1
|
Nieścioruk MJ, Bandrow P, Szufa S, Woźniak M, Siczek K. Biomass-Based Hydrogen Extraction and Accompanying Hazards-Review. Molecules 2025; 30:565. [PMID: 39942668 PMCID: PMC11819887 DOI: 10.3390/molecules30030565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Nowadays, there is an increased demand for energy, the access to which, however, is limited due to the decreasing of fossil sources and the need to reduce emissions, especially carbon dioxide. One possible remedy for this situation is using hydrogen as a source of green energy. Hydrogen is usually bound to other chemical elements and can be separated via energy-intensive few-step conversion processes. A few methods are involved in separating H2 from biomass, including biological and thermochemical (TC) ones. Such methods and possible hazards related to them are reviewed in this study.
Collapse
Affiliation(s)
- Mariusz J. Nieścioruk
- Mjniescioruk AEI, Traktorowa Str. 55/34, 91-111 Lodz, Poland;
- Faculty of Civil and Transport Engineering, Poznan University of Technology, Piotrowo Str. 3, 61-138 Poznań, Poland
| | - Paulina Bandrow
- The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk, Poland;
- BADER Polska Sp. z o.o., Mostowa 1 St., 59-700 Bolesławiec, Poland
| | - Szymon Szufa
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland
| | - Marek Woźniak
- Department of Vehicles and Fundamentals of Machine Design, Lodz University of Technology, Stefanowskiego Str. 1/15, 90-537 Lodz, Poland; (M.W.); (K.S.)
| | - Krzysztof Siczek
- Department of Vehicles and Fundamentals of Machine Design, Lodz University of Technology, Stefanowskiego Str. 1/15, 90-537 Lodz, Poland; (M.W.); (K.S.)
| |
Collapse
|
2
|
Karmur RS, Gogoi D, Das MR, Ghosh NN. A flexible solid-state asymmetric supercapacitor device comprising cobalt hydroxide and biomass-derived porous carbon. RSC Adv 2024; 14:27465-27474. [PMID: 39211909 PMCID: PMC11358879 DOI: 10.1039/d4ra05106h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Development in the field of alternative and renewable energy sources is becoming necessary considering the current energy demands of the growing technologies. The main challenge associated with the produced energy is to store it for future use, such that it can be used when needed. Supercapacitors are among the electrochemical energy storage systems that provides higher power density, faster charging-discharging, high specific capacitance (C S), and long cycling life. Herein, the fabrication of a flexible solid-state asymmetric supercapacitor (ASC) device is reported, where Co(OH)2 hollow spheres and biomass-derived porous carbon (PC) are the cathode and anode, respectively. Co(OH)2 is a highly redox active material, whereas PC is an electric double-layer capacitive (EDLC) material. In this device, aqueous KOH solution (electrolyte) encapsulated in PVA gel (separator) was used to bind the electrodes. This Co(OH)2//PC ASC device exhibited a high C S of 260 F g-1 (at 2 A g-1). It retained ∼91% of the initial C S value (at 6 A g-1) till ∼5000 cycles. Electrochemical impedance spectroscopy (EIS) study confirmed low internal resistance (0.95 Ω) and charge transfer resistance (1.41 Ω) values of Co(OH)2//PC. These results indicate that the high electron transfer process in the electrode-electrolyte interface during the electrochemical reaction, which is responsible for the excellent performance of this ASC device. The high-performance Co(OH)2//PC ASC device exhibited an energy density of 76.7 W h kg-1 at a power density of 1416.9 W kg-1. To demonstrate its practical use, LED lights were illuminated using this Co(OH)2//PC ASC device.
Collapse
Affiliation(s)
- Rajeshvari Samatbhai Karmur
- Nano-materials Lab, Department of Chemistry, BITS-Pilani Goa Campus Zuarinagar Goa-403726 India +91 25570339 +91 832 2580318
| | - Debika Gogoi
- Nano-materials Lab, Department of Chemistry, BITS-Pilani Goa Campus Zuarinagar Goa-403726 India +91 25570339 +91 832 2580318
| | - Manash R Das
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-NEIST Jorhat Assam-785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Narendra Nath Ghosh
- Nano-materials Lab, Department of Chemistry, BITS-Pilani Goa Campus Zuarinagar Goa-403726 India +91 25570339 +91 832 2580318
| |
Collapse
|
3
|
Khan U, Bilal M, Adil HM, Darlington N, Khan A, Khan N, Ihsanullah I. Hydrogen from sewage sludge: Production methods, influencing factors, challenges, and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170696. [PMID: 38340850 DOI: 10.1016/j.scitotenv.2024.170696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/20/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
The rising global population and rapid industrialization have frequently resulted in a significant escalation in energy requirements. Hydrogen, renowned for its eco-friendly and renewable characteristics, has garnered substantial interest as a fuel alternative to address the energy needs currently fulfilled by fossil fuels. Embracing such energy substitutes holds pivotal importance in advancing environmental sustainability, aiding in the reduction of greenhouse gas emissions - the primary catalysts of global warming and climate fluctuations. This study elucidates recent trends in sewage sludge (SS)-derived hydrogen through diverse production pathways and critically evaluates the impact of varying parameters on hydrogen yield. Furthermore, a detailed analysis of the breakdown of the hydrogen generation process from SS is provided, along with an assessment of its economic dimensions. The review culminates by illuminating key obstacles in the adoption of this innovative technology, accompanied by practical recommendations to surmount these challenges. This comprehensive analysis is expected to attract considerable interest from stakeholders within the hydrogen production domain, fostering substantial engagement.
Collapse
Affiliation(s)
- Usman Khan
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, Krakow 31-155, Poland
| | - Muhammad Bilal
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Hossain Md Adil
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, Krakow 31-155, Poland
| | - Nnabodo Darlington
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, Krakow 31-155, Poland
| | - Ahsan Khan
- Center of Excellence in Particle Technology and Material Processing, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Nouman Khan
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, KPK, Pakistan
| | - I Ihsanullah
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
4
|
Jiao H, Tsigkou K, Elsamahy T, Pispas K, Sun J, Manthos G, Schagerl M, Sventzouri E, Al-Tohamy R, Kornaros M, Ali SS. Recent advances in sustainable hydrogen production from microalgae: Mechanisms, challenges, and future perspectives. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115908. [PMID: 38171102 DOI: 10.1016/j.ecoenv.2023.115908] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
The depletion of fossil fuel reserves has resulted from their application in the industrial and energy sectors. As a result, substantial efforts have been dedicated to fostering the shift from fossil fuels to renewable energy sources via technological advancements in industrial processes. Microalgae can be used to produce biofuels such as biodiesel, hydrogen, and bioethanol. Microalgae are particularly suitable for hydrogen production due to their rapid growth rate, ability to thrive in diverse habitats, ability to resolve conflicts between fuel and food production, and capacity to capture and utilize atmospheric carbon dioxide. Therefore, microalgae-based biohydrogen production has attracted significant attention as a clean and sustainable fuel to achieve carbon neutrality and sustainability in nature. To this end, the review paper emphasizes recent information related to microalgae-based biohydrogen production, mechanisms of sustainable hydrogen production, factors affecting biohydrogen production by microalgae, bioreactor design and hydrogen production, advanced strategies to improve efficiency of biohydrogen production by microalgae, along with bottlenecks and perspectives to overcome the challenges. This review aims to collate advances and new knowledge emerged in recent years for microalgae-based biohydrogen production and promote the adoption of biohydrogen as an alternative to conventional hydrocarbon biofuels, thereby expediting the carbon neutrality target that is most advantageous to the environment.
Collapse
Affiliation(s)
- Haixin Jiao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Konstantina Tsigkou
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, Patras 26504, Greece
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Konstantinos Pispas
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, Patras 26504, Greece
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Georgios Manthos
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, Patras 26504, Greece
| | - Michael Schagerl
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, Vienna A-1030, Austria.
| | - Eirini Sventzouri
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, Patras 26504, Greece
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Michael Kornaros
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, Patras 26504, Greece
| | - Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
5
|
Sakheta A, Nayak R, O'Hara I, Ramirez J. A review on modelling of thermochemical processing of biomass for biofuels and prospects of artificial intelligence-enhanced approaches. BIORESOURCE TECHNOLOGY 2023; 386:129490. [PMID: 37460019 DOI: 10.1016/j.biortech.2023.129490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Biofuels from lignocellulosic biomass converted via thermochemical technologies can be renewable and sustainable, which makes them promising as alternatives to conventional fossil fuels. Prior to building industrial-scale thermochemical conversion plants, computational models are used to simulate process flows and conditions, conduct feasibility studies, and analyse process and business risk. This paper aims to provide an overview of the current state of the art in modelling thermochemical conversion of lignocellulosic biomass. Emphasis is given to the recent advances in artificial intelligence (AI)-based modelling that plays an increasingly important role in enhancing the performance of the models. This review shows that AI-based models offer prominent accuracy compared to thermodynamic equilibrium modelling implemented in some models. It is also evident that gasification and pyrolysis models are more matured than thermal liquefaction for lignocelluloses. Additionally, the knowledge gained and future directions in the applications of simulation and AI in process modelling are explored.
Collapse
Affiliation(s)
- Aban Sakheta
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, 2 George St, Brisbane City, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George St, Brisbane City, Queensland 4000, Australia
| | - Richi Nayak
- School of Computer Science, Faculty of Science, Queensland University of Technology, 2 George St, Brisbane City, Queensland 4000, Australia; Centre for Data Science, Queensland University of Technology, 2 George Street, Brisbane, 4000, QLD, Australia
| | - Ian O'Hara
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, 2 George St, Brisbane City, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George St, Brisbane City, Queensland 4000, Australia; ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology (QUT), 2 George Street, Brisbane, Australia
| | - Jerome Ramirez
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, 2 George St, Brisbane City, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George St, Brisbane City, Queensland 4000, Australia; ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology (QUT), 2 George Street, Brisbane, Australia.
| |
Collapse
|
6
|
Naveenkumar R, Iyyappan J, Pravin R, Kadry S, Han J, Sindhu R, Awasthi MK, Rokhum SL, Baskar G. A strategic review on sustainable approaches in municipal solid waste management andenergy recovery: Role of artificial intelligence,economic stability andlife cycle assessment. BIORESOURCE TECHNOLOGY 2023; 379:129044. [PMID: 37044151 DOI: 10.1016/j.biortech.2023.129044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
The consumption of energy levels has increased in association with economic growth and concurrently increased the energy demand from renewable sources. The need under Sustainable Development Goals (SDG) intends to explore various technological advancements for the utilization of waste to energy. Municipal Solid Waste (MSW) has been reported as constructive feedstock to produce biofuels, biofuel carriers and biochemicals using energy-efficient technologies in risk freeways. The present review contemplates risk assessment and challenges in sorting and transportation of MSW and different aspects of conversion of MSW into energy are critically analysed. The circular bioeconomy of energy production strategies and management of waste are also analysed. The current scenario on MSW and its impacts on the environment are elucidated in conjunction with various policies and amendments equipped for the competent management of MSW in order to fabricate a sustained environment.
Collapse
Affiliation(s)
- Rajendiran Naveenkumar
- Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States; Forest Products Laboratory, USDA Forest Service, Madison, WI 53726, United States
| | - Jayaraj Iyyappan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602107, India
| | - Ravichandran Pravin
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119. India
| | - Seifedine Kadry
- Department of Applied Data Science, Noroff University College, Kristiansand, Norway; Artificial Intelligence Research Center (AIRC), Ajman University, Ajman 346, United Arab Emirates; Department of Electrical and Computer Engineering, Lebanese American University, Byblos, Lebanon
| | - Jeehoon Han
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119. India; Department of Applied Data Science, Noroff University College, Kristiansand, Norway.
| |
Collapse
|
7
|
Bhaskar T, Venkata Mohan S, You S, Kim SH, Porto de Souza Vandenberghe L. Biomass to green hydrogen (BGH2-2022). BIORESOURCE TECHNOLOGY 2023; 376:128924. [PMID: 36948427 DOI: 10.1016/j.biortech.2023.128924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
| | - S Venkata Mohan
- CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | | | | | | |
Collapse
|
8
|
Suresh G, Kumari P, Venkata Mohan S. Light-dependent biohydrogen production: Progress and perspectives. BIORESOURCE TECHNOLOGY 2023; 380:129007. [PMID: 37061171 DOI: 10.1016/j.biortech.2023.129007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/08/2023]
Abstract
The fourth industrial revolution anticipates energy to be sustainable, renewable and green. Hydrogen (H2) is one of the green forms of energy and is deemed a possible solution to climate change. Light-dependent H2 production is a promising method derived from nature's most copious resources: solar energy, water and biomass. Reduced environmental impacts, absorption of carbon dioxide, relative efficiency, and cost economics made it an eye-catching approach. However, low light conversion efficiency, limited ability to utilize complex carbohydrates, and the O2 sensitivity of enzymes result in low yield. Isolation of efficient H2 producers, development of microbial consortia having a synergistic impact, genetically improved strains, regulating bidirectional hydrogenase activity, physiological parameters, immobilization, novel photobioreactors, and additive strategies are summarized for their possibilities to augment the processes of bio-photolysis and photo-fermentation. The challenges and future perspectives have been addressed to explore a sustainable way forward in a bio-refinery approach.
Collapse
Affiliation(s)
- G Suresh
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - Poonam Kumari
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Yang L, Jiang G, Chen J, Xu Z, Yang Y, Zheng B, Yang Y, Huang H, Tian Y. Production of 1,3-propanediol using enzymatic hydrolysate derived from pretreated distillers' grains. BIORESOURCE TECHNOLOGY 2023; 374:128773. [PMID: 36828224 DOI: 10.1016/j.biortech.2023.128773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
To minimize environmental pollution and waste of resources, distillers' grains (DG) was used to produce 1,3-propanediol. Biological, physical, and chemical methods were used for pretreatment. The correlation between features of pretreated samples and enzymatic digestibility was analyzed. The results showed that the glucan and xylan conversion of dilute sulfuric acid pretreated DG increased by 69.59% and 413.68%, respectively. The glucan conversion of microwave pretreated and xylan conversion of laccase pretreated DG increased by 14.22% and 34.19%, respectively. Pretreatment enhanced enzymatic digestibility through changing the dense structure and features of DG making them conductive to enzymatic hydrolysis. The production of 1,3-propanediol using enzymatic hydrolysate of pretreated DG and glycerol in shake-flask was 17 g/L. The utilization of DG not only provides plentiful raw materials replacing fossil fuels to produce biofuels and other chemicals but efficiently reduces environmental waste.
Collapse
Affiliation(s)
- Li Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, Sichuan 610065, China
| | - Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, Sichuan 610065, China
| | - Jia Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, Sichuan 610065, China
| | - Zhe Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, Sichuan 610065, China
| | - Yichen Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, Sichuan 610065, China
| | - Bijun Zheng
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, Sichuan 610065, China
| | - Yi Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, Sichuan 610065, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, Sichuan 610065, China.
| |
Collapse
|
10
|
Sequeda Barros R, Durán Contreras M, Romani Morris F, Vanegas Chamorro M, Albis Arrieta A. Evaluation of the methanogenic potential of anaerobic digestion of agro-industrial wastes. Heliyon 2023; 9:e14317. [PMID: 36938458 PMCID: PMC10018565 DOI: 10.1016/j.heliyon.2023.e14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023] Open
Abstract
Waste management technologies have become a way to generate value-added products. Anaerobic digestion (AD) allows biogas generation by treating organic wastes. In this work, the methanogenic potentials of anaerobic digestion of rumen and chicken manure, two typical agro-industrial wastes from the Colombian Caribbean region, were evaluated. On a first stage, the effect of temperature on anaerobic digestion of manure inoculated with liquid rumen was measured. Results revealed that the thermophilic digestion produces more biogas (up to 47% higher than the mesophilic digestion), but the mesophilic digestion has better biogas quality (up to 20% more methane than the thermophilic digestion). On the second experimental stage, it was assessed the effect of temperature regimen and the addition of fat-oil-grease (FOG) on cumulative biogas production, methane percentage, and physicochemical parameters. It was found that the anaerobic digestion of the rumen with FOG in mesophilic conditions had the best performance in terms of quantity and quality of biogas (2520 NL CH4/kg VS, CH4 93%, H2S 1 mg/L, H2O 16 mg/L). Finally, rumen and manure had methane concentrations above 40% in all cases studied, after 60 days of anaerobic digestion. It was concluded that rumen and manure are good candidates for biogas generation.
Collapse
Affiliation(s)
- Rodrigo Sequeda Barros
- Research Group KAÍ, Department of Chemical Engineering, Universidad del Atlántico, Puerto Colombia, Barranquilla Metropolitan Area-081007, Atlántico, Colombia
| | - Michel Durán Contreras
- Research Group KAÍ, Department of Chemical Engineering, Universidad del Atlántico, Puerto Colombia, Barranquilla Metropolitan Area-081007, Atlántico, Colombia
| | - Felipe Romani Morris
- Research Group KAÍ, Department of Chemical Engineering, Universidad del Atlántico, Puerto Colombia, Barranquilla Metropolitan Area-081007, Atlántico, Colombia
| | - Marley Vanegas Chamorro
- Research Group KAÍ, Department of Chemical Engineering, Universidad del Atlántico, Puerto Colombia, Barranquilla Metropolitan Area-081007, Atlántico, Colombia
- Corresponding author.
| | - Alberto Albis Arrieta
- Research Group Bioprocess, Department of Chemical Engineering, Universidad del Atlántico, Puerto Colombia, Barranquilla Metropolitan Area-081007, Atlántico, Colombia
| |
Collapse
|