1
|
Zhang M, Wei B, Liu H, Liu D, Gadd GM, Li Q, Chen C. Simultaneous removal of hardness and organic matter from oilfield-produced water by microbially induced calcite precipitation. WATER RESEARCH 2025; 276:123252. [PMID: 39933299 DOI: 10.1016/j.watres.2025.123252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
Oilfield-produced water (PW), the largest by-product of petroleum extraction, presents significant treatment challenges due to high concentrations of total dissolved solids, heavy metals, and organic compounds. In this study, a ureolytic bacterium Staphylococcus succinus J3, with efficient petroleum degradation and microbially induced calcite precipitation (MICP) capabilities, was screened for simultaneous removal of hardness ions and organic pollutants from PW. Strain J3 showed excellent removal of Ca2+ (95 %), organic contaminants (62 %), and heavy metals (100 % for As and Mn, 94 % for Cu, 71 % for Ba) in high salinity PW under low nutrient conditions. Mechanistic analysis revealed that the bacteria removed organic pollutants through biodegradation, and the biominerals generated by MICP further accelerated the removal of organic contaminants through adsorption. Meanwhile, molecular characterization via FT-ICR MS demonstrated the conversion of large organic molecules into smaller, less toxic compounds, facilitating the downstream treatment of PW. Furthermore, the ammonium by-product (NH4-N) from urea hydrolysis was efficiently recovered (83.73 %) as ammonium sulfate for agricultural production through Donnan dialysis (DD). This research presents a promising new approach for the pre-treatment of high-hardness organic wastewater and provides molecular-level insights into the mechanisms of organic matter removal, thus supporting the advancement and optimization of PW recycling technology.
Collapse
Affiliation(s)
- Miao Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Biao Wei
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Hao Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Daoqing Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Geoffrey Michael Gadd
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China; Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Qianwei Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| |
Collapse
|
2
|
Zhang P, Xu L, Su J, Liu Y, Zhao B, Bai Y, Li X. Nano-Fe 3O 4/FeCO 3 modified red soil-based biofilter for simultaneous removal of nitrate, phosphate and heavy metals: Optimization, microbial community and possible mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136428. [PMID: 39522153 DOI: 10.1016/j.jhazmat.2024.136428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The pollution of nitrogen, phosphorus and heavy metals in surface water is becoming more and more serious, affecting the safety of water quality. In this study, three biofilters were constructed using iron-modified red soil-based filler carriers (RSC, nano-Fe3O4@RSC, and FeCO3@RSC) combined with strain Zoogloea sp. ZP7 to simultaneously remove nitrate (NO3--N), phosphate (PO43--P), copper (Cu2+), and zinc (Zn2+). The long-term operation results showed that the three groups of biofilters could remove 85.0 %, 90.0 %, and 89.8 % of NO3--N, respectively. Furthermore, the addition of iron compounds enhanced the removal of PO43--P and the resistance to the stress of Cu2+ and Zn2+ in the biofilter. The analysis illustrated that iron modification improved the redox activity and zeta potential of RSC surface. The secondary structure analysis of the protein showed that the microbial secreted proteins were more compact on the surface of the iron-modified RSC, which facilitated the formation of biofilm on the carrier surface. In addition, the iron-modified RSC-based biofilter also showed excellent NO3--N and PO43--P removal efficiency in the treatment of actual surface water. The microbial community analysis results showed that Zoogloea became the dominant species in the biofilter. On the other hand, the presence of iron-reducing bacteria and the expression iron cycle-related genes may contribute to denitrification under low nutrient conditions.
Collapse
Affiliation(s)
- Peng Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Bolin Zhao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
3
|
Qi S, Xu L, Su J, Li T, Wei H, Li X. Fe 3+/Fe 2+ cycling drove novel ammonia oxidation and simultaneously removed lead, cadmium, and copper. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136124. [PMID: 39405709 DOI: 10.1016/j.jhazmat.2024.136124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 12/01/2024]
Abstract
The discharge of several pollutants, such as ammonia (NH4+-N), nitrate (NO3--N), and heavy metals, from aquaculture wastewater into the aquatic environment can cause severe pollution issues. In this work, microbial techniques were employed to enable concurrent elimination of NH4+-N and NO3--N by Fe3+/Fe2+ cycling. The greatest NH4+-N and NO3--N removal efficiencies of 96.1 % and 97.6 % were gained by Aquabacterium sp. XL4 at NH4+/NO3- ratio of 1:1, carbon to nitrogen ratio of 4.0, pH of 6.5, and Fe3+ dosage of 20.0 mg L-1. Inhibitor and nitrogen balance assays suggested that nitrogen removal process of strain XL4 was a coupled function of anaerobic ammonia oxidation, ferric reduction driven ammonia oxidation, and iron-based denitrification. Furthermore, under the compound influence of strain XL4 metabolic processes and microbial iron oxide adsorption, the removal efficiencies of Pb2+, Cd2+, and Cu2+ reached above 90 %. This work contributes to theoretical grounding for microbial removal of multiple pollutants.
Collapse
Affiliation(s)
- Shangzhe Qi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tianmeng Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
4
|
Ji L, Zhang X, Zhu X, Gao B, Zhao R, Wu P. Novel insights into Feammox coupled with the NDFO: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175721. [PMID: 39181258 DOI: 10.1016/j.scitotenv.2024.175721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Ammonium oxidation coupled with Fe(III) reduction, known as Feammox, and nitrate-dependent ferrous oxidation (NDFO) are two processes that can be synergistically achieved through the Fe(III)/Fe(II) cycle. This integrated approach enables the simultaneous removal of ammonia nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) from wastewater, representing a novel method for complete nitrogen removal. This study presents a systematic and exhaustive examination of the Feammox-NDFO coupled process. An initial thorough exploration of the underlying mechanisms behind the coupling process is conducted, highlighting how the Fe(III)/Fe(II) cycle enables the concurrent occurrence of these reactions. Further, the functional microorganisms associated with and playing a crucial role in the Feammox-NDFO process are summarized. Next, the key influencing factors that govern the efficiency of the Feammox-NDFO process are explored. These include parameters such as pH, temperature, carbon source, iron source, nitrogen source, and various electron shuttles that may mediate electron transfer. Understanding the impact of these factors is essential for optimizing the process. The most recent trends and endeavors on the Feammox-NDFO coupling technology in wastewater treatment applications are also examined. This includes examining both laboratory-scale studies and field trials, highlighting their successes and challenges. Finally, an outlook is presented regarding the future advancement of the Feammox-NDFO technology. Areas of improvement and novel strategies that could further enhance the efficiency of simultaneous nitrogen removal from the iron cycle are discussed. In summary, this study aspires to offer a thorough comprehension of the Feammox-NDFO coupled process, with a focus on its mechanisms, influencing factors, applications, and prospects. It is anticipated to yield invaluable insights for the advancement of process optimization, thus sparking fresh ideas and strategies aimed at accomplishing the thorough elimination of nitrogen from wastewater via the iron cycle.
Collapse
Affiliation(s)
- Luomiao Ji
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xurui Zhu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Bo Gao
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Rui Zhao
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
5
|
Wei H, Xu L, Su J, Liu S, Zhou Z, Li X. Simultaneous removal of nitrogen, phosphorus, and organic matter from oligotrophic water in a system containing biochar and construction waste iron: Performances and biotic community analysis. ENVIRONMENTAL RESEARCH 2024; 255:119187. [PMID: 38777295 DOI: 10.1016/j.envres.2024.119187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/27/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The issue of combined pollution in oligotrophic water has garnered increasing attention in recent years. To enhance the pollutant removal efficiency in oligotrophic water, the system containing Zoogloea sp. FY6 was constructed using polyester fiber wrapped sugarcane biochar and construction waste iron (PWSI), and the denitrification test of simulated water and actual oligotrophic water was carried out for 35 days. The experimental findings from the systems indicated that the removal efficiencies of nitrate (NO3--N), total nitrogen (TN), chemical oxygen demand (COD), and total phosphorus (TP) in simulated water were 88.61%, 85.23%, 94.28%, and 98.90%, respectively. The removal efficiencies of actual oligotrophic water were 83.06%, 81.39%, 81.66%, and 97.82%, respectively. Furthermore, the high-throughput sequencing data demonstrated that strain FY6 was successfully loaded onto the biological carrier. According to functional gene predictions derived from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, the introduction of PWSI enhanced intracellular iron cycling and nitrogen metabolism.
Collapse
Affiliation(s)
- Hao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Shuyu Liu
- School of Environment and Chemistry Engineering, Shanghai University, Shanghai, 200444, China.
| | - Zhennan Zhou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
6
|
Zeng L, Ma J, Yang J, Yang J, Zeng X, Zhou Y. Ball milling nano-sized biochar: bibliometrics, preparation, and environmental application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52724-52739. [PMID: 39190254 DOI: 10.1007/s11356-024-34777-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/17/2024] [Indexed: 08/28/2024]
Abstract
Nano-sized biochar, which is a small structure prepared from biochar by grinding, has surpassed traditional biochar in performance, showing enhanced effects and potential for a wide range of environmental applications. Firstly, this paper visualizes and analyzes the literature in this field by CiteSpace to clarify the development trend of nano-sized biochar. The review intuitively shows the most influential countries, the most productive institutions, and the most concerned hot spots in the field of nano-sized biochar. Secondly, these hotspots in environment management are summarized by keywords and clustering: (1) The application of ball milling is a modification scheme that researchers have paid attention to, and it is also a key method for preparing biochar nanomaterials. It has a more dispersed structure and can support more modified materials. (2) Nano-sized biochar in the comprehensive utilization of water, soil, and plants was discussed and is a small range of application modification methods. (3) The bidirectional effects of nano-sized biochar on plants were analyzed, and the challenges in its application were listed. Finally, the economic management of nano-sized biochar and the relationship between microorganisms are the focus of the next research.
Collapse
Affiliation(s)
- Lingfeng Zeng
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Jiezhi Ma
- Department of Obstetrics and Gynecology, Xiangya Third Hospital, Central South University, Changsha City, 410013, Hunan Province, China
| | - Jie Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xiangzhou Zeng
- Huaihua Ecological Environment Bureau, Huaihua, 418000, Hunan Province, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
7
|
Wang X, Wang Z, Su J, Li X, Wen G, Li X. Simultaneous removal of calcium, phosphorus, and bisphenol A from industrial wastewater by Stutzerimonas sp. ZW5 via microbially induced calcium precipitation (MICP): Kinetics, mechanism, and stress response. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134700. [PMID: 38788588 DOI: 10.1016/j.jhazmat.2024.134700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/28/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
The biological treatment of complex industrial wastewater has always been a research hotspot. In this experiment, a salt-tolerant strain Stutzerimonas sp. ZW5 with aerobic denitrification and biomineralization ability was screened, and the optimum conditions of ZW5 were explored by kinetics. The removal efficiencies of nitrate (NO3--N), bisphenol A (BPA), phosphorus (PO43--P), and calcium (Ca2+) were 94.47 %, 100 %, 98.87 %, and 83.04 %, respectively. The removal mechanism of BPA was the adsorption of microbial induced calcium precipitation (MICP) and extracellular polymeric substances (EPS). Moreover, BPA could weaken the electron transfer ability and growth metabolism of microorganisms and affect the structure of biominerals. At the same time, the stress response of microorganisms would increase the secretion of EPS to promote the process of biomineralization. Through nitrogen balance experiments, it was found that the addition of BPA would lead to a decrease in the proportion of gaseous nitrogen. This experiment offers novel perspectives on the treatment of industrial effluents and microbial stress response.
Collapse
Affiliation(s)
- Xinjie Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Xue Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
8
|
Ma MY, Hu LL, Xu WY, Zhang W. L-tryptophan anaerobic fermentation for indole acetic acid production: Bacterial enrichment and effects of zero valent iron. BIORESOURCE TECHNOLOGY 2024; 400:130691. [PMID: 38599347 DOI: 10.1016/j.biortech.2024.130691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/12/2024]
Abstract
Indole acetic acid (IAA) as a plant hormone, was one of the valuable products of anaerobic fermentation. However, the enriching method remained unknown. Moreover, whether zero valent iron (ZVI) could enhance IAA production was unexplored. In this work, IAA producing bacteria Klebsiella (63 %) was enriched successfully. IAA average production rate and concentration were up to 3 mg/L/h and 56 mg/L. With addition of 1 g/L ZVI, IAA average production rate and concentration was increased for 2 and 3 folds. Mechanisms indicated ZVI increased Na+K+-ATP activity and electron transport activity for 2 folds and 1 fold. Moreover, macro transcription determined indole pyruvate pathway activity like primary-amine oxidase, indole pyruvate decarboxylase and aldehyde dehydrogenase were increased for 146 %, 187 %, and 557 %, respectively. Therefore, ZVI was suitable for enhancement IAA production from mixed culture anaerobic fermentation.
Collapse
Affiliation(s)
- Meng-Yao Ma
- Department of Environmental Science and Engineering, College of Resources and Environment, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Li-Li Hu
- Department of Environmental Science and Engineering, College of Resources and Environment, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Wen-Yan Xu
- Department of Environmental Science and Engineering, College of Resources and Environment, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Wei Zhang
- Department of Environmental Science and Engineering, College of Resources and Environment, Anhui Agriculture University, Hefei, Anhui 230036, China.
| |
Collapse
|
9
|
Fu M, Qiu S, Wang J, Zhu Y, Yuan M, Wang L. Tourmaline mediated enhanced autotrophic denitrification: The mechanisms of electron transfer and Paracoccus enrichment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169847. [PMID: 38185169 DOI: 10.1016/j.scitotenv.2023.169847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Autotrophic denitrification (AD) without carbon source is an inevitable choice for denitrification of municipal wastewater under the carbon peaking and carbon neutrality goals. This study first employed sulfur-tourmaline-AD (STAD) as an innovative nitrate removal trial technique in wastewater. STAD demonstrated a 2.23-fold increase in nitrate‑nitrogen (NO3--N) removal rate with reduced nitrite‑nitrogen (NO2--N) accumulation, effectively removing 99 % of nitrogen pollutants compared to sulfur denitrification. Some denitrifiers microorganisms that could secrete tyrosine, tryptophan, and aromatic protein (extracellular polymeric substances (EPS)). Moreover, according to the EPS composition and characteristics analysis, the secretion of loosely bound extracellular polymeric substances (LB-EPS) that bound to the bacterial endogenous respiration and enriched microbial abundance, was produced more in the STAD system, further improving the system stability. Furthermore, the addition of tourmaline (Tm) facilitated the discovery of a new genus (Paracoccus) that enhanced nitrate decomposition. Applying optimal electron donors through metabolic pathways and the microbial community helps to strengthen the AD process and treat low carbon/nitrogen ratio wastewater efficiently.
Collapse
Affiliation(s)
- Mengqi Fu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China
| | - Shan Qiu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China.
| | - Jue Wang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China
| | - Yingshi Zhu
- Zhejiang Environment Technology Co., Ltd, Hangzhou 311100, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Mu Yuan
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China
| | - Liang Wang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China
| |
Collapse
|
10
|
Thuan DV, Chu TTH, Thanh HDT, Le MV, Ngo HL, Le CL, Thi HP. Adsorption and photodegradation of micropollutant in wastewater by photocatalyst TiO 2/rice husk biochar. ENVIRONMENTAL RESEARCH 2023; 236:116789. [PMID: 37517481 DOI: 10.1016/j.envres.2023.116789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/15/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023]
Abstract
With the acceleration of global industrialization, organic pollutants have become a threat to ecological safety and human health. This work prepared TiO2/rice husk biochar (TiO2/BC) for removal of bisphenol A (BA) micropollutant in wastewater. Experiment results revealed a low BA removal efficiency by TiO2/BC was observed at 34.5% under the dark environment. However, the removal rate of BA by UV light-assisted TiO2/BC significantly increased to 97.6% in 1 h. The results also demonstrated that the removal performance of BA using TiO2/BC was 2.1times higher than that of commercial TiO2 (46.4%). Besides, the removal efficiency of BA by reused TiO2/BC after eight cycles slightly decreased by 12.8%, demonstrating the excellent properties of the prepared composite. TiO2/BC also exhibited high removal efficiency of BA (over 89%) from the synthetic wastewater sample, indicating the potential utilization of composite for removing BA in wastewater. This work provides a new way to turn biomass waste into useful material and effective method to remove micropollutant BA.
Collapse
Affiliation(s)
- Doan Van Thuan
- VKTech Research Center, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City, Viet Nam
| | - Thi Thu Hien Chu
- Department of Chemistry, Faculty of Building Materials, Ha Noi University of Civil Engineering (HUCE), Giai Phong, Hai Ba Trung, Hanoi, 10000, Viet Nam
| | - Ha Do Thi Thanh
- Department of Chemistry, Faculty of Building Materials, Ha Noi University of Civil Engineering (HUCE), Giai Phong, Hai Ba Trung, Hanoi, 10000, Viet Nam
| | - Minh Vien Le
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Hoang Long Ngo
- VKTech Research Center, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City, Viet Nam
| | - Cong Lap Le
- Department of Transportation Engineering, Nha Trang University, 650000, Viet Nam
| | - Huong Pham Thi
- Laboratory of Environmental Sciences and Climate Change, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Environment, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
11
|
Liang E, Xu L, Su J, Liu Y, Qi S, Li X. Hydrogel bioreactor drives Feammox and synergistically removes composite pollutants: Performance optimization, microbial communities and functional genetic differences. BIORESOURCE TECHNOLOGY 2023; 387:129604. [PMID: 37544543 DOI: 10.1016/j.biortech.2023.129604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Mixed pollutant wastewater has been a difficult problem due to the high toxicity of water bodies and the difficulty of treatment. Rice husk biochar modified with nano-iron tetroxide (RBC-nFe3O4) by polyvinyl alcohol cross-linking internal doping was used to introduce iron-reducing bacteria Klebsiella sp. FC61 to construct a bioreactor. The results of the long-term operation of the bioreactor showed that the removal efficiency of ammonia nitrogen (NH4+-N) and chemical oxygen demand best reached 90.18 and 98.49%, respectively. In addition, in the co-presence of Ni2+, Cd2+, and ciprofloxacin, the bioreactor was still able to remove pollutants efficiently by RBC-nFe3O4 and bio-iron precipitation inside the biocarrier. During the long-term operation, Klebsiella was always the dominant species in the bioreactor. And the sequencing data for functional prediction showed that the biocarrier contained a variety of enzymes and proteins involved in Feammox-related activities to ensure the stable and efficient operation of the bioreactor.
Collapse
Affiliation(s)
- Enlei Liang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shangzhe Qi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|