1
|
Zhao S, Guo H, Klitzsch N, Liu X, Li G, Xu X. The role of biodegradable plastics in lignite anaerobic digestion: Changes of organics transformation and metabolic pathway. BIORESOURCE TECHNOLOGY 2025; 419:132021. [PMID: 39732372 DOI: 10.1016/j.biortech.2024.132021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Biodegradable plastics (BPs) and lignite, both rich in organic matter, present significant challenges for efficient conversion into clean energy. This study examined the anaerobic co-digestion of BPs and lignite under controlled laboratory conditions. The results demonstrated that the co-digestion of polylactic acid (PLA) and lignite (at a 1:2 mass ratio, with 5 g PLA and 10 g lignite as the model system) rapidly acclimated to the anaerobic environment, enhancing cumulative biogas production by 57 % compared to the mono-digestion of lignite alone. Synergistic fermentation significantly increased the production of organic small molecules while effectively degrading recalcitrant substances, including hydroxyl, aromatic, and methylene groups. Euryarchaeota emerged as the dominant phylum, with its abundance increasing by 118.4 %. Gene abundance for the carbon dioxide-to-methane conversion pathway increased by 60.1 %, confirming it as the primary methane metabolic pathway. These findings provide a novel method for the conversion and utilization of BPs and lignite.
Collapse
Affiliation(s)
- Shufeng Zhao
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Hongyu Guo
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China; Henan International Joint Laboratory of Coalmine Ground Control, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Norbert Klitzsch
- Institute for Applied Geophysics and Geothermal Energy, RWTH Aachen University, 52074 Aachen, Germany.
| | - Xiao Liu
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Guofu Li
- State Key Laboratory of Co-Mining Coal and Coalbed Methane Technology, Jincheng 048000, China.
| | - Xiaokai Xu
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| |
Collapse
|
2
|
Liu Y, Watanabe R, Li Q, Luo Y, Tsuzuki N, Qin Y, Li YY. Changes in methanogenic performance and microbial community during gradual transition from co-digestion with food waste to mono-digestion of rice straw. BIORESOURCE TECHNOLOGY 2025; 419:132072. [PMID: 39814148 DOI: 10.1016/j.biortech.2025.132072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/13/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
This study investigated the performance and phase-specific characteristics of mesophilic co-digestion of food waste (FW) with rice straw (RS) at different RS proportions (40 %, 60 %, and 80 %), as well as mono-digestion of RS. The system achieved optimal performance at 40 % RS content, with a methane yield of 383.8 mL/g-VS and cellulose removal efficiency exceeding 75 %. When RS content increased beyond 60 %, process performance declined notably. At 80 % RS ratio, an imbalance between acidogenesis and methanogenesis led to volatile fatty acids (VFAs) accumulation (1500 mg-COD/L), compromising both efficiency and stability. Notably, during the transition to mono-digestion, the system maintained stable operation, characterized by increased abundance of functional enzymes associated with cellulosic substance hydrolysis and acidogenesis. This enhanced enzymatic activity may be attributed to the microbial adaptation induced by previous co-digestion with FW. These findings provide valuable insights for optimizing mesophilic RS digestion through strategic co-digestion approaches.
Collapse
Affiliation(s)
- Yaqian Liu
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Sciences, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Ryoya Watanabe
- KUBOTA Corporation, 1-1-1 Hama, Amagasaki, Hyogo 661-8567, Japan
| | - Qian Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yutong Luo
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Naohito Tsuzuki
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Sciences, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Sciences, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
3
|
Wang Y, Wang Z, Wang K, Liang Z, Wang Q, Ding F, Lu Y, Su C. Insight into the evolution of phosphorous conversion, microbial community and functional gene expression during anaerobic co-digestion of food waste and excess sludge with spicy substances exposure. CHEMOSPHERE 2025; 371:144053. [PMID: 39743152 DOI: 10.1016/j.chemosphere.2024.144053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Garlic and chili are widely used as food flavoring agents in food cooking, therefore might be accumulated in large amounts in food waste (FW). The effects of garlic and chili on the dissolution, hydrolysis, acidification and methanation in an anaerobic co-digestion system were investigated during the combined co-digestion of FW and excess sludge (ES). Additionally, the transformation of phosphorus form and microbial metabolism changes during the process were analyzed. The results showed the addition of garlic and chili promoted the release of protein in the soluble chemical oxygen demand. Secondly, the addition of garlic and chili up-regulated the relative abundances of key coding genes pstS, pstA, pstB and pstC. The relative abundances of the pstS and pstC genes increased by 0.0113% and 0.0021%, respectively, when 10 g garlic was added compared with no garlic. Furthermore, with respect to phosphorus conversion, the addition of garlic inhibited the conversion of solid phosphorus to gaseous phosphorus, whereas the addition of chili had the opposite effect. Meanwhile, garlic and chili inhibited the expression of key coding genes in phosphofructokinase. This work provides new insights into the phosphorus conversion and microbial metabolism in the process of anaerobic co-digestion of FW and ES under the influence of spicy substances.
Collapse
Affiliation(s)
- Yuchen Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Zi Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Kaiyi Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Zhu Liang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Qing Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Fengxiu Ding
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Yuxiang Lu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China.
| | - Chengyuan Su
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China.
| |
Collapse
|
4
|
Wang X, Ming X, Chen M, Han X, Li X, Zhang D. Effect of acidification pretreatment on two-phase anaerobic digestion of acidified food waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 190:208-216. [PMID: 39357301 DOI: 10.1016/j.wasman.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Acidified food waste significantly disrupts anaerobic digestion, highlighting the need for effective solutions to mitigate its impact. This study presents a method that utilizes acidified sludge to pretreat acidified food waste, thereby significantly improving the efficiency of hydrolysis and acidogenesis. After acidification pretreatment, hydrolysis efficiency improved from 64.54 % to 96.51 %, while acidogenesis efficiency increased from 34.82 % to 49.95 %. Additionally, the concentration of short-chain fatty acids and hydrogen production in the acidification pretreatment group increased by 45.89 % and 48.67 %, respectively. The pretreatment group exhibited a biochemical methane potential of 512.84 ± 13.73 mL/(g volatile suspended solids), which was 35.77 % higher than that of the control group. Mechanism analysis revealed that the higher abundance of genes associated with lactate dehydrogenase in the acidified sludge facilitated the rapid degradation of lactic acid. Moreover, the abundant Clostridium butyricum in the acidified sludge promoted the targeted conversion of lactic acid and other organic matter into butyric acid within the food waste system. This efficient butyric acid fermentation improved the fermentation environment and provided abundant substrates for methane production. This study introduces a promising bio-based strategy to improve the anaerobic digestion efficiency of acidified food waste.
Collapse
Affiliation(s)
- Xudong Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xujia Ming
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengyu Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiao Han
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xianguo Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Dahai Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
5
|
Fang R, Wang X, Han Z, Pang R, Wu D, Tai J, Ouyang C, Zhan M, Kim H, Xie B, Su Y. Dynamic responses of the inter-microbial synergism and thermodynamic conditions attribute to the inhibition-and-relief effects of chitosan towards anaerobic digestion. WATER RESEARCH 2024; 267:122569. [PMID: 39369510 DOI: 10.1016/j.watres.2024.122569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Wide commercial applications of chitosan in food preservation and green packaging fields inevitably lead to the universal existence in food, as well as the food waste (FW) processing system. However, whether and how the chitosan, a class of biomacromolecule substances, lead to dysfunction of anaerobic digestion (AD) process of FW remains less understood. Herein, chitosan exhibited an inhibition-and-relief effect with the AD process proceeding, and 80 mg/g-FW of chitosan decreased the net methane yield of FW by 24.7 %. The dynamic effect was ascribed to the varied fates of chitosan and the coupling biotic/abiotic influencing on multi-steps. Chitosan enhanced substrate flocs agglomeration, restraining the release of organics to liquid phase and reducing the binding affinity to enzymes. Among the various microorganisms involved in different steps, chitosan severely inhibited aceticlastic and hydrogenotrophic methanogen at the levels of microbial abundance, activity and function. Genome-centric metagenomics analyses revealed that transient chitosan decreased the coenzyme-based synergism of various microbial taxa involved in acetic acid generation/consumption metabolisms, including syntrophic propionate-oxidizing bacteria, syntrophic butyrate-oxidizing bacteria and methanogen. With the elimination of chitosan, these inhibitions were relieved, and the accumulated acetic acid and the more favorable thermodynamic conditions finally attributed to the recovery of AD performance.
Collapse
Affiliation(s)
- Ru Fang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xueting Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhibang Han
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Ruirui Pang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jun Tai
- Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd., Shanghai 200232, China
| | - Chuang Ouyang
- Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd., Shanghai 200232, China
| | - Min Zhan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; School of Civil, Environmental & Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyunook Kim
- Department of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
6
|
Zhang L, Wang B, Li K, Su Y, Wu D, Zhan M, Xie B. The dynamics and assembly patterns of airborne pathogen communities in the municipal food waste treatment system and its risk implications. ENVIRONMENT INTERNATIONAL 2024; 194:109143. [PMID: 39566443 DOI: 10.1016/j.envint.2024.109143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/16/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
While municipal solid waste (MSW) provides an ideal habitat for pathogen propagation, the dynamics and assembly of airborne pathogen communities in these environments remain largely unknown. Here, we combined amplicon and metagenomics with spatiotemporal sampling to study inhalable particulate matter-carried potential pathogenic bacteria at full-scale food waste treatment plants (FWTPs), alongside comparisons to urban air in the area. The results showed that pathogenic bacteria constituted a notable portion (64.5 % ± 20.6 %, n = 75) of the total bacterial communities in FWTPs-impacted air, with species and relative abundance 2-4 times higher than that of urban air, and contributed over 50 % of pathogens to the outdoor air. Airborne pathogen community structures were highly shaped by sampling sites (i.e. treatment units), but conserved across seasons (summer vs. winter) and particle sizes (PM2.5vs. PM10). Notably, Acinetobacter johnsonii-dominated pathogens (i.e. biofilm-related species) presented high levels of aerosolization and consistently occupied the upper-representative niches in all neutral models, highlighting their persistent exposure risk. Furthermore, pathogen community assembly was strongly driven by stochastic processes (58.8 %-96.8 %), while environmental variables explained only limited variations (3.4 %-28.7 %). In particular, the relative importance of stochastic processes clearly increased along an outdoor-to-indoor gradient (84.9 %-96.5 % vs. 71.3 %-76 %), which might be related to indoor anthropogenic activities that weaken microbial network stability and environmental filtering effects. This work enhances our knowledge of the dynamic behaviors and risk of airborne pathogen communities in MSW disposal and underscores the role of FWTPs in disseminating airborne pathogens.
Collapse
Affiliation(s)
- Liangmao Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; College of Resource Environment and Tourism, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Binghan Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; College of Resource Environment and Tourism, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Kaiyi Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Min Zhan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
7
|
Zhang Y, Wang Z, Wang F, Zhou H, Zhang L, Xie B. Anaerobic Degradation of Aromatic and Aliphatic Biodegradable Plastics: Potential Mechanisms and Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19462-19474. [PMID: 39424349 DOI: 10.1021/acs.est.4c07554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Biodegradable plastics (BDPs) have been widely used as substitutes for traditional plastics, and their environmental fate is a subject of intense research interest. Compared with the aerobic degradation of BDPs, their biodegradability under anaerobic conditions in environmental engineering systems remains poorly understood. This study aimed to investigate the degradability of BDPs composed of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactide acid) (PLA), and their blends, and explore the mechanism underlying their microbial degradation under conditions of anaerobic digestion (AD). The BDPs readily depolymerized under thermophilic conditions but were hydrolyzed at a slow rate under conditions of mesophilic AD. After 45 days of thermophilic AD, a decrease in the molecular weight and significant increase in the production of methane and carbon dioxide production were observed. Network and metagenomics analyses identified AD as reservoirs of plastic-degrading bacteria that produce multiple plastic-degrading enzymes. PETase was identified as the most abundant plastic-degrading enzyme. A potential pathway for the anaerobic biodegradation of BDPs was proposed herein. The polymers of high molecular weight were subjected to abiotic hydrolysis to form oligomers and monomers, enabling subsequent microbial hydrolysis and acetogenesis. Ultimately, complete degradation was achieved predominantly via the pathway involved in the conversion of acetic acid to methane. These findings provide novel insight into the mechanism underlying the anaerobic degradation of BDPs and the microbial resources crucial for the efficient degradation of BDPs.
Collapse
Affiliation(s)
- Yuchen Zhang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zijiang Wang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Feng Wang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Hansheng Zhou
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Liangmao Zhang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
8
|
Huang T, Li D, Chen B, Wu B, Chai X. Utilization strategy for algal bloom waste through co-digestion with kitchen waste: Comprehensive kinetic and metagenomic analysis. ENVIRONMENTAL RESEARCH 2024; 255:119194. [PMID: 38777294 DOI: 10.1016/j.envres.2024.119194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Anaerobic co-digestion (AcoD) with kitchen waste (KW) is an alternative utilization strategy for algal bloom waste (AW). However, the kinetic characteristic and metabolic pathway during this process need to be explored further. This study conducted a comprehensive kinetic and metagenomic analysis for AcoD of AW and KW. A maximum co-digestion performance index (CPI) of 1.13 was achieved under the 12% AW addition. Co-digestion improved the total volatile fatty acids generation and the organic matter transformation efficiency. Kinetic analysis showed that the Superimposed model fit optimally (R2Adj = 0.9988-0.9995). The improvement of the kinetic process by co-digestion was mainly reflected in the increase of the methane production from slowly biodegradable components. Co-digestion enriched the cellulolytic bacterium Clostridium and the hydrogenotrophic methanogenic archaea Methanobacterium. Furthermore, for metagenome analysis, the abundance of key genes concerned in cellulose and lipid hydrolysis, pyruvate and methane metabolism were both increased in co-digestion process. This study provided a feasible process for the utilization of AW produced seasonally and a deeper understanding of the AcoD synergistic mechanism from kinetic and metagenomic perspectives.
Collapse
Affiliation(s)
- Tao Huang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Dong Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Bo Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Boran Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
9
|
Zhao W, Chen X, Ma H, Li D, Yang H, Hu T, Zhao Q, Jiang J, Wei L. Impact of co-substrate molecular weight on methane production potential, microbial community dynamics, and metabolic pathways in waste activated sludge anaerobic co-digestion. BIORESOURCE TECHNOLOGY 2024; 400:130678. [PMID: 38588784 DOI: 10.1016/j.biortech.2024.130678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/10/2024]
Abstract
Proteins and carbohydrates are important organics in waste activated sludge, and greatly affect methane production and microbial community composition in anaerobic digestion systems. Here, a series of co-substrates with different molecular weight were applied to investigate the interactions between microbial dynamics and the molecular weight of co-substrates. Biochemical methane production assays conducted in batch co-digesters showed that feeding high molecular weight protein and carbohydrate substrates resulted in higher methane yield and production rates. Moreover, high-molecular weight co-substrates increased the microbial diversity, enriched specific microbes including Longilinea, Anaerolineaceae, Syner-01, Methanothrix, promoted acidogenic and acetoclastic methanogenic pathways. Low-molecular weight co-substrates favored the growth of JGI-0000079-D21, Armatimonadota, Methanosarcina, Methanolinea, and improved hydrogenotrophic methanogenic pathway. Besides, Methanoregulaceae and Methanolinea were indicators of methane yield. This study firstly revealed the complex interactions between co-substrate molecular weight and microbial communities, and demonstrated the feasibility of adjusting co-substrate molecular weight to improve methane production process.
Collapse
Affiliation(s)
- Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinwei Chen
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Ma
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dan Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haizhou Yang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
10
|
Jiang H, Gao W, Lu Q, Wang S. Carbon/nitrogen flows and associated microbial communities in full-scale foodwaste treatment plants. BIORESOURCE TECHNOLOGY 2023; 388:129775. [PMID: 37722539 DOI: 10.1016/j.biortech.2023.129775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Microorganisms play key roles in the conversion of organic matter in foodwaste. However, both the microbially-mediated element (carbon/C and nitrogen/N) flows and associated microbial communities in foodwaste treatment plants (FWTPs) remain unclear. This study collected samples of different foodwaste treatment units from five full-scale FWTPs to analyze the C/N flows and microbial communities in foodwaste treatment processes. Results showed that 39.8-45.0% of organic carbon in foodwaste was converted into biogas. Hydrolytic acidogenic bacteria (e.g., Lactobacillus and Limosilactobacillus) and eukaryota (e.g., Cafeteriaceae, Saccharomycetales, and Agaricomycetes) were more abundant in feedstock and pretreatment units. Redundancy analyses showed that acidogens were major players in the transformation of foodwaste organic matter. Populations of W27 and Tepidanaerobacter were major contributors to the difference in conversion of C/N in these FWTPs. This study could support foodwaste treatment efficiencies improvement by providing insights into C/N flows and associated microbiota in FWTPs.
Collapse
Affiliation(s)
- Haihong Jiang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Weijun Gao
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
11
|
Zhang S, Liang C, Xiao M, Chui C, Wang N, Ji Y, Wang Z, Shi J, Liu L. Metagenomic characterization of the enhanced performance of multicomponent synergistic thermophilic anaerobic co-digestion of food waste utilizing kitchen waste or garden waste as co-substrate. WATER RESEARCH 2023; 244:120457. [PMID: 37574624 DOI: 10.1016/j.watres.2023.120457] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
Food waste (FW) single-substrate anaerobic digestion usually suffers from rapid acidification and inhibition of oil and salt. To overcome these problems and improve the process efficiency, supplementing other substrates has been used in FW anaerobic digestion. This study investigated the biogas production potential through co-digestion of FW with kitchen waste (KW) or garden waste (GW) in different ratios under thermophilic conditions. The results showed that the optimal ratios were FW:KW=60:40 and FW:GW=80:20 which biogas production improved 73.33% and 68.45% compared with single FW digestion, respectively. The organic matter removal rate of co-digestion was 84.46% for FW+KW group (RFK) and 65.64% for FW+GW group (RFG). Co-digestion increased the abundance of the dominant hydrolytic bacteria Defluviitoga and Hydrogenispora and hydrogenotrophic methanogen Methanoculleus. Furthermore, glycoside hydrolases (GHs), vital carbohydrate-active enzymes (CAZymes), were improved by co-digestion. Co-digestion could also effectively promote the function of cellulase and hemicellulose. This strategy for utilizing different organic wastes together as co-substrate provides a new avenue for bioenergy production.
Collapse
Affiliation(s)
- Siying Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengyu Liang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mengyao Xiao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunmeng Chui
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Na Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuji Ji
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhi Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jiping Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China.
| | - Li Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China.
| |
Collapse
|
12
|
Wang P, Yu M, Lin P, Zheng Y, Ren L. Effects of biochar supported nano zero-valent iron with different carbon/iron ratios on two-phase anaerobic digestion of food waste. BIORESOURCE TECHNOLOGY 2023; 382:129158. [PMID: 37164227 DOI: 10.1016/j.biortech.2023.129158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/30/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
The promotion effects of biochar supported nano zero-valent iron (BC/nZVI) with different carbon/iron ratios on two-phase anaerobic digestion (AD) of food waste (FW) were studied. Results suggested that when the carbon/iron ratio was 3:1 AD system showed the best performance, with the concentration of volatile fatty acids (VFAs) in acidogenic phase (AP) and the cumulative methane production in methanogenic phase (MP) increased by 31.4% and 24.8%, respectively. Metagenomic analysis demonstrated that BC/nZVI increased the relative abundance of Defluviitoga in AP, and promoted the growth of Methanothrix in MP. Metabolic pathway analysis in AP indicated that BC/nZVI mainly promoted the abundances of acetate kinase and butyrate kinase to enhance acid production. Methane metabolism pathway analysis in MP revealed that BC/nZVI increased methane production by promoting the module of M00357 and activating related enzymes. The results of this sutdy showed that BC/nZVI promoted AD of FW mainly through acetoclastic methanogenic pathway.
Collapse
Affiliation(s)
- Pan Wang
- School of Ecology and Environment, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Miao Yu
- School of Ecology and Environment, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Peiru Lin
- School of Ecology and Environment, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yi Zheng
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Lianhai Ren
- School of Ecology and Environment, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|