1
|
Rotake D, Pratim Goswami P, Govind Singh S. Ultraselective, ultrasensitive, point-of-care electrochemical sensor for detection of Hg(II) ions with electrospun-InZnO nanofibers. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
Rotake D, Darji A, Kale N. Fabrication, calibration, and preliminary testing of microcantilever-based piezoresistive sensor for BioMEMS applications. IET Nanobiotechnol 2021; 14:357-368. [PMID: 32691737 DOI: 10.1049/iet-nbt.2019.0277] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In this study, the authors demonstrate the fabrication, calibration, and testing of a piezoresistive microcantilever-based sensor for biomedical microelectromechanical system (BioMEMS) application. To use any sensor in BioMEMS application requires surface modification to capture the targeted biomolecules. The surface alteration comprises self-assembled monolayer (SAM) formation on gold (Au)/chromium (Cr) thin films. So, the Au/Cr coating is essential for most of the BioMEMS applications. The fabricated sensor uses the piezoresistive technique to capture the targeted biomolecules with the SAM/Au/Cr layer on top of the silicon dioxide layer. The stiffness (k) of the cantilever-based biosensor is a crucial design parameter for the low-pressure range and also influence the sensitivity of the microelectromechanical system-based sensor. Based on the calibration data, the average stiffness of the fabricated microcantilever with and without Au/Cr thin film is 141.39 and 70.53 mN/m, respectively, which is well below the maximum preferred range of stiffness for BioMEMS applications. The fabricated sensor is ultra-sensitive and selective towards Hg2+ ions in the presence of other heavy metal ions (HMIs) and good enough to achieve a lower limit of detection 0.75 ng/ml (3.73 pM/ml).
Collapse
Affiliation(s)
- Dinesh Rotake
- Electronics Engineering Department, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India.
| | - Anand Darji
- Electronics Engineering Department, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| | - Nitin Kale
- NanoSniff Technologies Pvt. Ltd, Indian Institute of Technology (IITB) Research Park, Old CSE Building, Powai, Mumbai-76, India
| |
Collapse
|
3
|
Rotake DR, Kumar A, Darji AD, Singh J. Highly selective sensor for the detection of Hg 2+ ions using homocysteine functionalised quartz crystal microbalance with cross-linked pyridinedicarboxylic acid. IET Nanobiotechnol 2020; 14:563-573. [PMID: 33010131 PMCID: PMC8676536 DOI: 10.1049/iet-nbt.2020.0109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 01/23/2023] Open
Abstract
This study reports an insightful portable vector network analyser (VNA)-based measurement technique for quick and selective detection of Hg2+ ions in nanomolar (nM) range using homocysteine (HCys)-functionalised quartz-crystal-microbalance (QCM) with cross-linked-pyridinedicarboxylic acid (PDCA). The excessive exposure to mercury can cause damage to many human organs, such as the brain, lungs, stomach, and kidneys, etc. Hence, the authors have proposed a portable experimental platform capable of achieving the detection in 20-30 min with a limit of detection (LOD) 0.1 ppb (0.498 nM) and a better dynamic range (0.498 nM-6.74 mM), which perfectly describes its excellent performance over other reported techniques. The detection time for various laboratory-based techniques is generally 12-24 h. The proposed method used the benefits of thin-film, nanoparticles (NPs), and QCM-based technology to overcome the limitation of NPs-based technique and have LOD of 0.1 ppb (0.1 μg/l) for selective Hg2+ ions detection which is many times less than the World Health Organization limit of 6 μg/l. The main advantage of the proposed QCM-based platform is its portability, excellent repeatability, millilitre sample volume requirement, and easy process flow, which makes it suitable as an early warning system for selective detection of mercury ions without any costly measuring instruments.
Collapse
Affiliation(s)
- Dinesh Ramkrushna Rotake
- Electronics Engineering Department, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India.
| | - Ajay Kumar
- Smart Sensors Area, CSIR-Central Electronics Engineering Research Institute, Pilani-333031, Rajasthan, India
| | - Anand D Darji
- Electronics Engineering Department, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| | - Jitendra Singh
- Smart Sensors Area, CSIR-Central Electronics Engineering Research Institute, Pilani-333031, Rajasthan, India
| |
Collapse
|
4
|
A review on nanostructure-based mercury (II) detection and monitoring focusing on aptamer and oligonucleotide biosensors. Talanta 2020; 220:121437. [PMID: 32928439 DOI: 10.1016/j.talanta.2020.121437] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/11/2020] [Accepted: 07/19/2020] [Indexed: 02/08/2023]
Abstract
Heavy metal ion pollution is a severe problem in environmental protection and especially in human health due to their bioaccumulation in organisms. Mercury (II) (Hg2+), even at low concentrations, can lead to DNA damage and give permanent harm to the central nervous system by easily passing through biological membranes. Therefore, sensitive detection and monitoring of Hg2+ is of particular interest with significant specificity. In this review, aptamer-based strategies in combination with nanostructures as well as several other strategies to solve addressed problems in sensor development for Hg2+ are discussed in detail. In particular, the analytical performance of different aptamer and oligonucleotide-based strategies using different signal improvement approaches based on nanoparticles were compared within each strategy and in between. Although quite a number of the suggested methodologies analyzed in this review fulfills the standard requirements, further development is still needed on real sample analysis and analytical performance parameters.
Collapse
|
5
|
Huang D, Liu X, Lai C, Qin L, Zhang C, Yi H, Zeng G, Li B, Deng R, Liu S, Zhang Y. Colorimetric determination of mercury(II) using gold nanoparticles and double ligand exchange. Mikrochim Acta 2018; 186:31. [DOI: 10.1007/s00604-018-3126-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
|
6
|
Tolessa T, Tan ZQ, Yin YG, Liu JF. Single-drop gold nanoparticles for headspace microextraction and colorimetric assay of mercury (II) in environmental waters. Talanta 2018; 176:77-84. [DOI: 10.1016/j.talanta.2017.07.097] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 11/25/2022]
|
7
|
Tian K, Siegel G, Tiwari A. A simple and selective colorimetric mercury (II) sensing system based on chitosan stabilized gold nanoparticles and 2,6-pyridinedicarboxylic acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:195-199. [PMID: 27987698 DOI: 10.1016/j.msec.2016.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/30/2016] [Accepted: 10/05/2016] [Indexed: 01/08/2023]
Abstract
The development of simple and cost-effective methods for the detection and treatment of Hg2+ in the environment is an important area of research due to the serious health risk that Hg2+ poses to humans. Colorimetric sensing based on the induced aggregation of nanoparticles is of great interest since it offers a low cost, simple, and relatively rapid procedure, making it perfect for on-site analysis. Herein we report the development of a simple colorimetric sensor for the selective detection and estimation of mercury ions in water, based on chitosan stabilized gold nanoparticles (AuNPs) and 2,6-pyridinedicarboxylic acid (PDA). In the presence of Hg2+, PDA induces the aggregation of AuNPs, causing the solution to change colors varying from red to blue, depending on the concentration of Hg2+. The formation of aggregated AuNPs in the presence of Hg2+ was confirmed using transmission electron microscopy (TEM) and UV-Vis spectroscopy. The method exhibits linearity in the range of 300nM to 5μM and shows excellent selectivity towards Hg2+ among seventeen different metal ions and was successfully applied for the detection of Hg2+ in spiked river water samples. The developed technique is simple and superior to the existing techniques in that it allows detection of Hg2+ using the naked eye and simple and rapid colorimetric analysis, which eliminates the need for sophisticated instruments and sample preparation methods.
Collapse
Affiliation(s)
- Kun Tian
- Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, United States
| | - Gene Siegel
- Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, United States
| | - Ashutosh Tiwari
- Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
8
|
Wang Q, Yang X, Yang X, Wang K, Zhang H, Liu P. An enzyme-free colorimetric assay using hybridization chain reaction amplification and split aptamers. Analyst 2016; 140:7657-62. [PMID: 26442287 DOI: 10.1039/c5an01592h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel unmodified gold nanoparticle (AuNP)-based colorimetric assay was demonstrated using split aptamers and the hybridization chain reaction (HCR) amplification strategy. Here, the aptamer was divided into a structure-switching hairpin probe (DNA probe H1 (or H1')) and a single-stranded probe (DNA probe H2 (or H2')). In the presence of the target, DNA probe H1 (or H1') could specifically capture the target with the assistance of DNA probe H2 (or H2') to form a stable complex. Subsequently, the hairpin structure of DNA probe H1 (or H1') was changed, and then a chain reaction of hybridization events between two other hairpin probes (H3 and H4) propagated, resulting in the formation of nicked double-helices. Since it was difficult for such nicked double-helices to inhibit salt-induced AuNP aggregation, a red-to-blue color change was observed. With the elegant amplification effect of HCR, this assay showed a low detection limit (15 nM for Hg(2+) and 1 μM for adenosine), which was lower than or at least comparable to previous AuNP-based methods. The novel strategy not only eliminated the requirements of enzymatic reactions, separation processes, chemical modifications, and sophisticated instruments, but also could be used for other targets only by simply changing the DNA probe sequences.
Collapse
Affiliation(s)
- Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Xiaohan Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Hua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Pei Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| |
Collapse
|
9
|
Zhang Y, McKelvie ID, Cattrall RW, Kolev SD. Colorimetric detection based on localised surface plasmon resonance of gold nanoparticles: Merits, inherent shortcomings and future prospects. Talanta 2016; 152:410-22. [PMID: 26992537 DOI: 10.1016/j.talanta.2016.02.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 11/30/2022]
Abstract
Localised surface plasmon resonance (LSPR) of gold nanoparticles (AuNPs) has been exploited for two decades in analytical science and has proven to be a powerful tool for the detection of various kinds of substances including small molecules, ions, macro biomolecules and microbes. Detection can be performed by visual colour change observations, photometry or resonance light scattering. A wide range of applications have been studied in the areas of environmental, pharmaceutical and biological analysis and clinical diagnosis. In this article, some fundamental aspects and important applications involving LSPR of AuNPs are reviewed. Several inherent shortcomings of these techniques and possible strategies to circumvent them are discussed.
Collapse
Affiliation(s)
- Yanlin Zhang
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Ian D McKelvie
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia; School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL4 8AA, United Kingdom.
| | - Robert W Cattrall
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Spas D Kolev
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia; Centre for Aquatic Pollution Identification and Management (CAPIM), The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
10
|
Zhang H, Xia Y. Ratiometry, Wavelength, and Intensity: Triple Signal Readout for Colorimetric Sensing of Mercury Ions by Plasmonic Cu2-xSe Nanoparticles. ACS Sens 2016. [DOI: 10.1021/acssensors.5b00275] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hui Zhang
- Key Laboratory of Functional
Molecular Solids, Ministry of Education; College of Chemistry and
Materials Science, Anhui Normal University, Wuhu, 241000, China
| | - Yunsheng Xia
- Key Laboratory of Functional
Molecular Solids, Ministry of Education; College of Chemistry and
Materials Science, Anhui Normal University, Wuhu, 241000, China
| |
Collapse
|
11
|
Poornima V, Alexandar V, Iswariya S, Perumal PT, Uma TS. Gold nanoparticle-based nanosystems for the colorimetric detection of Hg2+ ion contamination in the environment. RSC Adv 2016. [DOI: 10.1039/c6ra04433f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review highlights the impact of Hg2+ contamination on the human population and the need for its detection.
Collapse
Affiliation(s)
- Velswamy Poornima
- Bioproducts Lab
- CSIR-Central Leather Research Institute (CLRI)
- Chennai 600 020
- India
| | - Vincent Alexandar
- Faculty of Allied Health Sciences (FAHS)
- Chettinad Academy of Research and Education (CARE)
- Kanchipuram 603 103
- India
| | - S. Iswariya
- Bioproducts Lab
- CSIR-Central Leather Research Institute (CLRI)
- Chennai 600 020
- India
| | - Paramasivan T. Perumal
- Organic Chemistry Division
- CSIR-Central Leather Research Institute (CLRI)
- Chennai 600 020
- India
| | | |
Collapse
|
12
|
Lai C, Qin L, Zeng G, Liu Y, Huang D, Zhang C, Xu P, Cheng M, Qin X, Wang M. Sensitive and selective detection of mercury ions based on papain and 2,6-pyridinedicarboxylic acid functionalized gold nanoparticles. RSC Adv 2016. [DOI: 10.1039/c5ra23157d] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here we demonstrate the rational design of a sensitive and selective colorimetric method for mercury ion (Hg2+) detection by using papain and 2,6-pyridinedicarboxylic acid (PDCA) functionalized gold nanoparticles (AuNPs).
Collapse
|
13
|
Rawat KA, Majithiya RP, Rohit JV, Basu H, Singhal RK, Kailasa SK. Mg2+ ion as a tuner for colorimetric sensing of glyphosate with improved sensitivity via the aggregation of 2-mercapto-5-nitrobenzimidazole capped silver nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra06450g] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The sensitivity of MNBZ-Ag NPs was greatly improved by integrating Mg2+ ion as trigger that can capture the glyphosate at nanomolar concentration with high selectivity.
Collapse
Affiliation(s)
- Karuna A. Rawat
- Department of Applied Chemistry
- S. V. National Institute of Technology
- Surat-395 007
- India
| | - Rutuben P. Majithiya
- Department of Applied Chemistry
- S. V. National Institute of Technology
- Surat-395 007
- India
| | - Jigneshkumar V. Rohit
- Department of Applied Chemistry
- S. V. National Institute of Technology
- Surat-395 007
- India
| | - Hirakendu Basu
- Analytical Chemistry Division
- Bhabha Atomic Research Center
- Mumbai 400085
- India
| | | | - Suresh Kumar Kailasa
- Department of Applied Chemistry
- S. V. National Institute of Technology
- Surat-395 007
- India
| |
Collapse
|
14
|
Li L, Wen Y, Xu L, Xu Q, Song S, Zuo X, Yan J, Zhang W, Liu G. Development of mercury (II) ion biosensors based on mercury-specific oligonucleotide probes. Biosens Bioelectron 2015; 75:433-45. [PMID: 26356764 DOI: 10.1016/j.bios.2015.09.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/21/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
Abstract
Mercury (II) ion (Hg(2+)) contamination can be accumulated along the food chain and cause serious threat to the public health. Plenty of research effort thus has been devoted to the development of fast, sensitive and selective biosensors for monitoring Hg(2+). Thymine was demonstrated to specifically combine with Hg(2+) and form a thymine-Hg(2+)-thymine (T-Hg(2+)-T) structure, with binding constant even higher than T-A Watson-Crick pair in DNA duplex. Recently, various novel Hg(2+) biosensors have been developed based on T-rich Mercury-Specific Oligonucleotide (MSO) probes, and exhibited advanced selectivity and excellent sensitivity for Hg(2+) detection. In this review, we explained recent development of MSO-based Hg(2+) biosensors mainly in 3 groups: fluorescent biosensors, colorimetric biosensors and electrochemical biosensors.
Collapse
Affiliation(s)
- Lanying Li
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, PR China
| | - Yanli Wen
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, PR China
| | - Li Xu
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, PR China
| | - Qin Xu
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, PR China
| | - Shiping Song
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, PR China
| | - Xiaolei Zuo
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, PR China
| | - Juan Yan
- College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Pudong District, Shanghai 201306, PR China.
| | - Weijia Zhang
- College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Pudong District, Shanghai 201306, PR China
| | - Gang Liu
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, PR China
| |
Collapse
|
15
|
Zhu G, Zhang CY. Functional nucleic acid-based sensors for heavy metal ion assays. Analyst 2015; 139:6326-42. [PMID: 25356810 DOI: 10.1039/c4an01069h] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heavy metal contaminants such as lead ions (Pb(2+)), mercury ions (Hg(2+)) and silver ions (Ag(+)) can cause significant harm to humans and generate enduring bioaccumulation in ecological systems. Even though a variety of methods have been developed for Pb(2+), Hg(2+) and Ag(+) assays, most of them are usually laborious and time-consuming with poor sensitivity. Due to their unique advantages of excellent catalytic properties and high affinity for heavy metal ions, functional nucleic acids such as DNAzymes and aptamers show great promise in the development of novel sensors for heavy metal ion assays. In this review, we summarize the development of functional nucleic acid-based sensors for the detection of Pb(2+), Hg(2+) and Ag(+), and especially focus on two categories including the direct assay and the amplification-based assay. We highlight the emerging trends in the development of sensitive and selective sensors for heavy metal ion assays as well.
Collapse
Affiliation(s)
- Guichi Zhu
- Single-Molecule Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China.
| | | |
Collapse
|
16
|
Tang W, Chase DB, Sparks DL, Rabolt JF. Selective and Quantitative Detection of Trace Amounts of Mercury(II) Ion (Hg²⁺) and Copper(II) Ion (Cu²⁺) Using Surface-Enhanced Raman Scattering (SERS). APPLIED SPECTROSCOPY 2015; 69:843-849. [PMID: 26037773 DOI: 10.1366/14-07815] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report the development of a surface-enhanced Raman scattering (SERS)-based heavy metal ion sensor targeting the detection of mercury(II) ion (Hg(2+)) and copper(II) ion (Cu(2+)) with high sensitivity and selectivity. To achieve the detection of vibrational-spectroscopically silent heavy metal ions, the SERS substrate composed of gold nanorod (AuNR)-polycaprolactone (PCL) nanocomposite fibers was first functionalized using metal ion-binding ligands. Specifically, 2,5-dimercapto-1,3,4-thiadiazole dimer (di-DMT) and trimercaptotriazine (TMT) were attached to the SERS substrates serving as bridging molecules to capture Hg(2+) and Cu(2+), respectively, from solution. Upon heavy metal ion coordination, changes in the vibrational spectra of the bridging molecules, including variations in the peak-intensity ratios and peak shifts were observed and taken as indicators of the capture of the target ions. With rigorous spectral analysis, the coordination mechanism between the heavy metal ion and the corresponding bridging molecule was investigated. Mercury(II) ion primarily interacts with di-DMT through the cleavage of the disulfide bond, whereas Cu(2+) preferentially interacts with the heterocyclic N atoms in TMT. The specificity of the coordination chemistry provided both di-DMT and TMT with excellent selectivity for the detection of Hg(2+) and Cu(2+) in the presence of other interfering metal ion species. In addition, quantitative analysis of the concentration of the heavy metal ions was achieved through the construction of internal calibration curves using the peak-intensity ratios of 287/387 cm(-1) for Hg(2+) and 1234/973 cm(-1) for Cu(2+).
Collapse
Affiliation(s)
- Wenqiong Tang
- University of Delaware, Department of Materials Science and Engineering, Newark, DE 19716 USA
| | | | | | | |
Collapse
|
17
|
Wang Q, Yang X, Yang X, Liu P, Wang K, Huang J, Liu J, Song C, Wang J. Colorimetric detection of mercury ion based on unmodified gold nanoparticles and target-triggered hybridization chain reaction amplification. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 136 Pt B:283-287. [PMID: 25448931 DOI: 10.1016/j.saa.2014.08.129] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/30/2014] [Accepted: 08/31/2014] [Indexed: 06/04/2023]
Abstract
A novel unmodified gold nanoparticles (AuNPs)-based colorimetric strategy for label-free, specific and sensitive mercury ion (Hg(2+)) detection was demonstrated by using thymine-Hg(2)(+)-thymine (T-Hg(2)(+)-T) recognition mechanism and hybridization chain reaction (HCR) amplification strategy. In this protocol, a structure-switching probe (H0) was designed to recognize Hg(2+) and then propagated a chain reaction of hybridization events between two other hairpin probes (H1 and H2). In the absence of Hg(2+), all hairpin probes could stably coexist in solution, the exposed sticky ends of hairpin probes were capable of stabilizing AuNPs. As a result, salt-induced AuNPs aggregation could be effectively prevented. In the presence of Hg(2+), thymine bases of H0 could specifically interact with Hg(2+) to form stable T-Hg(2)(+)-T complex. Consequently, the hairpin structure of H0 probe was changed. As H1/H2 probes were added, the HCR process could be triggered and nicked double-helixes were formed. Since it was difficult for the formed nicked double-helixes to inhibit salt-induced AuNPs aggregation, a red-to-blue color change was observed in the colloid solution as the salt concentration increased. With the elegant amplification effect of HCR, a detection limit of around 30 nM was achieved (S/N=3), which was about 1-2 orders of magnitudes lower than that of previous unmodified AuNPs-based colorimetric methods. By using the T-Hg(2)(+)-T recognition mechanism, high selectivity was also obtained. As an unmodified AuNPs-based colorimetric strategy, the system was simple in design, convenient in operation, and eliminated the requirements of separation processes, chemical modifications, and sophisticated instrumentations.
Collapse
Affiliation(s)
- Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry & Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaohan Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry & Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry & Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Pei Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry & Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry & Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry & Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry & Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Chunxia Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry & Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jingjing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry & Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
18
|
Chansuvarn W, Tuntulani T, Imyim A. Colorimetric detection of mercury(II) based on gold nanoparticles, fluorescent gold nanoclusters and other gold-based nanomaterials. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.10.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Gan X, Zhao H, Chen S, Quan X. Electrochemical DNA sensor for specific detection of picomolar Hg(ii) based on exonuclease III-assisted recycling signal amplification. Analyst 2015; 140:2029-36. [DOI: 10.1039/c5an00082c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An ultrasensitive methodology was successfully developed for the quantitative detection of picomolar Hg2+ based on the combination of thymine–Hg2+–thymine (T–Hg2+–T) coordination chemistry and exonuclease III-aided recycling signal amplification.
Collapse
Affiliation(s)
- Xiaorong Gan
- Dalian University of Technology
- School of Environmental and Biological Science and Technology
- Dalian
- China
| | - Huimin Zhao
- Dalian University of Technology
- School of Environmental and Biological Science and Technology
- Dalian
- China
| | - Shuo Chen
- Dalian University of Technology
- School of Environmental and Biological Science and Technology
- Dalian
- China
| | - Xie Quan
- Dalian University of Technology
- School of Environmental and Biological Science and Technology
- Dalian
- China
| |
Collapse
|
20
|
Li C, Dai P, Rao X, Shao L, Cheng G, He P, Fang Y. An ultra-sensitive colorimetric Hg2+-sensing assay based on DNAzyme-modified Au NP aggregation, MNPs and an endonuclease. Talanta 2015; 132:463-8. [DOI: 10.1016/j.talanta.2014.09.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/18/2014] [Accepted: 09/28/2014] [Indexed: 10/24/2022]
|
21
|
Xu Z, Lan T, Huang X, Dong C, Ren J. A sensitive assay of mercury using fluorescence correlation spectroscopy of gold nanoparticles. LUMINESCENCE 2014; 30:605-10. [PMID: 25377259 DOI: 10.1002/bio.2793] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 08/28/2014] [Accepted: 09/06/2014] [Indexed: 11/09/2022]
Abstract
We described a new and sensitive method for the determination of mercury ions (Hg(2+) ) on the basis of fluorescence correlation spectroscopy (FCS) and recognition of oligonucleotides. In this assay, 30-nm gold nanoparticles (GNPs) were modified with oligonucleotides containing thymine bases (T) as fluorescent probes, and the principle of this assay was based on the specific binding of Hg(2+) by two DNA thymine bases. When two GNPs labelled with different oligonucleotides were mixed with a sample containing Hg(2+), the T-Hg(2+)-T binding reaction should cause GNPs to form dimers (or oligomers), which would lead to a significant increase in the characteristic diffusion time of GNPs in the detection volume. The FCS method is a single molecule detection method and can sensitively detect the change in the characteristic diffusion time of GNPs before and after binding reactions. The quantitative analysis was performed according to the relation between the change in the characteristic diffusion time of GNPs and the concentration of Hg(2+). Under optimal conditions, the linear range of this method was from 0.3 nM to 100 nM, and the detection limit was 0.14 nM for Hg(2+). This new method was successfully applied for direct determination of Hg(2+) levels in water and cosmetics samples.
Collapse
Affiliation(s)
- Zhancheng Xu
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Tao Lan
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Xiangyi Huang
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Chaoqing Dong
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Jicun Ren
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| |
Collapse
|
22
|
Yan Z, Yuen MF, Hu L, Sun P, Lee CS. Advances for the colorimetric detection of Hg2+in aqueous solution. RSC Adv 2014. [DOI: 10.1039/c4ra07930b] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
Du J, Zhu B, Peng X, Chen X. Optical reading of contaminants in aqueous media based on gold nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3461-3479. [PMID: 24578321 DOI: 10.1002/smll.201303256] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/14/2013] [Indexed: 06/03/2023]
Abstract
With increasing trends of global population growth, urbanization, pollution over-exploitation, and climate change, the safe water supply has become a global issue and is threatening our society in terms of sustainable development. Therefore, there is a growing need for a water-monitoring platform with the capability of rapidness, specificity, low-cost, and robustness. This review summarizes the recent developments in the design and application of gold nanoparticles (AuNPs) based optical assays to detect contaminants in aqueous media with a high performance. First, a brief discussion on the correlation between the optical reading strategy and the optical properties of AuNPs is presented. Then, we summarize the principle behind AuNP-based optical assays to detect different contaminants, such as toxic metal ion, anion, and pesticides, according to different optical reading strategies: colorimetry, scattering, and fluorescence. Finally, the comparison of these assays and the outlook of AuNP-based optical detection are discussed.
Collapse
Affiliation(s)
- Jianjun Du
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | | | | | | |
Collapse
|
24
|
Colorimetric detection of mercury(II) in aqueous media with high selectivity using calixarene functionalized gold nanoparticles. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.04.047] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Sett A, Das S, Bora U. Functional nucleic-acid-based sensors for environmental monitoring. Appl Biochem Biotechnol 2014; 174:1073-91. [PMID: 24903959 DOI: 10.1007/s12010-014-0990-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/19/2014] [Indexed: 01/16/2023]
Abstract
Efforts to replace conventional chromatographic methods for environmental monitoring with cheaper and easy to use biosensors for precise detection and estimation of hazardous environmental toxicants, water or air borne pathogens as well as various other chemicals and biologics are gaining momentum. Out of the various types of biosensors classified according to their bio-recognition principle, nucleic-acid-based sensors have shown high potential in terms of cost, sensitivity, and specificity. The discovery of catalytic activities of RNA (ribozymes) and DNA (DNAzymes) which could be triggered by divalent metallic ions paved the way for their extensive use in detection of heavy metal contaminants in environment. This was followed with the invention of small oligonucleotide sequences called aptamers which can fold into specific 3D conformation under suitable conditions after binding to target molecules. Due to their high affinity, specificity, reusability, stability, and non-immunogenicity to vast array of targets like small and macromolecules from organic, inorganic, and biological origin, they can often be exploited as sensors in industrial waste management, pollution control, and environmental toxicology. Further, rational combination of the catalytic activity of DNAzymes and RNAzymes along with the sequence-specific binding ability of aptamers have given rise to the most advanced form of functional nucleic-acid-based sensors called aptazymes. Functional nucleic-acid-based sensors (FNASs) can be conjugated with fluorescent molecules, metallic nanoparticles, or quantum dots to aid in rapid detection of a variety of target molecules by target-induced structure switch (TISS) mode. Although intensive research is being carried out for further improvements of FNAs as sensors, challenges remain in integrating such bio-recognition element with advanced transduction platform to enable its use as a networked analytical system for tailor made analysis of environmental monitoring.
Collapse
Affiliation(s)
- Arghya Sett
- Bioengineering Research Laboratory, Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | | | | |
Collapse
|
26
|
Apyari VV, Arkhipova VV, Dmitrienko SG, Zolotov YA. Using gold nanoparticles in spectrophotometry. JOURNAL OF ANALYTICAL CHEMISTRY 2013. [DOI: 10.1134/s1061934814010031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Du J, Jiang L, Shao Q, Liu X, Marks RS, Ma J, Chen X. Colorimetric detection of mercury ions based on plasmonic nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1467-1481. [PMID: 22961942 DOI: 10.1002/smll.201200811] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Indexed: 06/01/2023]
Abstract
The development of rapid, specific, cost-effective, and robust tools in monitoring Hg(2+) levels in both environmental and biological samples is of utmost importance due to the severe mercury toxicity to humans. A number of techniques exist, but the colorimetric assay, which is reviewed herein, is shown to be a possible tool in monitoring the level of mercury. These assays allow transforming target sensing events into color changes, which have applicable potential for in-the-field application through naked-eye detection. Specifically, plasmonic nanoparticle-based colorimetric assay exhibits a much better propensity for identifying various targets in terms of sensitivity, solubility, and stability compared to commonly used organic chromophores. In this review, recent progress in the development of gold nanoparticle-based colorimetric assays for Hg(2+) is summarized, with a particular emphasis on examples of functionalized gold nanoparticle systems with oligonucleotides, oligopeptides, and functional molecules. Besides highlighting the current design principle for plasmonic nanoparticle-based colorimetric probes, the discussions on challenges and the prospect of next-generation probes for in-the-field applications are also presented.
Collapse
Affiliation(s)
- Jianjun Du
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | | | | | | | | | | | | |
Collapse
|
28
|
Bi N, Hu M, Zhu H, Qi H, Tian Y, Zhang H. Determination of 6-thioguanine based on localized surface plasmon resonance of gold nanoparticle. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 107:24-30. [PMID: 23416905 DOI: 10.1016/j.saa.2013.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/03/2013] [Accepted: 01/10/2013] [Indexed: 06/01/2023]
Abstract
Gold nanoparticles exhibit the optical properties of localized surface plamon resonance (LSPR) and are widely applied to the biosensors. The application of gold nanoparticles to the determination of anticancer drug 6-thioguanine (6-TG) was discussed. The binding of 6-TG molecule to the surface of gold nanoparticles alters the local refractive index in the vicinity of the nanoparticles and results in a shift of the LSPR spectrum. The experimental conditions were examined and optimized. Under the optimal conditions, the ratios of absorbances at two wavelengths are directly proportional to the concentrations of 6-TG. The developed method is simple, rapid, and sensitive. In addition, this method is particularly attractive because organic cosolvents, light-sensitive dyes, and sophisticated instruments are not required. This method was successfully applied to the determination of 6-TG in real samples and the results were satisfactory.
Collapse
Affiliation(s)
- Ning Bi
- School of Physical and Chemical, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | | | | | | | | | | |
Collapse
|
29
|
Yin J, He X, Jia X, Wang K, Xu F. Highly sensitive label-free fluorescent detection of Hg2+ ions by DNA molecular machine-based Ag nanoclusters. Analyst 2013; 138:2350-6. [DOI: 10.1039/c3an00029j] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Li DX, Zhang JF, Jang YH, Jang YJ, Kim DH, Kim JS. Plasmonic-coupling-based sensing by the assembly and disassembly of dipycolylamine-tagged gold nanoparticles induced by complexing with cations and anions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:1442-8. [PMID: 22378699 DOI: 10.1002/smll.201102335] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Indexed: 05/12/2023]
Abstract
A surface-plasmon-coupling-mediated sensor system is developed based on Au nanoparticles tagged with a coordinative dipycolylamine and lipoyl-anchored naphthalimide derivative (AuNP@DPA). The AuNPs with tailored ligands exhibit distinct sensing activity via sequential assembly into nanoparticle aggregates induced by metal ion complexing, and disassembly in the presence of pyrophosphate (PPi) anions, which is accompanied by a swift, reversible color change due to a surface plasmon resonance coupling effect. It is found that divalent metal ions are more effective than mono- or tri-valent ions in the aggregate formation process, Mn(2+)-induced aggregates are more sensitive to the capture of PPi anions than other AuNP aggregates, and the disassembly upon anion complexation exhibits a highly selective response. The AuNP@DPA-based molecular recognition system also demonstrates a viable performance for the detection of total selective metal ions present in different types of water analytes.
Collapse
Affiliation(s)
- Dong Xiang Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | | | | | | | | | | |
Collapse
|
31
|
Wang Y, Xiong H, Zhang X, Wang S. Electrochemical study of bovine serum albumin damage induced by Fenton reaction using tris (2,2′-bipyridyl) cobalt (III) perchlorate as the electroactive indicator. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Wu ZH, Lin JH, Tseng WL. Oligonucleotide-functionalized silver nanoparticle extraction and laser-induced fluorescence for ultrasensitive detection of mercury(II) ion. Biosens Bioelectron 2012; 34:185-90. [PMID: 22365364 DOI: 10.1016/j.bios.2012.01.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/31/2012] [Accepted: 01/31/2012] [Indexed: 11/15/2022]
Abstract
This study describes the development of a simple, sensitive, and selective detection system for Hg(2+) ion by combining nanoparticle extraction, fluorescent dye labeling, and flow injection analysis (FIA) detection. Repeats of 33 thymine nucleotides-functionalized silver nanoparticles (T(33)-AgNPs) specifically capture Hg(2+) from aqueous solution through the coordination between T(33) and Hg(2+). Meanwhile, Hg(2+) ion drives a T(33) conformational change from a random coil to a folded structure. The T(33)-Hg(2+)complexes adsorbed on the NP surface were collected from the initial sample by centrifugation, and they were then detached from the NP surface by addition of H(2)O(2). The T(33)-Hg(2+) complexes preferentially bind to SYBR Green I (SG), enhancing the SG fluorescence. By contrast, SG fluoresces only weakly in the presence of T(33) alone. The extraction efficiency of Hg(2+) was highly dependent on polythymine length, the concentration of T(33)-AgNPs, and the incubaton time of T(33)-AgNPs with Hg(2+). Under optimal extraction and labeling conditions, FIA detection showed the limit of detection (at a signal-to-noise ratio of three) for Hg(2+)of 3 pM. The selectivity of our analytical system is more than 1000-fold for Hg(2+) over any metal ions. We validated the applicability of this system for the determination of Hg(2+) concentrations in tap water.
Collapse
Affiliation(s)
- Zong-Han Wu
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan
| | | | | |
Collapse
|
33
|
Wu LP, Zhao HW, Qin ZH, Zhao XY, Pu WD. Highly Selective Hg (II) Ion Detection Based on Linear Blue-Shift of the Maximum Absorption Wavelength of Silver Nanoparticles. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2012; 2012:856947. [PMID: 22567571 PMCID: PMC3335303 DOI: 10.1155/2012/856947] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 02/01/2012] [Indexed: 05/19/2023]
Abstract
A new method of detecting Hg (II) ion with silver nanoparticles (AgNPs) is developed in this contribution. When Hg (II) ions were added into AgNPs solution, the solution displayed rapid color change and blue shift of the maximum absorption wavelength (Δλ), which was in proportion to the Hg (II) ion concentration over the range of 2.0 × 10(-7)-6.0 × 10(-6) mol/L, with detection limit (3σ) of 6.6 × 10(-9 )mol/L. Under the same experimental conditions, other metal ions did not interfere. Thus, we propose a rapid, simple and highly selective method for detecting Hg (II) ion.
Collapse
Affiliation(s)
- Li Ping Wu
- Department of Chemistry, Third Military Medical University, Chongqing 400038, China
| | - Hua Wen Zhao
- Department of Chemistry, Third Military Medical University, Chongqing 400038, China
- *Hua Wen Zhao:
| | - Zhu Hong Qin
- Department of Chemistry, Third Military Medical University, Chongqing 400038, China
- College of Chemistry and Chemical Engineering, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715, China
| | - Xian Ying Zhao
- Department of Chemistry, Third Military Medical University, Chongqing 400038, China
| | - Wen Dan Pu
- Department of Chemistry, Third Military Medical University, Chongqing 400038, China
- College of Chemistry and Chemical Engineering, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715, China
| |
Collapse
|
34
|
|
35
|
Kim YS, Jurng J. Gold nanoparticle-based homogeneous fluorescent aptasensor for multiplex detection. Analyst 2011; 136:3720-4. [PMID: 21799952 DOI: 10.1039/c1an15261k] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We developed a homogeneous fluorescence assay for multiplex detection based on the target induced conformational change of DNA aptamers. DNA aptamers were immobilized on quantum dots (QDs), and QDs conjugated ssDNA was adsorbed on the surface of gold nanoparticles (AuNPs) by electrostatic interaction between uncoiled ssDNA and the AuNPs. Subsequently the fluorescence of QDs was effectively quenched by the AuNPs due to fluorescence resonance energy transfer (FRET) of QDs to AuNPs. In the presence of targets, the QDs conjugated aptamers were detached from AuNPs by target induced conformational change of aptamers, consequently the fluorescence of the QDs was recovered proportional to the target concentration. In this study, three different QD/aptamer conjugates were used for multiplex detection of mercury ions, adenosine and potassium ions. In a control experiment, all of the three targets were simultaneously detected with high selectivity.
Collapse
Affiliation(s)
- Yeon Seok Kim
- Environment Division, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul, 136-791, South Korea
| | | |
Collapse
|
36
|
Kim YS, Kim JH, Kim IA, Lee SJ, Gu MB. The affinity ratio--its pivotal role in gold nanoparticle-based competitive colorimetric aptasensor. Biosens Bioelectron 2011; 26:4058-63. [PMID: 21514814 DOI: 10.1016/j.bios.2011.03.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/05/2011] [Accepted: 03/27/2011] [Indexed: 10/18/2022]
Abstract
We present an important role of the ratio of affinities in unmodified gold nanoparticles-based colorimetric aptasensor reactions. An affinity ratio, representing the competitive interactions among aptamers, targets, and unmodified gold nanoparticles (umAuNPs), was found to be an important factor for the sensitivity (the performance), where the affinity ratio is the affinity of the aptamer to targets divided by the affinity to umAuNPs (K(dAuNP)/K(dTarget)). In this study, the five different aptamers having different affinity ratios to both umAuNPs and targets are used, and the degree of color change is well correlated with its affinity ratio. This result is verified by using a tetracycline binding aptamer (TBA) showing different affinities to its three derivatives, tetracycline, oxytetracycline and doxycycline. Based on this model, the sensitivity of umAuNPs based colorimetric detection for ibuprofen can be enhanced simply through reducing the ibuprofen binding aptamer's affinity to umAuNP by using bis (p-sulfonatophenyl) phenylphosphine as an AuNP-capping ligand, instead of using the citrate. As a result, a clear color change is observed even at a 20-fold less amount of ibuprofen. This study presents that the performance (detection sensitivity) of umAuNPs-based colorimetric aptasensors could be improved by simply adjusting the affinity ratio of the aptamers to targets and umAuNPs, without knowing the conformational changes of aptamers upon the target binding or needing any modification of aptamer sequences.
Collapse
Affiliation(s)
- Yeon Seok Kim
- College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-701, South Korea
| | | | | | | | | |
Collapse
|
37
|
Kanayama N, Takarada T, Maeda M. Rapid naked-eye detection of mercury ions based on non-crosslinking aggregation of double-stranded DNA-carrying gold nanoparticles. Chem Commun (Camb) 2011; 47:2077-9. [PMID: 21203651 DOI: 10.1039/c0cc05171c] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Colorimetric detection of mercury ions (Hg(2+)) with the naked eye was accomplished within 1 min by a combination of non-crosslinking aggregation of double-stranded DNA-carrying gold nanoparticles and complex formation of thymine-Hg(2+)-thymine.
Collapse
Affiliation(s)
- Naoki Kanayama
- Bioengineering Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
38
|
Zhu X, Zhou X, Xing D. Ultrasensitive and selective detection of mercury(II) in aqueous solution by polymerase assisted fluorescence amplification. Biosens Bioelectron 2011; 26:2666-9. [DOI: 10.1016/j.bios.2010.03.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/21/2010] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
|
39
|
Zhang XB, Kong RM, Lu Y. Metal ion sensors based on DNAzymes and related DNA molecules. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2011; 4:105-28. [PMID: 21370984 PMCID: PMC3119750 DOI: 10.1146/annurev.anchem.111808.073617] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Metal ion sensors are an important yet challenging field in analytical chemistry. Despite much effort, only a limited number of metal ion sensors are available for practical use because sensor design is often a trial-and-error-dependent process. DNAzyme-based sensors, in contrast, can be developed through a systematic selection that is generalizable for a wide range of metal ions. Here, we summarize recent progress in the design of DNAzyme-based fluorescent, colorimetric, and electrochemical sensors for metal ions, such as Pb(2+), Cu(2+), Hg(2+), and UO(2)(2+). In addition, we also describe metal ion sensors based on related DNA molecules, including T-T or C-C mismatches and G-quadruplexes.
Collapse
Affiliation(s)
- Xiao-Bing Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Rong-Mei Kong
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
40
|
Lin CY, Yu CJ, Lin YH, Tseng WL. Colorimetric sensing of silver(I) and mercury(II) ions based on an assembly of Tween 20-stabilized gold nanoparticles. Anal Chem 2010; 82:6830-7. [PMID: 20704372 DOI: 10.1021/ac1007909] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed a rapid and homogeneous method for the highly selective detection of Hg(2+) and Ag(+) using Tween 20-modified gold nanoparticles (AuNPs). Citrate ions were found to still be adsorbed on the Au surface when citrate-capped AuNPs were modified with Tween 20, which stabilizes the citrate-capped AuNPs against conditions of high ionic strength. When citrate ions had reduced Hg(2+) and Ag(+) to form Hg-Au alloys and Ag on the surface of the AuNPs, Tween 20 was removed from the NP surface. As a result, the AuNPs were unstable under a high-ionic-strength solution, resulting in NP aggregation. The formation of Hg-Au alloys or Ag on the surface of the AuNPs was demonstrated by means of inductively coupled plasma mass spectroscopy and energy-dispersive X-ray spectroscopy. Tween 20-AuNPs could selectively detect Hg(2+) and Ag(+) at concentrations as low as 0.1 and 0.1 microM in the presence of NaCl and EDTA, respectively. Moreover, the probe enables the analysis of AgNPs with a minimum detectable concentration that corresponds to 1 pM. This probe was successfully applied to detect Hg(2+) in drinking water and seawater, Ag(+) in drinking water, and AgNPs in drinking water.
Collapse
Affiliation(s)
- Cheng-Yan Lin
- Department of Chemistry, National Sun Yat-sen University, Taiwan
| | | | | | | |
Collapse
|
41
|
Lin YH, Tseng WL. Ultrasensitive Sensing of Hg2+ and CH3Hg+ Based on the Fluorescence Quenching of Lysozyme Type VI-Stabilized Gold Nanoclusters. Anal Chem 2010; 82:9194-200. [DOI: 10.1021/ac101427y] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yen-Hsiu Lin
- Department of Chemistry, National Sun Yat-sen University, 70, Lien-hai Road, Kaohsiung, Taiwan 804, and National Sun Yat-sen University-Kaohsiung Medical University Joint Research Center, Kaohsiung, Taiwan
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-sen University, 70, Lien-hai Road, Kaohsiung, Taiwan 804, and National Sun Yat-sen University-Kaohsiung Medical University Joint Research Center, Kaohsiung, Taiwan
| |
Collapse
|
42
|
Li B, Dong S, Wang E. Homogeneous analysis: label-free and substrate-free aptasensors. Chem Asian J 2010; 5:1262-72. [PMID: 20408164 DOI: 10.1002/asia.200900660] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this Focus Review, we introduce a kind of "label-free" and "substrate-free" (LFSF) aptasensor that carries out the whole sensing process in a homogeneous solution. This means that commonly used covalent label; separation, and immobilization steps in biosensors are successfully avoided, which simplifies the sensing operations to the greatest degree. After brief description about the advantages of aptamers and "LFSF" aptasensors, the main content of the review is divided into fluorescent aptasenors, calorimetric aptasensors, and hemin-aptamer-DNAzyme "LFSF" aptasensors, which are three most widely developed sensing systems in this field. It is hoped that this review can provide an overall scene about how aptamers function as ideal recognition elements in smart analysis.
Collapse
Affiliation(s)
- Bingling Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022 P. R. China
| | | | | |
Collapse
|
43
|
Namour P, Lepot M, Jaffrezic-Renault N. Recent trends in monitoring of European water framework directive priority substances using micro-sensors: a 2007-2009 review. SENSORS 2010; 10:7947-78. [PMID: 22163635 PMCID: PMC3231208 DOI: 10.3390/s100907947] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 07/21/2010] [Accepted: 08/09/2010] [Indexed: 11/16/2022]
Abstract
This review discusses from a critical perspective the development of new sensors for the measurement of priority pollutants targeted in the E.U. Water Framework Directive. Significant advances are reported in the paper and their advantages and limitations are also discussed. Future perspectives in this area are also pointed out in the conclusions. This review covers publications appeared since December 2006 (the publication date of the Swift report). Among priority substances, sensors for monitoring the four WFD metals represent 81% of published papers. None of analyzed publications present a micro-sensor totally validated in laboratory, ready for tests under real conditions in the field. The researches are mainly focused on the sensing part of the micro-sensors. Nevertheless, the main factor limiting micro-sensor applications in the environment is the ruggedness of the receptor towards environmental conditions. This point constitutes the first technological obstacle to be overcome for any long-term field tests.
Collapse
Affiliation(s)
- Philippe Namour
- Université de Lyon, Laboratory of Analytical Sciences, UMR CNRS 5180, 43 boulevard 11 novembre 1918, F-69622, Villeurbanne cedex, France; E-Mail: (N.J.-R)
- Cemagref, UR MALY, CP 220, F-69336, Lyon cedex 09, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-472448306; Fax: +33-472431206
| | - Mathieu Lepot
- Université de Lyon, INSA Lyon, LGCIE, 34 Avenue des arts, F-69621 Villeurbanne Cedex, France; E-Mail: (M.L.)
| | - Nicole Jaffrezic-Renault
- Université de Lyon, Laboratory of Analytical Sciences, UMR CNRS 5180, 43 boulevard 11 novembre 1918, F-69622, Villeurbanne cedex, France; E-Mail: (N.J.-R)
| |
Collapse
|
44
|
Wang Y, Yang F, Yang X. Colorimetric detection of mercury(II) ion using unmodified silver nanoparticles and mercury-specific oligonucleotides. ACS APPLIED MATERIALS & INTERFACES 2010; 2:339-42. [PMID: 20356177 DOI: 10.1021/am9007243] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A sensitive and selective colorimetric detection method for mercury(II) has been well-established in this paper. It was based on the conformation change of mercury-specific oligonucleotides (MSO) from random coil structure to hairpin structure upon the addition of Hg(2+) and the phenomenon of salt-induced unmodified silver nanoparticles (AgNPs) aggregation. The calibration curve showed that the net absorption ratio value at 395 and 570 nm increased linearly over the Hg(2+) concentration range of 25-500 nM with a limit of detection of 17 nM. The other environmentally relevant metal ions did not interfere with the determination of Hg(2+).
Collapse
|