the bioremediation of different types of wastewater and contaminants: Production of bioproducts and biofuel for green circular economy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116415. [PMID: 36206653 DOI: 10.1016/j.jenvman.2022.116415] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Remediation by algae is a very effective strategy for avoiding the use of costly, environmentally harmful chemicals in wastewater treatment. Recently, industries based on biomass, especially the bioenergy sector, are getting increasing attention due to their environmental acceptability. However, their practical application is still limited due to the growing cost of raw materials such as algal biomass, harvesting and processing limitations. Potential use of algal biomass includes nutrients recovery, heavy metals removal, COD, BOD, coliforms, and other disease-causing pathogens reduction and production of bioenergy and valuable products. However, the production of algal biomass using the variable composition of different wastewater streams as a source of growing medium and the application of treated water for subsequent use in agriculture for irrigation has remained a challenging task. The present review highlights and discusses the potential role of algae in removing beneficial nutrients from different wastewater streams with complex chemical compositions as a biorefinery concept and subsequent use of produced algal biomass for bioenergy and bioactive compounds. Moreover, challenges in producing algal biomass using various wastewater streams and ways to alleviate the stress caused by the toxic and high concentrations of nutrients in the wastewater stream have been discussed in detail. The technology will be economically feasible and publicly accepted by reducing the cost of algal biomass production and reducing the loaded or attached concentration of micropollutants and pathogenic microorganisms. Algal strain improvement, consortium development, biofilm formation, building an advanced cultivation reactor system, biorefinery concept development, and life-cycle assessment are all possible options for attaining a sustainable solution for sustainable biofuel production. Furthermore, producing valuable compounds, including pharmaceutical, nutraceutical and pigment contents generated from algal biomass during biofuel production, could also help reduce the cost of wastewater management by microalgae.
Collapse
Affiliation(s)
- Motasem Y D Alazaiza
- Department of Civil and Environmental Engineering, College of Engineering, A'Sharqiyah University, 400, Ibra, Oman.
| | - Ahmed Albahnasawi
- Department of Environmental Engineering, Gebze Technical University, 41400, Kocaeli, Turkey
| | - Zulfiqar Ahmad
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
| | - Mohammed J K Bashir
- Department of Environmental Engineering, Faculty of Engineering and Green Technology (FEGT), Universiti Tunku Abdul Rahman, 31900, Kampar, Perak, Malaysia
| | - Talal Al-Wahaibi
- Department of Civil and Environmental Engineering, College of Engineering, A'Sharqiyah University, 400, Ibra, Oman
| | | | - Salem S Abu Amr
- International College of Engineering and Management, P.O. Box 2511, C.P.O Seeb, P.C. 111, Oman
| | - Dia Eddin Nassani
- Department of Civil Engineering, Hasan Kalyoncu University, 27500, Gaziantep, Turkey
| |
Collapse
|
11
|
Mubashar M, Zhang J, Liu Q, Chen L, Li J, Naveed M, Zhang X. In-situ removal of aquaculture waste nutrient using floating permeable nutrient uptake system (FPNUS) under mixotrophic microalgal scheme. BIORESOURCE TECHNOLOGY 2022; 363:128022. [PMID: 36167173 DOI: 10.1016/j.biortech.2022.128022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The current study investigated the in-situ aquaculture nutrient removal from fish tanks using mixotrophic Scenedesmus in a floating permeable nutrient uptake system (FPNUS) and compared with nutrient concentration in control, autotrophy, and bacterial nitrogen removal (BNR) treatments. In the first run, results were not as expected due to the missing PO4--P as the mixotrophic growth in flasks with PO4--P was 55.86% more than growth in aquaculture wastewater. With PO4--P addition in FPNUS, average and maximum removal rates under mixotrophy reached 2.53 and 10.96 mg/(L·d), respectively. The average mixotrophic removal rate was 40.31 and 81.42% higher than removal rates under autotrophy and BNR. Daily nutrient loading and removal were matched only in mixotrophy after fourth day of culture. These results show the great potential for nutrient removal using mixotrophic microalgae-based FPNUS due to its high efficiency, capability of in-situ treatment and nutrient recycling through biomass utilization.
Collapse
Affiliation(s)
- Muhammad Mubashar
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Junjie Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qingling Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Liang Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jing Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Xuezhi Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
12
|
Han F, Zhou W. Nitrogen recovery from wastewater by microbial assimilation - A review. BIORESOURCE TECHNOLOGY 2022; 363:127933. [PMID: 36100188 DOI: 10.1016/j.biortech.2022.127933] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The increased nitrogen (N) input with low utilization rate in artificial N management has led to massive reactive N (Nr) flows, putting the Earth in a high-risk state. It is essential to recover and recycle Nr during or after Nr removal from wastewater to reduce N input while simultaneously mitigate Nr pollution in addressing the N stress. However, mechanisms for efficient Nr recovery during or after Nr removal remain unclear. Here, the occurrence of N risk and progress in wastewater treatment in recent years as well as challenges of the current technologies for N recovery from wastewater were reviewed. Through analyzing N conversion fluxes in biogeochemical N-cycling networks, microbial N assimilation through photosynthetic and heterotrophic microorganisms was highlighted as promising alternative for synergistic N removal and recovery in wastewater treatment. In addition, the prospects and gaps of Nr recovery from wastewater through microbial assimilation are discussed.
Collapse
Affiliation(s)
- Fei Han
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong 250002, China.
| |
Collapse
|
13
|
Wang YN, Zhang JT, Wang JH, Chi ZY, Zhang Q. High robustness of attached Chlorella sp. on semi-continuous low strength effluent polishing under axenic and xenic conditions. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|