1
|
Ren CG, Kong CC, Li SM, Wang XJ, Yu X, Wang YC, Qin S, Cui HL. Symbiotic microalgae and microbes: a new frontier in saline agriculture. Front Microbiol 2025; 16:1540274. [PMID: 40330728 PMCID: PMC12052889 DOI: 10.3389/fmicb.2025.1540274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/31/2025] [Indexed: 05/08/2025] Open
Abstract
With the growing human population worldwide, innovative agricultural development is needed to meet food security needs. However, this has inadvertently led to problematic irrigation practices and overuse of agrochemicals. Such practices can exacerbate soil salinization, which prevents plant growth. As a progressively widespread and escalating problem, soil salinization poses a major threat to global food security. Compared with the traditional use of microalgae or microorganisms that act on plant growth, microalgae-microorganism symbiosis has significant advantages in promoting plant growth. Microalgae and microorganisms can work together to provide a wide range of nutrients required by plants, and they exhibit nutrient complementarity, which supports plant growth. Here, the development potential of microalgae-microbial symbiosis for enhancing plant salt tolerance was investigated. Our review demonstrated that the metabolic complementarity between microalgae and microorganisms can enhance plant salt tolerance. The diversity of a microalgae-microorganism symbiotic system can improve ecosystem stability and resistance and reduce the incidence of plant disease under salt stress. These systems produce bioactive substances (e.g., phytohormones) that promote plant growth, which can improve crop yield, and they can improve soil structure by increasing organic matter and improving water storage capacity and soil fertility. Exploiting the synergistic effects between microalgae and beneficial microorganisms has biotechnological applications that offer novel solutions for saline agriculture to mitigate the deleterious effects of soil salinity on plant health and yield. However, there are several implementation challenges, such as allelopathic interactions and autotoxicity. To make microalgae-bacteria consortia economically viable for agricultural applications, optimal strains and species need to be identified and strategies need to be employed to obtain sufficient biomass in a cost-effective manner. By elucidating the synergistic mechanisms, ecological stability, and resource utilization potential of microalgae-microbial symbiotic systems, this review clarifies salt stress responses and promotes the shift of saline-alkali agriculture from single bioremediation to systematic ecological engineering.
Collapse
Affiliation(s)
- Cheng-Gang Ren
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Cun-Cui Kong
- College of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Si-Ming Li
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Xiao-Jing Wang
- College of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Xiao Yu
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Yin-Chu Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- National Basic Science Data Center, Beijing, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Academician Workstation of Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| | - Hong-Li Cui
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| |
Collapse
|
2
|
Chen X, Zheng Y, Zhang Y, Chi Z, Zeng Y, Huang A, Xie Z. Intracellular diatom-derived carbon dots for enhancing photosynthetic efficiency and biomass production of Chlorella. BIORESOURCE TECHNOLOGY 2025; 420:132129. [PMID: 39894181 DOI: 10.1016/j.biortech.2025.132129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Optimizing photosynthesis in microalgae is crucial for enhancing bioenergy production and addressing global energy demands. Here, the diatom-derived carbon dots (D-CDs) were synthesized through a hydrothermal method and explored their impact on the growth and photosynthesis of Chlorella. The results demonstrated that D-CDs significantly improved Chlorella growth, with a 59.4% increase in biomass, a 35.3% increase in proteins and a 118.9% increase in carbohydrates. The D-CDs penetrated the cells and interacted with chloroplasts, accelerating photosynthetic electron transfer during light-dependent reactions. This led to a 26.3% increase in ATP and a 55.5% increase in NADPH production. Transcriptomic analysis revealed that D-CDs upregulated ribosome-related genes and stimulated the expression of genes encoding nitrite reductase and glutamine synthetase, thereby enhancing nitrogen assimilation and utilization. This study highlights the potential of CDs derived from biomass in promoting Chlorella growth and enhancing photosynthesis, offering a promising approach for sustainable bioresource development.
Collapse
Affiliation(s)
- Xiaoqi Chen
- School of Life and Health Sciences, Hainan University, Haikou 570228 China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228 China
| | - Yimeng Zheng
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228 China
| | - Yuanshuai Zhang
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228 China
| | - Zirong Chi
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228 China
| | - Yanhua Zeng
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228 China
| | - Aiyou Huang
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228 China.
| | - Zhenyu Xie
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228 China.
| |
Collapse
|
3
|
Tang D, Li X, Zhang L, Xiao P, Nie Y, Qiu F, Cheng Z, Li W, Zhao Y. Reactive oxygen species-mediated signal transduction and utilization strategies in microalgae. BIORESOURCE TECHNOLOGY 2025; 418:132004. [PMID: 39710205 DOI: 10.1016/j.biortech.2024.132004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Reactive oxygen species (ROS) are crucial in stress perception, the integration of environmental signals, and the activation of downstream response networks. This review emphasizes ROS-mediated signaling pathways in microalgae and presents an overview of strategies for leveraging ROS. Eight distinct signaling pathways mediated by ROS in microalgae have been summarized, including the calcium signaling pathway, the target of rapamycin signaling pathway, the mitogen-activated protein kinase signaling pathway, the cyclic adenosine monophosphate/protein kinase A signaling pathway, the ubiquitin/protease pathway, the ROS-regulated transcription factors and enzymes, the endoplasmic reticulum stress, and the retrograde ROS signaling. Moreover, this review outlines three strategies for utilizing ROS: two-stage cultivation, combined stress with phytohormones, and strain engineering. The physicochemical properties of various ROS, together with their redox reactions with downstream targets, have been elucidated to reveal the role of ROS in signal transduction processes while delineating the ROS-mediated signal transduction network within microalgae.
Collapse
Affiliation(s)
- Dexin Tang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Xu Li
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Lei Zhang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Pengying Xiao
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Yudong Nie
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Facheng Qiu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Zhiliang Cheng
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Wensheng Li
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Yongteng Zhao
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agriculture and Life Science, Kunming University, Kunming 650214, PR China.
| |
Collapse
|
4
|
Yang H, Zhang C, Zhou D. Unveiling significant roles of phytohormone 6-benzylaminopurine in empowering Phaeodactylum tricornutum for high-salinity wastewater treatment and bioresource recovery. BIORESOURCE TECHNOLOGY 2025; 415:131634. [PMID: 39406311 DOI: 10.1016/j.biortech.2024.131634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
High-salinity presents significant challenges in microalgal wastewater treatment and bioresource recovery due to salinity stress. This study explored the use of salt-tolerant microalgae in conjunction with phytohormone regulation. 1 µM 6-benzylaminopurine increased the biomass of Phaeodactylum tricornutum by 38.3 % and enhanced lipid production by 36.8 %. 6-benzylaminopurine significantly improved the removal of inorganic carbon, total nitrogen, and total phosphorus by 85.2 %, 27.4 %, and 31.9 %. Specifically, 6-benzylaminopurine improved K+ transportation by 71.0 %, increased the activity of Ca2+ transport ATPase and Ca2+ sensors by 49.0 %-83.0 %, optimized osmotic balance, and alleviated salt-induced damage. The contents of proline and extracellular polymers increased by 34.8 % and 35.5 %. A 38.4 % reduction in reactive oxygen species indicated that high-salinity stress was mitigated. The analysis of Sustainable Development Goals showed a 56.2 % improvement in Affordable and Clean Energy. Overall, these findings further highlighted the promising application of the phytohormone 6-benzylaminopurine in microalgal high-salinity wastewater treatment and lipid production.
Collapse
Affiliation(s)
- Huiwen Yang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chaofan Zhang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
5
|
Qiu J, Vadiveloo A, Mao BD, Zhou JL, Gao F. Phytohormones as a novel strategy for promoting phytoremediation in microalgae: Progress and prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123593. [PMID: 39644554 DOI: 10.1016/j.jenvman.2024.123593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/08/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Microalgal phytoremediation is a promising bioremediation approach that can achieve significant resource recovery while effectively removing pollutants. However, the toxicity of some pollutants in wastewater often induces stress responses in microalgae, reducing their pollutant removal efficiency. Recently, phytohormones have been identified as a novel solution to reduce these stress responses, enhancing microalgae growth and improving their ability to remove various pollutants from wastewater. This advancement significantly boosts the efficiency and viability of microalgal phytoremediation. In this paper, the pathways and challenges related to microalgal phytoremediation were systematically analyzed. On this basis, the promoting effects of phytohormones on the removal of nutrients, heavy metals, and emerging contaminants by microalgae and the related mechanisms were discussed. Additionally, the review also discusses the optimal use strategy of phytohormones, the ecological risks that may be faced in the use of phytohormones, and the feasible strategies to control the use cost of phytohormones. The goal is to provide insights and guidance for future research on the application of phytohormones in microalgal phytoremediation.
Collapse
Affiliation(s)
- Jian Qiu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Ashiwin Vadiveloo
- Centre for Water, Energy and Waste, Harry Butler Institute, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Bin-Di Mao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China.
| |
Collapse
|
6
|
Huang KX, Vadiveloo A, Zhou JL, Zhong H, Gao F. Construction and transcriptomic analysis of salinity-induced lipid-rich flocculent microalgae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123982. [PMID: 39752947 DOI: 10.1016/j.jenvman.2024.123982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/12/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025]
Abstract
The lack of cost-effective nutrient sources and harvesting methods is currently a major obstacle to the production of sustainable biofuels from microalgae. In this study, Chlorella pyrenoidosa was cultured with saline wastewater in a stirred photobioreactor, and lipid-rich flocculent microalgae particles were successfully constructed. As the influent salinity of the photobioreactor increased from 0% to 3%, the particle size and sedimentation rate of flocculent microalgae particles gradually increased, and the lipid accumulation of microalgae also increased gradually. Transcriptome analysis showed that the number of differentially expressed genes (DEGs) in microalgae increased as the salinity of wastewater increased from 1% to 3%, and the number of up-expressed genes was greater than that of down-expressed genes in microalgae at different salinity levels. The enrichment analysis of DEGs showed that the up-expressed genes under salt stress mainly involved in fatty acid biosynthesis and other metabolic processes, which initially revealed the mechanism of the lipid accumulation of microalgal particles in saline wastewater. In addition, the expression and functions of genes involved in lipid and EPS synthesis pathway in microalgae were analyzed, and the key genes involved in salinity affecting lipid and EPS synthesis in microalgae were preliminarily identified. The results could provide novel insight for genetic engineering to regulate the construction of lipid-rich flocculent microalgae particles.
Collapse
Affiliation(s)
- Kai-Xuan Huang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Ningbo Institute of Digital Twin, Eastern Institute of Technology, Ningbo, China
| | - Ashiwin Vadiveloo
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, 6150, Australia
| | - Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Hua Zhong
- Ningbo Institute of Digital Twin, Eastern Institute of Technology, Ningbo, China.
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China.
| |
Collapse
|
7
|
Huang KX, Vadiveloo A, Zhong H, Mao BD, Qiu J, Gao F. Enhancing the removal of sulfamethoxazole and microalgal lipid production through microalgae-biochar hybrids. BIORESOURCE TECHNOLOGY 2024; 413:131510. [PMID: 39307476 DOI: 10.1016/j.biortech.2024.131510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/03/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
The use of microalgae for antibiotic removal has received increasing attention due to its many advantages. However, challenges such as limited removal rates and the complexity of algae cell recovery persist. In this study, chitosan and FeCl3 modified peanut shell biochar (CTS@FeBC) was prepared for the immobilization of Chlorella pyrenoidosa. The results showed that CTS@FeBC effectively adsorbed and immobilized microalgal cells to form microalgae-biochar hybrids, resulting in higher sulfamethoxazole removal rate (45.7 %) compared to microalgae (34.4 %) or biochar (20.0 %) alone, and higher microalgal lipid yield (11.6 mg/L d-1) than microalgae alone (10.1 mg/L d-1). More importantly, the microalgae-biochar hybrids could be rapidly separated from the wastewater within 10 min by applying a magnetic field, resulting in a harvesting efficiency of 86.3 %. Overall, the microalgae-biochar hybrids hold great potential in overcoming challenges associated with pollutants removal and microalgal biomass recovery.
Collapse
Affiliation(s)
- Kai-Xuan Huang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Ningbo Institute of Digital Twin, Eastern Institute of Technology, Ningbo, China
| | - Ashiwin Vadiveloo
- Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Hua Zhong
- Ningbo Institute of Digital Twin, Eastern Institute of Technology, Ningbo, China.
| | - Bin-Di Mao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Jian Qiu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China.
| |
Collapse
|
8
|
Feng P, Wu J, Cui H, Huang X, Wang C, Wang C, Li X, Duan W. Effects of environmental concentrations of sulfamethoxazole on Skeletonema costatum and Phaeodactylum tricornutum: Insights into growth, oxidative stress, biochemical components, ultrastructure, and transcriptome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116851. [PMID: 39128452 DOI: 10.1016/j.ecoenv.2024.116851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
This study aimed to assess the ecological risks posed by sulfamethoxazole (SMX) at environmentally relevant concentrations. Specifically, its effects on the growth and biochemical components (total protein, total lipid, and total carbohydrate) of two marine microalgae species, namely Skeletonema costatum (S. costatum) and Phaeodactylum tricornutum (P. tricornutum), were investigated. Our findings revealed that concentrations of SMX below 150 ng/L stimulated the growth of both microalgae. Conversely, at higher concentrations, SMX inhibited their growth while promoting the synthesis of photosynthetic pigments, total protein, total lipid, and total carbohydrate (P < 0.05). Transmission electron microscope (TEM) observations demonstrated significant alterations in the ultrastructure of algal cells exposed to SMX, including nuclear marginalization, increased chloroplast volume, and heightened vacuolation. In addition, when SMX was lower than 250 ng/L, there was no oxidative damage in two microalgae cells. However, when SMX was higher than 250 ng/L, the antioxidant defense system of algal cells was activated to varying degrees, and the level of malondialdehyde (MDA) increased, indicating that algae cells were damaged by oxidation. From the molecular level, environmental concentration of SMX can induce microalgae cells to produce more energy substances, but there are almost no other adverse effects, indicating that the low level of SMX at the actual exposure level was unlikely to threaten P. tricornutum, but a higher concentration can significantly reduce its genetic products, which can affect the changes of its cell structure and damage P. tricornutum to some extent. Therefore, environmental concentration of SMX still has certain potential risks to microalgae. These outcomes improved current understanding of the potential ecological risks associated with SMX in marine environments.
Collapse
Affiliation(s)
- Pengfei Feng
- Ocean college of Hebei Agricultural University, Qinhuangdao, Hebei Province 066003, PR China; Hebei Key Laboratory of Nutrition Regulation and Disease Control for Aquaculture, Qinhuangdao, Hebei Province, 066003, PR China
| | - Jiangyue Wu
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, PR China
| | - Hongwu Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong Province 266071, PR China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu Province 210044, PR China
| | - Chen Wang
- Ocean college of Hebei Agricultural University, Qinhuangdao, Hebei Province 066003, PR China; Hebei Key Laboratory of Nutrition Regulation and Disease Control for Aquaculture, Qinhuangdao, Hebei Province, 066003, PR China
| | - Chenyu Wang
- Ocean college of Hebei Agricultural University, Qinhuangdao, Hebei Province 066003, PR China; Hebei Key Laboratory of Nutrition Regulation and Disease Control for Aquaculture, Qinhuangdao, Hebei Province, 066003, PR China
| | - Xingyu Li
- Ocean college of Hebei Agricultural University, Qinhuangdao, Hebei Province 066003, PR China; Hebei Key Laboratory of Nutrition Regulation and Disease Control for Aquaculture, Qinhuangdao, Hebei Province, 066003, PR China
| | - Weiyan Duan
- Ocean college of Hebei Agricultural University, Qinhuangdao, Hebei Province 066003, PR China; Hebei Key Laboratory of Nutrition Regulation and Disease Control for Aquaculture, Qinhuangdao, Hebei Province, 066003, PR China.
| |
Collapse
|
9
|
Linares-Maurizi A, Awad R, Durbec A, Reversat G, Gros V, Galano JM, Bertrand-Michel J, Durand T, Pradelles R, Oger C, Vigor C. Stress-Induced Production of Bioactive Oxylipins in Marine Microalgae. Mar Drugs 2024; 22:406. [PMID: 39330287 PMCID: PMC11432788 DOI: 10.3390/md22090406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Microalgae, stemming from a complex evolutionary lineage, possess a metabolic composition influenced by their evolutionary journey. They have the capacity to generate diverse polyunsaturated fatty acids (PUFAs), akin to those found in terrestrial plants and oily fish. Also, because of their numerous double bonds, these metabolic compounds are prone to oxidation processes, leading to the creation of valuable bioactive molecules called oxylipins. Moreover, owing to their adaptability across various environments, microalgae offer an intriguing avenue for biosynthesizing these compounds. Thus, modifying the culture conditions could potentially impact the profiles of oxylipins. Indeed, the accumulation of oxylipins in microalgae is subject to the influence of growth conditions, nutrient availability, and stressors, and adjusting these factors can enhance their production in microalgae culture. Consequently, the present study scrutinized the LC-MS/MS profiles of oxylipins from three marine microalgae species (two Haptagophytes and one Chlorophyte) cultivated in 1 L of photobioreactors under varying stress-inducing conditions, such as the introduction of H2O2, EtOAc, and NaCl, during their exponential growth phase. Approximately 50 oxylipins were identified, exhibiting different concentrations depending on the species and growth circumstances. This research suggests that microalgae metabolisms can be steered toward the production of bioactive oxylipins through modifications in the culture conditions. In this instance, the application of a low dose of hydrogen peroxide to Mi 124 appears to stimulate the production of nonenzymatic oxylipins. For Mi136, it is the application of salt stress that seems to increase the overall production of oxylipins. In the case of Mi 168, either a low concentration of H2O2 or a high concentration of AcOEt appears to have this effect.
Collapse
Affiliation(s)
- Amandyne Linares-Maurizi
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
- Microphyt, 713 Route de Mudaison, 34670 Baillargues, France;
| | - Rana Awad
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| | - Anaelle Durbec
- MetaToul, MetaboHUB, Inserm/UPS UMR 1048, I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, 31077 Toulouse, France; (A.D.); (J.B.-M.)
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| | - Valérie Gros
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| | - Justine Bertrand-Michel
- MetaToul, MetaboHUB, Inserm/UPS UMR 1048, I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, 31077 Toulouse, France; (A.D.); (J.B.-M.)
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| | - Rémi Pradelles
- Microphyt, 713 Route de Mudaison, 34670 Baillargues, France;
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| |
Collapse
|
10
|
Pathom-Aree W, Sattayawat P, Inwongwan S, Cheirsilp B, Liewtrakula N, Maneechote W, Rangseekaew P, Ahmad F, Mehmood MA, Gao F, Srinuanpan S. Microalgae growth-promoting bacteria for cultivation strategies: Recent updates and progress. Microbiol Res 2024; 286:127813. [PMID: 38917638 DOI: 10.1016/j.micres.2024.127813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/02/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Microalgae growth-promoting bacteria (MGPB), both actinobacteria and non-actinobacteria, have received considerable attention recently because of their potential to develop microalgae-bacteria co-culture strategies for improved efficiency and sustainability of the water-energy-environment nexus. Owing to their diverse metabolic pathways and ability to adapt to diverse conditions, microalgal-MGPB co-cultures could be promising biological systems under uncertain environmental and nutrient conditions. This review proposes the recent updates and progress on MGPB for microalgae cultivation through co-culture strategies. Firstly, potential MGPB strains for microalgae cultivation are introduced. Following, microalgal-MGPB interaction mechanisms and applications of their co-cultures for biomass production and wastewater treatment are reviewed. Moreover, state-of-the-art studies on synthetic biology and metabolic network analysis, along with the challenges and prospects of opting these approaches for microalgal-MGPB co-cultures are presented. It is anticipated that these strategies may significantly improve the sustainability of microalgal-MGPB co-cultures for wastewater treatment, biomass valorization, and bioproducts synthesis in a circular bioeconomy paradigm.
Collapse
Affiliation(s)
- Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sahutchai Inwongwan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamas Cheirsilp
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand
| | - Naruepon Liewtrakula
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand
| | - Wageeporn Maneechote
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pharada Rangseekaew
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Fiaz Ahmad
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Muhammad Aamer Mehmood
- Bioenergy Research Center, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Fengzheng Gao
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, ETH Zurich, Zurich 8092, Switzerland; Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; Biorefinery and Bioprocess Engineering Research Cluster, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
11
|
Xie Z, Ou Z, Zhang M, Tang G, Cheng X, Cao W, Luo J, Fang F, Sun Y, Li M, Cai J, Feng Q. Indole-3-acetic acid regulating the initial adhesion of microalgae in biofilm formation. ENVIRONMENTAL RESEARCH 2024; 252:119093. [PMID: 38723991 DOI: 10.1016/j.envres.2024.119093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/17/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Regulating the microalgal initial adhesion in biofilm formation is a key approach to address the challenges of attached microalgae cultivation. As a type of phytohormone, Indole-3-acetic acid (IAA) can promote the growth and metabolism of microalgae. However, limited knowledge has been acquired of how IAA can change the initial adhesion of microalgae in biofilm formation. This study focused on investigating the initial adhesion of microalgae under different IAA concentrations exposure in biofilm formation. The results showed that IAA showed obvious hormesis-like effects on the initial adhesion ability of microalgae biofilm. Under exposure to the low concentration (0.1 mg/L) of IAA, the initial adhesion quantity of microalgae on the surface of the carrier reached the highest value of 7.2 g/m2. However, exposure to the excessively high concentration (10 mg/L) of IAA led to a decrease in the initial adhesion capability of microalgal biofilms. The enhanced adhesion of microalgal biofilms due to IAA was attributed to the upregulation of genes related to the Calvin Cycle, which promoted the synthesis of hydrophobic amino acids, leading to increased protein secretion and altering the surface electron donor characteristics of microalgal biofilms. This, in turn, reduced the energy barrier between the carriers and microalgae. The research findings would provide crucial support for the application of IAA in regulating the operation of microalgal biofilm systems.
Collapse
Affiliation(s)
- Zhihuai Xie
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Zixuan Ou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Meili Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China; Department of Hydraulic Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Guotao Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Wangbei Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China
| | - Yingqiang Sun
- School of Chemistry & Chemical Engineering, Anhui University, Anhui, 230039, PR China
| | - Ming Li
- College of Resources and Environment, Northwest A&F University, Yangling, Shanxi, 712100, PR China
| | - Juan Cai
- Zhejiang Environment Technology co.Ltd., 310030, PR China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, PR China.
| |
Collapse
|
12
|
Qiu JF, Yang YC, Li RY, Jiao YH, Mou JH, Yang WD, Lin CSK, Li HY, Wang X. Synergistic and stepwise treatment of resveratrol and catechol in Haematococcus pluvialis for the overproduction of biomass and astaxanthin. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:80. [PMID: 38877488 PMCID: PMC11177449 DOI: 10.1186/s13068-024-02527-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
To increase the production of biomass and astaxanthin from Haematococcus pluvialis to meet the high market demand for astaxanthin, this study recruited two typical and negligible phytohormones (namely resveratrol and catechol) for the stepwise treatments of H. pluvialis. It was found that the hybrid and sequential treatments of resveratrol (200 μmol) and catechol (100 μmol) had achieved the maximum astaxanthin content at 33.96 mg/L and 42.99 mg/L, respectively. Compared with the hybrid treatment, the physiological data of H. pluvialis using the sequential strategy revealed that the enhanced photosynthetic performance via the Calvin cycle by RuBisCO improved the biomass accumulation during the macrozooid stage; meanwhile, the excessive ROS production had occurred to enhance astaxanthin production with the help of NADPH overproduction during the hematocyst stage. Overall, this study provides improved knowledge of the impacts of phytohormones in improving biomass and astaxanthin of H. pluvialis, which shed valuable insights for advancing microalgae-based biorefinery.
Collapse
Affiliation(s)
- Jia-Fan Qiu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yu-Cheng Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ruo-Yu Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yu-Hu Jiao
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jin-Hua Mou
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
13
|
Jin Y, Li Y, Qi Y, Wei Q, Yang G, Ma X. A modified cultivation strategy to enhance biomass production and lipid accumulation of Tetradesmus obliquus FACHB-14 with copper stress and light quality induction. BIORESOURCE TECHNOLOGY 2024; 400:130677. [PMID: 38588782 DOI: 10.1016/j.biortech.2024.130677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/10/2024]
Abstract
In this study, a two-stage culture strategy was refined to concurrently enhance the growth and lipid accumulation of Tetradesmus obliquus. The results unveiled that, during the initial stage, the optimal conditions for biomass accumulation were achieved with 0.02 mg·L-1 Cu2+ concentration and red light. Under these conditions, biomass accumulation reached 0.628 g·L-1, marking a substantial 23.62 % increase compared to the control group. In the second stage, the optimal conditions for lipid accumulation were identified as 0.5 mg·L-1 Cu2+ concentration and red light, achieving 64.25 mg·g-1·d-1 and marking a 128.38 % increase over the control. Furthermore, the fatty acid analysis results revealed an 18.85 % increase in the saturated fatty acid content, indicating enhanced combustion performance of microalgae cultivated under the dual stress of red light and 0.5 mg·L-1 Cu2+. This study offers insights into the potential application of Tetradesmus obliquus in biofuel production.
Collapse
Affiliation(s)
- Yuanrong Jin
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, PR China
| | - Yinting Li
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, PR China
| | - Yingying Qi
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, PR China
| | - Qun Wei
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, PR China
| | - Gairen Yang
- Forestry College of Guangxi University, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, No. 100 Daxue Road, Nanning 530004, PR China
| | - Xiangmeng Ma
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, PR China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi Nanning 530004, PR China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, PR China.
| |
Collapse
|
14
|
Xin Y, Wu S, Miao C, Xu T, Lu Y. Towards Lipid from Microalgae: Products, Biosynthesis, and Genetic Engineering. Life (Basel) 2024; 14:447. [PMID: 38672718 PMCID: PMC11051065 DOI: 10.3390/life14040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Microalgae can convert carbon dioxide into organic matter through photosynthesis. Thus, they are considered as an environment-friendly and efficient cell chassis for biologically active metabolites. Microalgal lipids are a class of organic compounds that can be used as raw materials for food, feed, cosmetics, healthcare products, bioenergy, etc., with tremendous potential for commercialization. In this review, we summarized the commercial lipid products from eukaryotic microalgae, and updated the mechanisms of lipid synthesis in microalgae. Moreover, we reviewed the enhancement of lipids, triglycerides, polyunsaturated fatty acids, pigments, and terpenes in microalgae via environmental induction and/or metabolic engineering in the past five years. Collectively, we provided a comprehensive overview of the products, biosynthesis, induced strategies and genetic engineering in microalgal lipids. Meanwhile, the outlook has been presented for the development of microalgal lipids industries, emphasizing the significance of the accurate analysis of lipid bioactivity, as well as the high-throughput screening of microalgae with specific lipids.
Collapse
Affiliation(s)
- Yi Xin
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
- Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Hainan University, Haikou 570228, China
| | - Shan Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Congcong Miao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Tao Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
- Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Hainan University, Haikou 570228, China
- Hainan Provincial Key Laboratory of Tropical Hydrobiotechnology, Hainan University, Haikou 570228, China
| |
Collapse
|
15
|
Zhou JL, Yang ZY, Vadiveloo A, Li C, Chen QG, Chen DZ, Gao F. Enhancing lipid production and sedimentation of Chlorella pyrenoidosa in saline wastewater through the addition of agricultural phytohormones. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120445. [PMID: 38412732 DOI: 10.1016/j.jenvman.2024.120445] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
In this study, the effect of external agricultural phytohormones (mixed phytohormones) addition (1.0, 5.0, 10.0, and 20.0 mg L-1) on the growth performance, lipid productivity, and sedimentation efficiency of Chlorella pyrenoidosa cultivated in saline wastewater was investigated. Among the different concentrations evaluated, the highest biomass (1.00 g L-1) and lipid productivity (11.11 mg L-1 d-1) of microalgae were obtained at 10.0 mg L-1 agricultural phytohormones addition. Moreover, exogenous agricultural phytohormones also improved the sedimentation performance of C. pyrenoidosa, which was conducive to the harvest of microalgae resources, and the improvement of sedimentation performance was positively correlated with the amount of agricultural phytohormones used. The promotion of extracellular polymeric substances synthesis by phytohormones in microalgal cells could be considered as the reason for its promotion of microalgal sedimentation. Transcriptome analysis revealed that the addition of phytohormones upregulated the expression of genes related to the mitogen-activated protein kinase (MAPK)-mediated phytohormone signaling pathway and lipid synthesis, thereby improving salinity tolerance and lipid production in C. pyrenoidosa. Overall, agricultural phytohormones provide an effective and inexpensive strategy for increasing the lipid productivity and sedimentation efficiency of microalgae cultured in saline wastewater.
Collapse
Affiliation(s)
- Jin-Long Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Zi-Yan Yang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Ashiwin Vadiveloo
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, 6150, Australia
| | - Chen Li
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Qing-Guo Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Dong-Zhi Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Feng Gao
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China.
| |
Collapse
|
16
|
Zhao Y, Wang Q, Gu D, Huang F, Liu J, Yu L, Yu X. Melatonin, a phytohormone for enhancing the accumulation of high-value metabolites and stress tolerance in microalgae: Applications, mechanisms, and challenges. BIORESOURCE TECHNOLOGY 2024; 393:130093. [PMID: 38000641 DOI: 10.1016/j.biortech.2023.130093] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
High-value metabolites, such as carotenoids, lipids, and proteins, are synthesized by microalgae and find applications in various fields, including food, health supplements, and cosmetics. However, the potential of the microalgal industry to serve these sectors is constrained by low productivity and high energy consumption. Environmental stressors can not only stimulate the accumulation of secondary metabolites in microalgae but also induce oxidative stress, suppressing cell growth and activity, thereby resulting in a decrease in overall productivity. Using melatonin (MT) under stressful conditions is an effective approach to enhance the productivity of microalgal metabolites. This review underscores the role of MT in promoting the accumulation of high-value metabolites and enhancing stress resistance in microalgae under stressful and wastewater conditions. It discusses the underlying mechanisms whereby MT enhances metabolite synthesis and improves stress resistance. The review also offers new perspectives on utilizing MT to improve microalgal productivity and stress resistance in challenging environments.
Collapse
Affiliation(s)
- Yongteng Zhao
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Qingwei Wang
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Dan Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Feiyan Huang
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Jiani Liu
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Lei Yu
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China.
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
17
|
Zhou JL, Vadiveloo A, Chen DZ, Gao F. Regulation effects of indoleacetic acid on lipid production and nutrient removal of Chlorella pyrenoidosa in seawater-containing wastewater. WATER RESEARCH 2024; 248:120864. [PMID: 37979569 DOI: 10.1016/j.watres.2023.120864] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/12/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
The utilization of seawater supplemented with wastewater nutrients for microalgae cultivation represents a promising and cost-effective approach that combines the benefits of wastewater treatment and microalgal resource recovery. However, the high salt content in seawater poses a significant challenge, hindering microalgal growth and reducing the removal of nitrogen and phosphorus on a large scale. The phytohormone indoleacetic acid (IAA) was used in this study to enhance stress resistance and lipid production of Chlorella pyrenoidosa grown in seawater-wastewater medium. Compared to the control groups involving regular wastewater and seawater-containing wastewater without IAA, Chlorella pyrenoidosa cultivated in the seawater-containing wastewater supplemented with IAA exhibited remarkable outcomes. Specifically, microalgae in IAA-enhanced seawater-containing wastewater achieved the highest lipid productivity (22.67 mg L-1 d-1) along with impressive nitrogen (99.3 %) and phosphorus (97.3 %) removal rates. Moreover, their cell sedimentation ratio reached 76.6 %, indicating enhanced settling properties. Additionally, the physiological mechanism changes after exposure to seawater stress and IAA were revealed based on the changes in antioxidant enzymes, endogenous hormones, and fatty acid saturation. Furthermore, the transcriptomic analysis elucidated the molecular mechanisms underlying microalgal lipid synthesis and their response to antioxidant stress when exposed to seawater. The supplementation of IAA under seawater stress stimulated energy metabolism and the antioxidant response in microalgal cells, effectively mitigating the adverse effects of seawater stress and promoting overall algal lipid productivity. Overall, this study unveiled the potential of exogenous plant hormones, particularly IAA, in enhancing stress resistance and lipid productivity of microalgae grown in seawater-wastewater medium, which significantly contributed towards the efficient use of seawater resources for microalgae cultivation and biofuel production.
Collapse
Affiliation(s)
- Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Ashiwin Vadiveloo
- Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Dong-Zhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China.
| |
Collapse
|
18
|
Huang KX, Mao BD, Lu MM, Chen DZ, Qiu J, Gao F. Effect of external acetate added in aquaculture wastewater on mixotrophic cultivation of microalgae, nutrient removal, and membrane contamination in a membrane photobioreactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119391. [PMID: 37890297 DOI: 10.1016/j.jenvman.2023.119391] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/30/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
The mixotrophic cultivation of microalgae in wastewater has attracted extensive attention due to its many advantages. In this study, acetate, which can be prepared by hydrolysis of aquaculture waste, was used as exogenous organic matter to promote the growth of Chlorella pyrenoidosa cultured in aquaculture wastewater. Microalgae cultivation was carried out in a membrane photobioreactor (MPBR) with continuous inflow and outflow mode. The results showed that exogenous acetate greatly promoted the mixotrophic growth of C. pyrenoidosa. When the dosage of acetate reached 1.0 g L-1, the relative growth rate of microalgae in the logarithmic stage reached 0.31 d-1, which was 4.4 times that of the control. As a result, exogenous acetate also promoted the removal of nutrients from aquaculture wastewater. During the stable operation stage of the MPBR with acetate added in the influent, an average of 87.41%-93.93% nitrogen and 76.34%-88.55% phosphorus was removed from the aquaculture wastewater containing 19.41 mg L-1 total inorganic nitrogen and 1.31 mg L-1 total inorganic phosphorus. However, it was worth noting that adding exogenous acetate also led to an increase in the membrane resistance of the membrane module in the MPBR. Membrane resistance was mainly composed of internal resistance (Ri) and cake resistance (Rc), and with the increase of acetate content in the influent, their proportion in the total resistance gradually increased. Ri contributed the major membrane resistance and was most affected by acetate dosage. Ri reached 32.04 × 1012 m-1 with 1 g L-1 acetate, which accounted for 69.49% of total resistance. Moreover, with the increase of influent acetate concentration of the MPBRs, both the number of insoluble contaminants and dissolved organic contaminants in the membrane modules increased. In addition, the composition of proteins, polysaccharides, and humus in dissolved organic contaminants was close to that in extracellular polymeric substances and soluble microbial products secreted by microalgae. These results suggested that the membrane fouling of membrane modules was closely related to the algal biomass content in the MPBRs. The above results provided a theoretical basis for reducing membrane fouling of MPBR.
Collapse
Affiliation(s)
- Kai-Xuan Huang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Bing-Di Mao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Miao-Miao Lu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Dong-Zhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Jian Qiu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China.
| |
Collapse
|
19
|
Huang KX, Vadiveloo A, Zhong H, Li C, Gao F. High-efficiency harvesting of microalgae enabled by chitosan-coated magnetic biochar. BIORESOURCE TECHNOLOGY 2023; 390:129860. [PMID: 37838019 DOI: 10.1016/j.biortech.2023.129860] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Magnetic flocculation which uses magnetic particles is an emerging technology for harvesting microalgae. However, the potential modification and use of cost-effective and sustainable biochar-based composites is still in its infancy. As such, this study aimed to compare the harvesting efficiency of peanut shell biochar (BC), biochar modified with FeCl3 (FeBC), and biochar dual-modified with chitosan and FeCl3 (CTS@FeBC) on microalgae. The results showed CTS@FeBC exhibited significantly higher microalgae harvesting efficiency compared to BC and FeBC. Both acidic and alkaline conditions were favorable for harvesting microalgae by CTS@FeBC. At pH 2 and pH 12, the harvesting efficiency reached 96.9% and 98.8% within 2 min, respectively. The primary adsorption mechanism of CTS@FeBC on microalgae mainly involved electrostatic attraction and sweeping flocculation. Furthermore, CTS@FeBC also showed good biocompatibility and reusability. This study clearly demonstrated a promising technique for microalgae harvesting using biochar-based materials, offering valuable insights and potential applications in sustainable bioresource management.
Collapse
Affiliation(s)
- Kai-Xuan Huang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Eastern Institute of Technology, Ningbo 315200, China
| | - Ashiwin Vadiveloo
- Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Hua Zhong
- Eastern Institute of Technology, Ningbo 315200, China
| | - Chen Li
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China.
| |
Collapse
|
20
|
Tang J, Yang H, Pu Y, Hu Y, Qu X, Chen S, Wang XC, Ngo HH, Li Y, Abomohra A. Bioenergy production from swine wastewater based on a combined process of anaerobic dynamic membrane reactor and microalgae cultivation: Feasibility and performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165621. [PMID: 37478944 DOI: 10.1016/j.scitotenv.2023.165621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/16/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023]
Abstract
Enhanced methane production and sustainable reduction of pollutants from anaerobic digestate are crucial for swine wastewater treatment. In this study, anaerobic dynamic membrane bioreactor (AnDMBR) was introduced to enhance methane production, then microalgae were cultivated on the digestate for nutrients recovery and lipid production. Results showed that pollutants can be effectively removed under various hydraulic retention time (HRT) conditions during long-term operation. Methanogenesis was enhanced with the reduction of HRT from 20 days to 10 days (0.23 L-CH4/g-CODremoved), but inhibited by shortening HRT to 5 days (0.09 L-CH4/g-CODremoved). Ammonia and phosphate in the digestate were effectively removed after microalgae cultivation. In addition, the highest microalgal biomass and lipid productivity (1.7 g/L and 17.5 mg/(L·d), respectively) were obtained using digestate ratio of 20 %, while microalgal growth was seriously restricted at high digestate content (>50 %). This work provides a prospective pathway for pollutants control and energy production from swine wastewater through integrating of AnDMBR technology with microalgae cultivation.
Collapse
Affiliation(s)
- Jialing Tang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Hao Yang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Yunhui Pu
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China; College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China
| | - Xiangjiang Qu
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Si Chen
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yuyou Li
- Department of Civil and Environmental Engineering, Tohoku University, Sendai 9808579, Japan
| | - Abdelfatah Abomohra
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China; Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609 Hamburg, Germany.
| |
Collapse
|
21
|
Gu D, You J, Xiao Q, Yu X, Zhao Y. Comprehensive understanding of the regulatory mechanism by which selenium nanoparticles boost CO 2 fixation and cadmium tolerance in lipid-producing green algae under recycled medium. WATER RESEARCH 2023; 245:120556. [PMID: 37683524 DOI: 10.1016/j.watres.2023.120556] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Recycled medium plus cadmium is a promising technique for reducing the cultivation cost and enhancing the yield of microalgae lipids. However, oxidative stress and cadmium toxicity significantly hinder the resulting photosynthetic efficiency, cell growth and cell activity. Herein, selenium nanoparticles (SeNPs) were used to increase the total biomass, biolipid productivity, and tolerance to cadmium. Wide-ranging analyses of photosynthesis, energy yield, fatty acid profiles, cellular ultrastructure, and oxidative stress biomarkers were conducted to examine the function of SeNPs in CO2 fixation and cadmium resistance in Ankistrodesmus sp. EHY. The application of 15 μM cadmium and 2 mg L-1 SeNPs further enhanced the algal biomass productivity and lipid productivity to 500.64 mg L-1 d-1 and 301.14 mg L-1 d-1, respectively. Moreover, the rates of CO2 fixation, chlorophyll synthesis and total nitrogen removal were similarly increased by the application of SeNPs. Exogenous SeNPs strengthened cell growth and cadmium tolerance by upregulating photosynthesis, the TCA cycle and the antioxidant system, reducing the uptake and translocation of cadmium, and decreasing the levels of reactive oxidative stress (ROS), extracellular polymeric substances (EPSs) and cellular Cd2+ level in EHY under recycled medium and cadmium stress conditions. Additionally, a maximum energy yield of 127.40 KJ L-1 and a lipid content of 60.15% were achieved in the presence of both SeNPs and cadmium stress. This study may inspire the efficient disposal of recycled medium and biolipid production while also filling the knowledge gaps regarding the mechanisms of SeNP functions in carbon fixation and cadmium tolerance in microalgae.
Collapse
Affiliation(s)
- Dan Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinkun You
- Kunming Edible Fungi Institute of All China Federation of Supply and Marketing Cooperatives, Kunming 650032, China
| | - Qiu Xiao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yongteng Zhao
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agriculture and Life Science, Kunming University, Kunming 650214, China.
| |
Collapse
|
22
|
Yang L, Vadiveloo A, Chen AJ, Liu WZ, Chen DZ, Gao F. Supplementation of exogenous phytohormones for enhancing the removal of sulfamethoxazole and the simultaneous accumulation of lipid by Chlorella vulgaris. BIORESOURCE TECHNOLOGY 2023; 378:129002. [PMID: 37019415 DOI: 10.1016/j.biortech.2023.129002] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
In this study, the phytohormone gibberellins (GAs) were used to enhance sulfamethoxazole (SMX) removal and lipid accumulation in the microalgae Chlorella vulgaris. At the concentration of 50 mg/L GAs, the SMX removal achieved by C. vulgaris was 91.8 % while the lipid productivity of microalga was at 11.05 mg/L d-1, which were much higher than that without GAs (3.5 % for SMX removal and 0.52 mg/L d-1 for lipid productivity). Supplementation of GAs enhanced the expression of antioxidase-related genes in C. vulgaris as a direct response towards the toxicity of SMX. In addition, GAs increased lipid production of C. vulgaris by up-regulating the expression of genes related to carbon cycle of microalgal cells. In summary, exogenous GAs promoted the stress tolerance and lipid accumulation of microalgae at the same time, which is conducive to improving the economic benefits of microalgae-based antibiotics removal as well as biofuel production potential.
Collapse
Affiliation(s)
- Lei Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Ashiwin Vadiveloo
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Ai-Jie Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Wen-Zhu Liu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Dong-Zhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China.
| |
Collapse
|
23
|
Huang KX, Vadiveloo A, Zhou JL, Yang L, Chen DZ, Gao F. Integrated culture and harvest systems for improved microalgal biomass production and wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 376:128941. [PMID: 36948428 DOI: 10.1016/j.biortech.2023.128941] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Microalgae cultivation in wastewater has received much attention as an environmentally sustainable approach. However, commercial application of this technique is challenging due to the low biomass output and high harvesting costs. Recently, integrated culture and harvest systems including microalgae biofilm, membrane photobioreactor, microalgae-fungi co-culture, microalgae-activated sludge co-culture, and microalgae auto-flocculation have been explored for efficiently coupling microalgal biomass production with wastewater purification. In such systems, the cultivation of microalgae and the separation of algal cells from wastewater are performed in the same reactor, enabling microalgae grown in the cultivation system to reach higher concentration, thus greatly improving the efficiency of biomass production and wastewater purification. Additionally, the design of such innovative systems also allows for microalgae cells to be harvested more efficiently. This review summarizes the mechanisms, characteristics, applications, and development trends of the various integrated systems and discusses their potential for broad applications, which worth further research.
Collapse
Affiliation(s)
- Kai-Xuan Huang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National Engineering Research Center for Marine Aquaculture, Zhoushan 316000, China
| | - Ashiwin Vadiveloo
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Lei Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Dong-Zhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China.
| |
Collapse
|
24
|
Gao F, Zhou JL, Zhang YR, Vadiveloo A, Chen QG, Liu JZ, Yang Q, Ge YM. Efficient coupling of sulfadiazine removal with microalgae lipid production in a membrane photobioreactor. CHEMOSPHERE 2023; 316:137880. [PMID: 36649892 DOI: 10.1016/j.chemosphere.2023.137880] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
This study explored the feasibility of a coupled system for antibiotic removal and biofuel production through microalgae cultivation. Initial, batch culture experiments demonstrated that sulfadiazine (SDZ) had an inhibitory effect on Chlorella sp. G-9, and 100.0 mg L-1 SDZ completely inhibited its growth. In order to improve SDZ removal efficiency by microalgae, three membrane photobioreactors (MPBRs) with different hydraulic retention times (HRTs) were established for continuous microalgae cultivation. The efficient coupling of SDZ removal and microalgal lipid production was achieved through the gradual increment of influent SDZ concentration from 0 to 100.0 mg L-1. The reduction in SDZ ranged between 57.8 and 89.7%, 54.7-91.7%, and 54.6-93.5% for the MPBRs with HRT of 4 d, 2 d, and 1 d, respectively. Chlorella sp. Was found to tolerate higher concentrations of SDZ in the MPBR system, and the resulting stress from high concentrations of SDZ effectively increased the lipid content of microalgae for potential biodiesel production. With the increase of influent SDZ concentration from 0 to 100.0 mg L-1, the lipid content of microalgae increased by 43.5%. Chlorophyll content, superoxide dismutase activity, and malondialdehyde content of microalgae were also evaluated to explore the mechanism of microalgae tolerance to SDZ stress in MPBR.
Collapse
Affiliation(s)
- Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Yu-Ru Zhang
- Zhejiang Zhouhuan Environmental Engineering Design Co. LTD, Zhoushan, 316000, China
| | - Ashiwin Vadiveloo
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, 6150, Australia
| | - Qing-Guo Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Jun-Zhi Liu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Qiao Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Ya-Ming Ge
- National Engineering Research Center for Marine Aquaculture, Zhoushan, 316000, China.
| |
Collapse
|