1
|
Yang B, Wang Y, Yan X, Fen Q, Chi Y. Primer Exchange Reaction (PER)-Based Construction of Scaffold for Low-Speed Centrifugation-Based Isolation and Quantitative Analysis of P. aeruginosa and its application in analyzing uterine secretions with intrauterine adhesion. Appl Biochem Biotechnol 2024; 196:4038-4048. [PMID: 37819459 DOI: 10.1007/s12010-023-04742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Efficient isolation and sensitive quantification of Pseudomonas aeruginosa (P. aeruginosa) are crucial for identifying intrauterine infections and preventing the occurrence of intrauterine adhesion (IUA). However, traditional approaches, such as culture-based approach, are time-consuming. Herein, we constructed a detection scaffold by using primer exchange reaction (PER) that integrated the low-speed centrifugation-based isolation and sensitive quantification of target pathogenic bacteria. The established approach possesses several advantages, including (i) the approach is capable of simultaneous isolation and sensitive quantification of target bacteria; (ii) low-speed centrifugation or even manual equipment could be used to isolate target bacteria; and (iii) a low limit of detection was obtained as 54 cfu/mL. Based on this, the approach is a promising approach in analyzing P. aeruginosa from uterine secretions with IUA.
Collapse
Affiliation(s)
- Boping Yang
- Department of General Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, 400037, People's Republic of China
| | - Ying Wang
- Department of General Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, 400037, People's Republic of China
| | - Xiaohuan Yan
- Department of General Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, 400037, People's Republic of China
| | - Qian Fen
- Hospital-Acquired Infection Control Department, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, No. 120 Longshan Street, Yubei District, Chongqing, 400037, People's Republic of China.
| | - Yugang Chi
- Department of General Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, 400037, People's Republic of China.
| |
Collapse
|
2
|
Singh A, Singh G, Kaur N, Singh N. Quantitative and qualitative analysis of ochratoxin-A using fluorescent CQDs@DNA-based nanoarchitecture assembly to monitor food safety and quality. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1826-1835. [PMID: 36971227 DOI: 10.1039/d3ay00209h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ochratoxin A (OTA), a mycotoxin formed by various fungi, such as Aspergillus and Penicillium species, is dangerous to human health. Thus, to circumvent the risk of OTA ingestion, the recognition and quantification of OTA levels are of great significance. A perusal of the literature has revealed that the integration of DNA/Carbon Quantum Dot (CQD)-based hybrid systems may exhibit the unique electronic and optical properties of nanomaterials/nanoarchitecture and consequent recognition properties. Herein, we developed the CQDs@DNA-based hybrid nanoarchitecture system for the selective detection of OTA, which exhibits modulation in the emission spectrum after interaction with OTA, with a significant binding constant (Ka = 3.5 × 105 M-1), a limit of detection of 14 nM, limit of quantification of 47 nM and working range of 1-10 μM. The mechanism for sensing the OTA has been corroborated using fluorescence, UV-visible absorption spectroscopy, and FTIR techniques, demonstrating the binding mode of CQD@DNA hybrid nano-architecture assembly with OTA. Further, we demonstrated the sensing ability of developed CQDs@DNA-based nanoarchitecture assembly towards the quantification of OTA in real food monitoring analysis for real-time applications, which makes this developed nanoarchitecture assembly the potential candidate to conveniently monitor food safety and quality for human health.
Collapse
Affiliation(s)
- Amanpreet Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India.
| | - Gagandeep Singh
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh, 160014, Punjab, India.
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India.
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| |
Collapse
|
3
|
Chaudhry GES, Akim AM, Safdar N, Yasmin A, begum S, Sung YY, Muhammad TST. Cancer and Disease Diagnosis - Biosensor as Potential Diagnostic Tool for Biomarker Detection. J Adv Pharm Technol Res 2022; 13:243-247. [PMID: 36568055 PMCID: PMC9784037 DOI: 10.4103/japtr.japtr_106_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 12/27/2022] Open
Abstract
Analysis of cancer biomarkers has enormous promise for advancing our molecular understanding of illness and facilitating more precise and timely diagnosis and follow-up care. MicroRNA, exosomes, ctDNA, CTCs, and proteins are only some of the circulating biomarkers that can be detected by liquid biopsy instead of the more intrusive and time-consuming process of doing a tissue biopsy. As the cancer diagnosis bio-markers reveal ultra-low levels in the early stages of the disease, highly sensitive approaches are urgently required. Researchers have taken an interest in a optical biosensor for detecting cancer biomarkers as a potential tool for early disease diagnosis. These techniques have the potential to aid in the development of effective treatments, ultimately leading to a higher rate of patient survival. This review briefly discuss the i) understanding of cancer and biomarkers for early diagonosis purpose ii) Molecular methods and ii) biosensor-based diagnostics. The reseach primary focus on advancement in biosensor design using various concepts ie., Electrochemical, Chemiluminescence and Colorimetric, Surface plasmons (SP), Surface plasmon resonance (SPR), localized surface plasmon resonance (LSPR), Fluorescence, Fiber-based sensors, Terahertz based biosensors, and Surface enhanced Raman spectroscopy (SERS). As a result of the local electric field amplification around plasmonic (usually gold and silver) nanostructures, surface-enhanced Raman spectroscopy (SERS) has emerged as a rapid, selective, and sensitive alternative to conventional laboratory analytical methods, making significant strides in a number of biosensing applications but still under developing stage to be used as diagnostic tool in clinical research.
Collapse
Affiliation(s)
- Gul-e-Saba Chaudhry
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21300 Kuala Nerus, Kuala Terengganu, Malaysia
| | - Abdah Md Akim
- Department of Biomedical Sciences, Universiti Putra Malaysia, Seri Kembangan, Selangor, Malaysia
| | - Naila Safdar
- Microbiology and Biotechnology Research Laboratory, Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Punjab, Pakistan
| | - Azra Yasmin
- Microbiology and Biotechnology Research Laboratory, Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Punjab, Pakistan
| | - Shaheen begum
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Punjab, Pakistan
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21300 Kuala Nerus, Kuala Terengganu, Malaysia
| | | |
Collapse
|
4
|
Péter B, Farkas E, Kurunczi S, Szittner Z, Bősze S, Ramsden JJ, Szekacs I, Horvath R. Review of Label-Free Monitoring of Bacteria: From Challenging Practical Applications to Basic Research Perspectives. BIOSENSORS 2022; 12:bios12040188. [PMID: 35448248 PMCID: PMC9026780 DOI: 10.3390/bios12040188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 05/10/2023]
Abstract
Novel biosensors already provide a fast way to detect the adhesion of whole bacteria (or parts of them), biofilm formation, and the effect of antibiotics. Moreover, the detection sensitivities of recent sensor technologies are large enough to investigate molecular-scale biological processes. Usually, these measurements can be performed in real time without using labeling. Despite these excellent capabilities summarized in the present work, the application of novel, label-free sensor technologies in basic biological research is still rare; the literature is dominated by heuristic work, mostly monitoring the presence and amount of a given analyte. The aims of this review are (i) to give an overview of the present status of label-free biosensors in bacteria monitoring, and (ii) to summarize potential novel directions with biological relevancies to initiate future development. Optical, mechanical, and electrical sensing technologies are all discussed with their detailed capabilities in bacteria monitoring. In order to review potential future applications of the outlined techniques in bacteria research, we summarize the most important kinetic processes relevant to the adhesion and survival of bacterial cells. These processes are potential targets of kinetic investigations employing modern label-free technologies in order to reveal new fundamental aspects. Resistance to antibacterials and to other antimicrobial agents, the most important biological mechanisms in bacterial adhesion and strategies to control adhesion, as well as bacteria-mammalian host cell interactions are all discussed with key relevancies to the future development and applications of biosensors.
Collapse
Affiliation(s)
- Beatrix Péter
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
- Correspondence: (B.P.); (R.H.)
| | - Eniko Farkas
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Sandor Kurunczi
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Zoltán Szittner
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, 1120 Budapest, Hungary;
- National Public Health Center, 1097 Budapest, Hungary
| | - Jeremy J. Ramsden
- Clore Laboratory, Department of Biomedical Research, University of Buckingham, Buckingham MK18 1AD, UK;
| | - Inna Szekacs
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Robert Horvath
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
- Correspondence: (B.P.); (R.H.)
| |
Collapse
|
5
|
Foroutan B, Abbasian Najafabadi AR. Capabilities of bioinformatics tools for optimizing physicochemical features of proteins used in Nano biosensors: A short overview of the tools related to bioinformatics. Biochem Biophys Rep 2021; 27:101094. [PMID: 34401530 PMCID: PMC8350186 DOI: 10.1016/j.bbrep.2021.101094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/27/2022] Open
Abstract
Protein-protein ligand is one of the most detection methods used in Nano biosensors. Based on the advantage of specific docking between two special 3D structures, they have become a potent candidate in bioanalysis and Nanodiagnostic tools. These tools lease users to do a simple, fast, cost-effective, sensitive, and specific detection of molecular biomarkers in real samples. Recent advantages of using protein-protein ligand Nano-biosensors application is remarkable due to its special docking that refers to each protein unique 3D conformation. However, it challenges different problems such as low rate of docking and hard process for fixation on the basic layer. These challenges make developers to optimize the structure and functions of proteins. The process has different Nano scale calculation that could be done with algorithms and solutions are available as bioinformatics tools. This article aimed to have a short overview of the abilities of bioinformatics tools for modeling and optimization of physiochemical features of proteins in Nano scale. Nano biosensors use different strategies which based on docking between two molecules to detect and identify different proteins. Molecular docking between transducer in Nano biosensors and proteins rely on physicochemical features of transducer, protein and docking strategy. Nano bioinformatics use bioinformatics tools and algorithms as a collective solution for developing functional structure in Nano scale. Nano bioinformatics use different bioinformatics tools to optimize physicochemical features of proteins as a new approach in Nano biosensors and drug discovery.
Collapse
Affiliation(s)
- Behzad Foroutan
- Tropical and Communicable Diseases Research Center, Iranshahr University of Medical Sciences, Iranshahr, Iran
- Department of Pharmacology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
- Corresponding author. Tropical and Communicable Diseases Research Center, Iranshahr University of Medical Sciences, Iranshahr, Iran.
| | | |
Collapse
|
6
|
Miguéis SDC, Tavares APM, Martins GV, Frasco MF, Sales MGF. Biosensors for European Zoonotic Agents: A Current Portuguese Perspective. SENSORS (BASEL, SWITZERLAND) 2021; 21:4547. [PMID: 34283108 PMCID: PMC8271446 DOI: 10.3390/s21134547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 01/24/2023]
Abstract
Emerging and recurrent outbreaks caused by zoonotic agents pose a public health risk. They result in morbidity and mortality in humans and significant losses in the livestock and food industries. This highlights the need for rapid surveillance methods. Despite the high reliability of conventional pathogen detection methods, they have high detection limits and are time-consuming and not suitable for on-site analysis. Furthermore, the unpredictable spread of zoonotic infections due to a complex combination of risk factors urges the development of innovative technologies to overcome current limitations in early warning and detection. Biosensing, in particular, is highlighted here, as it offers rapid and cost-effective devices for use at the site of infection while increasing the sensitivity of detection. Portuguese research in biosensors for zoonotic pathogens is the focus of this review. This branch of research produces exciting and innovative devices for the study of the most widespread pathogenic bacteria. The studies presented here relate to the different classes of pathogens whose characteristics and routes of infection are also described. Many advances have been made in recent years, and Portuguese research teams have increased publications in this field. However, biosensing still needs to be extended to other pathogens, including potentially pandemic viruses. In addition, the use of biosensors as part of routine diagnostics in hospitals for humans, in animal infections for veterinary medicine, and food control has not yet been achieved. Therefore, a convergence of Portuguese efforts with global studies on biosensors to control emerging zoonotic diseases is foreseen for the future.
Collapse
Affiliation(s)
- Samuel da Costa Miguéis
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal; (A.P.M.T.); (G.V.M.); (M.F.F.)
- Centro de Investigação Desenvolvimento e Inovação da Academia Militar, Academia Militar, Instituto Universitário Militar, 1169-203 Lisboa, Portugal
| | - Ana P. M. Tavares
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal; (A.P.M.T.); (G.V.M.); (M.F.F.)
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Gabriela V. Martins
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal; (A.P.M.T.); (G.V.M.); (M.F.F.)
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Manuela F. Frasco
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal; (A.P.M.T.); (G.V.M.); (M.F.F.)
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Maria Goreti Ferreira Sales
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal; (A.P.M.T.); (G.V.M.); (M.F.F.)
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
7
|
|
8
|
Wang G, Tang K, Meng Z, Liu P, Mo S, Mehrjou B, Wang H, Liu X, Wu Z, Chu PK. A Quantitative Bacteria Monitoring and Killing Platform Based on Electron Transfer from Bacteria to a Semiconductor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003616. [PMID: 32815249 DOI: 10.1002/adma.202003616] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/24/2020] [Indexed: 06/11/2023]
Abstract
A platform with both bacteria killing and sensing capabilities is crucial for monitoring the entire bacteria-related process on biomaterials and biomedical devices. Electron transfer (ET) between the bacteria and a Au-loaded semiconductor (ZnO) is observed to be the primary factor for effective bacteria sensing and fast bacteria killing. The electrons produce a saturation current that varies linearly with the bacteria number, semi-logarithmically, with R2 of 0.98825, thus providing an excellent tool to count bacteria quantitatively in real-time. Furthermore, ET leads to continuous electron loss killing of about 80% of Escherichia coli in only 1 h without light. The modularity and extendability of this ET-based platform are also demonstrated by the excellent results obtained from other semiconductor/substrate systems and the stability is confirmed by recycling tests. The underlying mechanism for the dual functions is not due to conventional attributed Zn2+ leaching or photocatalysis but instead electrical interactions upon direct contact. The results reveal the capability of real-time detection of bacteria based on ET while providing information about the antibacterial behavior of ZnO-based materials especially in the early stage. The concept can be readily incorporated into the design of smart and miniaturized devices that can sense and kill bacteria simultaneously.
Collapse
Affiliation(s)
- Guomin Wang
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Kaiwei Tang
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Zheyi Meng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Pei Liu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Shi Mo
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Babak Mehrjou
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhengwei Wu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
9
|
Jamal RB, Shipovskov S, Ferapontova EE. Electrochemical Immuno- and Aptamer-Based Assays for Bacteria: Pros and Cons over Traditional Detection Schemes. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5561. [PMID: 32998409 PMCID: PMC7582323 DOI: 10.3390/s20195561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 01/20/2023]
Abstract
Microbiological safety of the human environment and health needs advanced monitoring tools both for the specific detection of bacteria in complex biological matrices, often in the presence of excessive amounts of other bacterial species, and for bacteria quantification at a single cell level. Here, we discuss the existing electrochemical approaches for bacterial analysis that are based on the biospecific recognition of whole bacterial cells. Perspectives of such assays applications as emergency-use biosensors for quick analysis of trace levels of bacteria by minimally trained personnel are argued.
Collapse
Affiliation(s)
| | | | - Elena E. Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14, DK-8000 Aarhus, Denmark; (R.B.J.); (S.S.)
| |
Collapse
|
10
|
Highly sensitive and label-free digital detection of whole cell E. coli with Interferometric Reflectance Imaging. Biosens Bioelectron 2020; 162:112258. [PMID: 32392159 DOI: 10.1016/j.bios.2020.112258] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 11/24/2022]
Abstract
Bacterial infectious diseases are a major threat to human health. Timely and sensitive pathogenic bacteria detection is crucial in bacterial contaminations identification and preventing the spread of infectious diseases. Due to limitations of conventional bacteria detection techniques there have been concerted research efforts towards developing new biosensors. Biosensors offering label-free, whole bacteria detection are highly desirable over those relying on label-based or pathogenic molecular components detection. The major advantage is eliminating the additional time and cost required for labeling or extracting the desired bacterial components. Here, we demonstrate rapid, sensitive and label-free Escherichia coli (E. coli) detection utilizing interferometric reflectance imaging enhancement allowing visualizing individual pathogens captured on the surface. Enabled by our ability to count individual bacteria on a large sensor surface, we demonstrate an extrapolated limit of detection of 2.2 CFU/ml from experimental data in buffer solution with no sample preparation. To the best of our knowledge, this level of sensitivity for whole E. coli detection is unprecedented in label-free biosensing. The specificity of our biosensor is validated by comparing the response to target bacteria E. coli and non-target bacteria S. aureus, K. pneumonia and P. aeruginosa. The biosensor's performance in tap water proves that its detection capability is unaffected by the sample complexity. Furthermore, our sensor platform provides high optical magnification imaging and thus validation of recorded detection events as the target bacteria based on morphological characterization. Therefore, our sensitive and label-free detection method offers new perspectives for direct bacterial detection in real matrices and clinical samples.
Collapse
|
11
|
|
12
|
McLeod J, Park C, Cunningham A, O'Donnell L, Brown RS, Kelly F, She Z. Developing a toll-like receptor biosensor for Gram-positive bacterial detection and its storage strategies. Analyst 2020; 145:6024-6031. [DOI: 10.1039/d0an01050b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Conditions to store toll-like receptor2/6 sensors and use them to detect bacterial analytes, including pathogen-associated molecular patterns and bacterial cultures.
Collapse
Affiliation(s)
- Jennifer McLeod
- Department of Chemistry
- Queen's University
- Kingston
- Canada
- Beaty Water Research Centre
| | - Chankyu Park
- Department of Chemistry
- Queen's University
- Kingston
- Canada
| | | | - Lynne O'Donnell
- School of Environmental Studies
- Queen's University
- Kingston
- Canada
| | - R. Stephen Brown
- Department of Chemistry
- Queen's University
- Kingston
- Canada
- Beaty Water Research Centre
| | - Fiona Kelly
- Department of Chemistry and Chemical Engineering
- Royal Military College of
- Canada
- Kingston
- Canada
| | - Zhe She
- Department of Chemistry
- Queen's University
- Kingston
- Canada
- Beaty Water Research Centre
| |
Collapse
|
13
|
Robby AI, Park SY. Recyclable metal nanoparticle-immobilized polymer dot on montmorillonite for alkaline phosphatase-based colorimetric sensor with photothermal ablation of Bacteria. Anal Chim Acta 2019; 1082:152-164. [DOI: 10.1016/j.aca.2019.07.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/11/2019] [Accepted: 07/24/2019] [Indexed: 01/25/2023]
|
14
|
Aliheidari N, Aliahmad N, Agarwal M, Dalir H. Electrospun Nanofibers for Label-Free Sensor Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3587. [PMID: 31426538 PMCID: PMC6720643 DOI: 10.3390/s19163587] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022]
Abstract
Electrospinning is a simple, low-cost and versatile method for fabricating submicron and nano size fibers. Due to their large surface area, high aspect ratio and porous structure, electrospun nanofibers can be employed in wide range of applications. Biomedical, environmental, protective clothing and sensors are just few. The latter has attracted a great deal of attention, because for biosensor application, nanofibers have several advantages over traditional sensors, including a high surface-to-volume ratio and ease of functionalization. This review provides a short overview of several electrospun nanofibers applications, with an emphasis on biosensor applications. With respect to this area, focus is placed on label-free sensors, pertaining to both recent advances and fundamental research. Here, label-free sensor properties of sensitivity, selectivity, and detection are critically evaluated. Current challenges in this area and prospective future work is also discussed.
Collapse
Affiliation(s)
- Nahal Aliheidari
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Integrated Nanosystems Development Institute (INDI), Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Nojan Aliahmad
- Integrated Nanosystems Development Institute (INDI), Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Mangilal Agarwal
- Integrated Nanosystems Development Institute (INDI), Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
- Purdue School of Engineering and Technology, Indiana University-Purdue University, Indianapolis, IN 46202, USA.
| | - Hamid Dalir
- Integrated Nanosystems Development Institute (INDI), Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
- Purdue School of Engineering and Technology, Indiana University-Purdue University, Indianapolis, IN 46202, USA.
| |
Collapse
|
15
|
Bhardwaj N, Bhardwaj SK, Bhatt D, Lim DK, Kim KH, Deep A. Optical detection of waterborne pathogens using nanomaterials. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
17
|
Lee H, Hwang J, Park Y, Kwon D, Lee S, Kang I, Jeon S. Immunomagnetic separation and size-based detection of Escherichia coli O157 at the meniscus of a membrane strip. RSC Adv 2018; 8:26266-26270. [PMID: 35541965 PMCID: PMC9082759 DOI: 10.1039/c8ra04739a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/18/2018] [Indexed: 01/06/2023] Open
Abstract
We developed a facile method for the detection of pathogenic bacteria using gold-coated magnetic nanoparticle clusters (Au@MNCs) and porous nitrocellulose strips. Au@MNCs were synthesized and functionalized with half-fragments of Escherichia coli O157 antibodies. After the nanoparticles were used to capture E. coli O157 in milk and dispersed in a buffer solution, one end of a test strip was dipped into the solution. Due to the size difference between the E. coli–Au@MNC complexes (approximately 1 μm) and free Au@MNCs (approximately 180 nm), only E. coli–Au@MNC complexes accumulated at the meniscus of the test strip and induced a color change. The color intensity of the meniscus was proportional to the E. coli concentration, and the detection limit for E. coli in milk was 103 CFU mL−1 by the naked eye. The presence of E. coli–Au@MNC complexes at the meniscus was confirmed using a real-time PCR assay. The developed method was highly selective for E. coli when compared with Salmonella typhimurium, Listeria monocytogenes, and Staphylococcus aureus. E. coli–Au/MNC complexes accumulate at the meniscus of the test strip where the flow velocity reaches a maximum.![]()
Collapse
Affiliation(s)
- Hyeonjeong Lee
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Jeongin Hwang
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Yunsung Park
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Donghoon Kwon
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Sanghee Lee
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Inseok Kang
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Sangmin Jeon
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| |
Collapse
|
18
|
Synthesis and spectral properties of new ethylene glycol bridged oxazol-5-ones: High Stokes' shift fluorophores sensitive to solvent polarity. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.09.092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Luo Y, Dou W, Zhao G. Rapid electrochemical quantification of Salmonella Pullorum and Salmonella Gallinarum based on glucose oxidase and antibody-modified silica nanoparticles. Anal Bioanal Chem 2017; 409:4139-4147. [PMID: 28429065 DOI: 10.1007/s00216-017-0361-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 03/16/2017] [Accepted: 04/03/2017] [Indexed: 12/17/2022]
Abstract
In this article, a facile and sensitive electrochemical method for quantification of Salmonella Pullorum and Salmonella Gallinarum (S. Pullorum and S. Gallinarum) was established by monitoring glucose consumption with a personal glucose meter (PGM). Antibody-functionalized magnetic nanoparticles (IgG-MNPs) were used to capture and enrich S. Pullorum and S. Gallinarum, and IgG-MNPs-S. Pullorum and IgG-MNPs-S. Gallinarum complexes were magnetically separated from a sample using a permanent magnet. The trace tag was prepared by loading polyclonal antibodies and high-content glucose oxidase on amino-functionalized silica nanoparticles (IgG-SiNPs-GOx). With a sandwich-type immunoassay format, IgG-SiNPs-GOx were added into the above mixture solution and conjugated to the complexes, forming sandwich composites IgG-MNPs/S. Pullorum and S. Gallinarum/IgG-SiNPs-GOx. The above sandwich composites were dispersed in glucose solution. Before and after the hydrolysis of glucose, the concentration of glucose was measured using PGM. Under optimal conditions, a linear relationship between the decrease of glucose concentration and the logarithm of S. Pullorum and S. Gallinarum concentration was obtained in the concentration range from 1.27 × 102 to 1.27 × 105 CFU mL-1, with a detection limit of 7.2 × 101 CFU mL-1 (S/N = 3). This study provides a portable, low-cost, and quantitative analytical method for bacteria detection; thus, it has a great potential in the prevention of disease caused by S. Pullorum and S. Gallinarum in poultry. Graphical abstract A schematic illustration of the fabrication process of IgG-SiNPs-GOD nanomaterials (A) and IgG-MNPs (B) and experimental procedure of detection of S. Pullorum and S. Gallinarum using GOD-functionalized silica nanospheres as trace tags based on PGM (C).
Collapse
Affiliation(s)
- Yiheng Luo
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xuezheng Street, Xiasha Higher Education Zone, Hangzhou, Zhejiang, 310018, China
| | - Wenchao Dou
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xuezheng Street, Xiasha Higher Education Zone, Hangzhou, Zhejiang, 310018, China.
| | - Guangying Zhao
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xuezheng Street, Xiasha Higher Education Zone, Hangzhou, Zhejiang, 310018, China.
| |
Collapse
|
20
|
Mouffouk F, Aouabdi S, Al-Hetlani E, Serrai H, Alrefae T, Leo Chen L. New generation of electrochemical immunoassay based on polymeric nanoparticles for early detection of breast cancer. Int J Nanomedicine 2017; 12:3037-3047. [PMID: 28450780 PMCID: PMC5399978 DOI: 10.2147/ijn.s127086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Screening and early diagnosis are the key factors for the reduction of mortality rate and treatment cost of cancer. Therefore, sensitive and selective methods that can reveal the low abundance of cancer biomarkers in a biological sample are always desired. Here, we report the development of a novel electrochemical biosensor for early detection of breast cancer by using bioconjugated self-assembled pH-responsive polymeric micelles. The micelles were loaded with ferrocene molecules as "tracers" to specifically target cell surface-associated epithelial mucin (MUC1), a biomarker for breast and other solid carcinoma. The synthesis of target-specific, ferrocene-loaded polymeric micelles was confirmed, and the resulting sensor was capable of detecting the presence of MUC1 in a sample containing about 10 cells/mL. Such a high sensitivity was achieved by maximizing the loading capacity of ferrocene inside the polymeric micelles. Every single event of binding between the antibody and antigen was represented by the signal of hundreds of thousands of ferrocene molecules that were released from the polymeric micelles. This resulted in a significant increase in the intensity of the ferrocene signal detected by cyclic voltammetry.
Collapse
Affiliation(s)
- Fouzi Mouffouk
- Department of Chemistry, Kuwait University, Safat, Kuwait
| | - Sihem Aouabdi
- King Abdullah International Medical Research Center (KAIMRC), Jeddah, Kingdom of Saudi Arabia
| | | | - Hacene Serrai
- Department of Radiology and Nuclear Medicine, University Hospital of Gent (UZG), Gent, Belgium
| | - Tareq Alrefae
- Department of Physics, Kuwait University, Safat, Kuwait
| | - Liaohai Leo Chen
- Surgical Precision Research Lab. Department of Surgery, University of Illinois at Chicago, IL, USA
| |
Collapse
|
21
|
Khoerunnisa, Mazrad ZA, In I, Park SY. pH-switchable bacteria detection using zwitterionic fluorescent polymer. Biosens Bioelectron 2017; 90:394-402. [DOI: 10.1016/j.bios.2016.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 12/31/2022]
|
22
|
Abstract
Bacterial sensing is important for understanding the numerous roles bacteria play in nature and in technology, understanding and managing bacterial populations, detecting pathogenic bacterial infections, and preventing the outbreak of illness. Current analytical challenges in bacterial sensing center on the dilemma of rapidly acquiring quantitative information about bacteria with high detection efficiency, sensitivity, and specificity, while operating within a reasonable budget and optimizing the use of ancillary tools, such as multivariate statistics. This review starts from a general description of bacterial sensing methods and challenges, and then focuses on bacterial characterization using optical methods including Raman spectroscopy and imaging, infrared spectroscopy, fluorescence spectroscopy and imaging, and plasmonics, including both extended and localized surface plasmon resonance spectroscopy. The advantages and drawbacks of each method in relation to the others are discussed, as are their applications. A particularly promising direction in bacterial sensing lies in combining multiple approaches to achieve multiplex analysis, and examples where this has been achieved are highlighted.
Collapse
Affiliation(s)
- Jiayun Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
23
|
Nikkhoo N, Cumby N, Gulak PG, Maxwell KL. Rapid Bacterial Detection via an All-Electronic CMOS Biosensor. PLoS One 2016; 11:e0162438. [PMID: 27618185 PMCID: PMC5019397 DOI: 10.1371/journal.pone.0162438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/23/2016] [Indexed: 01/23/2023] Open
Abstract
The timely and accurate diagnosis of infectious diseases is one of the greatest challenges currently facing modern medicine. The development of innovative techniques for the rapid and accurate identification of bacterial pathogens in point-of-care facilities using low-cost, portable instruments is essential. We have developed a novel all-electronic biosensor that is able to identify bacteria in less than ten minutes. This technology exploits bacteriocins, protein toxins naturally produced by bacteria, as the selective biological detection element. The bacteriocins are integrated with an array of potassium-selective sensors in Complementary Metal Oxide Semiconductor technology to provide an inexpensive bacterial biosensor. An electronic platform connects the CMOS sensor to a computer for processing and real-time visualization. We have used this technology to successfully identify both Gram-positive and Gram-negative bacteria commonly found in human infections.
Collapse
Affiliation(s)
- Nasim Nikkhoo
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
| | - Nichole Cumby
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - P Glenn Gulak
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
| | - Karen L Maxwell
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| |
Collapse
|
24
|
Si Y, Grazon C, Clavier G, Rieger J, Audibert JF, Sclavi B, Méallet-Renault R. Rapid and accurate detection of Escherichia coli growth by fluorescent pH-sensitive organic nanoparticles for high-throughput screening applications. Biosens Bioelectron 2015; 75:320-7. [PMID: 26334591 DOI: 10.1016/j.bios.2015.08.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/03/2015] [Accepted: 08/14/2015] [Indexed: 12/31/2022]
Abstract
Rapid detection of bacterial growth is an important issue in the food industry and for medical research. Here we present a novel kind of pH-sensitive fluorescent nanoparticles (FANPs) that can be used for the rapid and accurate real-time detection of Escherichia coli growth. These organic particles are designed to be non-toxic and highly water-soluble. Here we show that the coupling of pH sensitive fluoresceinamine to the nanoparticles results in an increased sensitivity to changes in pH within a physiologically relevant range that can be used to monitor the presence of live bacteria. In addition, these FANPs do not influence bacterial growth and are stable over several hours in a complex medium and in the presence of bacteria. The use of these FANPs allows for continuous monitoring of bacterial growth via real-time detection over long time scales in small volumes and can thus be used for the screening of a large number of samples for high-throughput applications such as screening for the presence of antibiotic resistant strains.
Collapse
Affiliation(s)
- Yang Si
- PPSM, CNRS UMR 8531, ENS-Cachan, 61 av President Wilson, 94230 Cachan, France; LBPA, CNRS UMR 8113, ENS-Cachan, 61 av President Wilson, 94230 Cachan, France
| | - Chloé Grazon
- PPSM, CNRS UMR 8531, ENS-Cachan, 61 av President Wilson, 94230 Cachan, France
| | - Gilles Clavier
- PPSM, CNRS UMR 8531, ENS-Cachan, 61 av President Wilson, 94230 Cachan, France
| | - Jutta Rieger
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, F-75005 Paris, France
| | | | - Bianca Sclavi
- LBPA, CNRS UMR 8113, ENS-Cachan, 61 av President Wilson, 94230 Cachan, France.
| | | |
Collapse
|
25
|
DNA-Based Nanobiosensors as an Emerging Platform for Detection of Disease. SENSORS 2015; 15:14539-68. [PMID: 26102488 PMCID: PMC4507582 DOI: 10.3390/s150614539] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 11/17/2022]
Abstract
Detection of disease at an early stage is one of the biggest challenges in medicine. Different disciplines of science are working together in this regard. The goal of nanodiagnostics is to provide more accurate tools for earlier diagnosis, to reduce cost and to simplify healthcare delivery of effective and personalized medicine, especially with regard to chronic diseases (e.g., diabetes and cardiovascular diseases) that have high healthcare costs. Up-to-date results suggest that DNA-based nanobiosensors could be used effectively to provide simple, fast, cost-effective, sensitive and specific detection of some genetic, cancer, and infectious diseases. In addition, they could potentially be used as a platform to detect immunodeficiency, and neurological and other diseases. This review examines different types of DNA-based nanobiosensors, the basic principles upon which they are based and their advantages and potential in diagnosis of acute and chronic diseases. We discuss recent trends and applications of new strategies for DNA-based nanobiosensors, and emphasize the challenges in translating basic research to the clinical laboratory.
Collapse
|
26
|
Jiang H, Lai Y, Hu K, Chen D, Liu B, Liu Y. Genotoxicity of 1-methylpyrene and 1-hydroxymethylpyrene in Chinese hamster V79-derived cells expressing both human CYP2E1 and SULT1A1. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:404-411. [PMID: 25243916 DOI: 10.1002/em.21912] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/05/2014] [Accepted: 09/05/2014] [Indexed: 06/03/2023]
Abstract
1-Methylpyrene (1-MP) is a widespread pollutant that is carcinogenic in animals following metabolic activation. Previous studies have shown that benzylic hydroxylation of 1-MP, catalyzed by multiple CYP isoforms, gives rise to 1-hydroxymethylpyrene (1-HMP), which becomes bioreactive following further metabolism by various sulfotransferase (SULT) isoforms. However, the mutagenic and chromosome damaging effects of 1-MP and 1-HMP in mammalian cells have not been investigated. In this study a Chinese hamster V79-derived cell line expressing both human CYP2E1 and human SULT1A1 was used to investigate the ability of 1-MP and 1-HMP to induce cytotoxicity (using the CCK-8 assay), micronuclei and Hprt gene mutations. The role of each enzyme was investigated through co-exposure in the presence of an enzyme inhibitor. We found that at concentrations of 0.5-4 μM and 5-20 μM, under conditions where no reduction in cell viability/growth occurred, 1-HMP and 1-MP induced micronuclei in V79-hCYP2E1-hSULT1A1 cells in a concentration-dependent manner; however, both compounds were inactive in V79 cells. Similarly, they both caused an increase in Hprt mutant frequency in V79-hCYP2E1-hSULT1A1 cells in these concentration ranges, with 1-MP impairing cell viability/growth at 10 μM and above in the mutagenicity assay. The compounds were again both inactive in V79 cells. The effects of 1-HMP in V79-hCYP2E1-hSULT1A1 cells were blocked or reduced by addition of pentachlorophenol (PCP), a SULT1 inhibitor; the genotoxicity of 1-MP was significantly reduced by either 1-aminobenotrazole, a CYP2E1 inhibitor, or PCP. The results suggest that human CYP2E1 and SULT1A1 cooperate to activate 1-MP and cause genotoxicity in mammalian cells.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Toxicology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
27
|
Mouffouk F, Simão T, Dornelles DF, Lopes AD, Sau P, Martins J, Abu-Salah KM, Alrokayan SA, Rosa da Costa AM, dos Santos NR. Self-assembled polymeric nanoparticles as new, smart contrast agents for cancer early detection using magnetic resonance imaging. Int J Nanomedicine 2014; 10:63-76. [PMID: 25565804 PMCID: PMC4275056 DOI: 10.2147/ijn.s71190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Early cancer detection is a major factor in the reduction of mortality and cancer management cost. Here we developed a smart and targeted micelle-based contrast agent for magnetic resonance imaging (MRI), able to turn on its imaging capability in the presence of acidic cancer tissues. This smart contrast agent consists of pH-sensitive polymeric micelles formed by self-assembly of a diblock copolymer (poly(ethyleneglycol-b-trimethylsilyl methacrylate)), loaded with a gadolinium hydrophobic complex (tBuBipyGd) and exploits the acidic pH in cancer tissues. In vitro MRI experiments showed that tBuBipyGd-loaded micelles were pH-sensitive, as they turned on their imaging capability only in an acidic microenvironment. The micelle-targeting ability toward cancer cells was enhanced by conjugation with an antibody against the MUC1 protein. The ability of our antibody-decorated micelles to be switched on in acidic microenvironments and to target cancer cells expressing specific antigens, together with its high Gd(III) content and its small size (35–40 nm) reveals their potential use for early cancer detection by MRI.
Collapse
Affiliation(s)
- Fouzi Mouffouk
- Chemistry Department, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Teresa Simão
- IBB - Institute for Biotechnology and Bioengineering, CBME - Centre for Molecular and Structural Biomedicine, Faro, Portugal
| | - Daniel F Dornelles
- IBB - Institute for Biotechnology and Bioengineering, CBME - Centre for Molecular and Structural Biomedicine, Faro, Portugal
| | - André D Lopes
- CIQA-Algarve Chemistry Research Center, Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Pablo Sau
- Centro Radiológico Computarizado SA (CERCO), Seville, Spain
| | - Jorge Martins
- IBB - Institute for Biotechnology and Bioengineering, CBME - Centre for Molecular and Structural Biomedicine, Faro, Portugal ; Department of Biological Sciences and Bioengineering, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Khalid M Abu-Salah
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Salman A Alrokayan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Ana M Rosa da Costa
- CIQA-Algarve Chemistry Research Center, Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Nuno R dos Santos
- IBB - Institute for Biotechnology and Bioengineering, CBME - Centre for Molecular and Structural Biomedicine, Faro, Portugal
| |
Collapse
|
28
|
Ahmed A, Rushworth JV, Hirst NA, Millner PA. Biosensors for whole-cell bacterial detection. Clin Microbiol Rev 2014; 27:631-46. [PMID: 24982325 PMCID: PMC4135896 DOI: 10.1128/cmr.00120-13] [Citation(s) in RCA: 363] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bacterial pathogens are important targets for detection and identification in medicine, food safety, public health, and security. Bacterial infection is a common cause of morbidity and mortality worldwide. In spite of the availability of antibiotics, these infections are often misdiagnosed or there is an unacceptable delay in diagnosis. Current methods of bacterial detection rely upon laboratory-based techniques such as cell culture, microscopic analysis, and biochemical assays. These procedures are time-consuming and costly and require specialist equipment and trained users. Portable stand-alone biosensors can facilitate rapid detection and diagnosis at the point of care. Biosensors will be particularly useful where a clear diagnosis informs treatment, in critical illness (e.g., meningitis) or to prevent further disease spread (e.g., in case of food-borne pathogens or sexually transmitted diseases). Detection of bacteria is also becoming increasingly important in antibioterrorism measures (e.g., anthrax detection). In this review, we discuss recent progress in the use of biosensors for the detection of whole bacterial cells for sensitive and earlier identification of bacteria without the need for sample processing. There is a particular focus on electrochemical biosensors, especially impedance-based systems, as these present key advantages in terms of ease of miniaturization, lack of reagents, sensitivity, and low cost.
Collapse
Affiliation(s)
- Asif Ahmed
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Jo V Rushworth
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Natalie A Hirst
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Paul A Millner
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
29
|
Alarfaj NA, El-Tohamy MF. Applications of micelle enhancement in luminescence-based analysis. LUMINESCENCE 2014; 30:3-11. [PMID: 24802358 DOI: 10.1002/bio.2694] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 02/24/2014] [Accepted: 03/26/2014] [Indexed: 11/07/2022]
Abstract
Micelles are self-assembled aggregates that arrange themselves into spheres in aqueous media. When the surfactant concentration reaches the critical micelle concentration, extensive aggregation of the surfactant monomers occurs to form micelles. A micelle has both a hydrophilic and a hydrophobic part. This allows them to form a spherical shape and for their glycolipid and phospholipid components to form lipid bilayers. The importance of micelles is increasing because of their wide analytical applications. Recently, colloidal carrier systems have received much attention in the field of analytical chemistry, especially in luminescence enhancement applications.
Collapse
Affiliation(s)
- Nawal A Alarfaj
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | | |
Collapse
|
30
|
Perestrelo AR, Mouffouk F, da Costa AMR, Belo JA. Novel triblock co-polymer nanofibre system as an alternative support for embryonic stem cells growth and pluripotency. J Tissue Eng Regen Med 2014; 10:E467-E476. [PMID: 24668905 DOI: 10.1002/term.1838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/01/2013] [Accepted: 09/09/2013] [Indexed: 11/09/2022]
Abstract
Conventionally, embryonic stem cells (ESCs) are cultured on gelatin or over a mitotically inactivated monolayer of mouse embryonic fibroblasts (MEFsi). Considering the lack of versatile, non-animal-derived and inexpensive materials for that purpose, we aimed to find a biomaterial able to support ESC growth in a pluripotent state that avoids the need for laborious and time-consuming MEFsi culture in parallel with mouse ESC (mESC) culture. Undifferentiated mESCs were cultured in a new nanofibre material designed for ESC culture, which is based on the self-assembly of a triblock co-polymer, poly(ethyleneglycol-β-trimethylsilyl methacrylate-β-methacrylic acid), conjugated with the peptide glycine-arginine-glycine-aspartate-serine, to evaluate its potential application in ESC research. The morphology, proliferation, viability, pluripotency and differentiation potential of mESCs were assessed. Compared to conventional stem cell culture methodologies, the nanofibres promoted a higher increase in mESCs number, enhanced pluripotency and were able to support differentiation after long-term culture. This newly developed synthetic system allows the elimination of animal-derived matrices and provides an economic method of ESC culture, made of a complex network of nanofibres in a scale similar to native extracellular matrices, where the functional properties of the cells can be observed and manipulated. Copyright © 2013 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ana Rubina Perestrelo
- Laboratory of Embryology and Genetic Manipulation, Regenerative Medicine Programme, Departamento de Ciências Biomédicas e Medicina (DCBM), Universidade do Algarve, Portugal.,Institute for Biotechnology and Bioengineering, Centro de Biomedicina Estrutural e Molecular (IBB/CBME), Universidade do Algarve, Portugal.,PhD Programme in Biomedical Sciences, Universidade do Algarve, Portugal
| | - Fouzi Mouffouk
- Kuwait University, Faculty of Science, Chemistry Department, Kuwait
| | - Ana M Rosa da Costa
- Centro de Investigação em Química do Algarve (CIQA) and Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Portugal
| | - José António Belo
- Laboratory of Embryology and Genetic Manipulation, Regenerative Medicine Programme, Departamento de Ciências Biomédicas e Medicina (DCBM), Universidade do Algarve, Portugal. .,Institute for Biotechnology and Bioengineering, Centro de Biomedicina Estrutural e Molecular (IBB/CBME), Universidade do Algarve, Portugal.
| |
Collapse
|
31
|
Kwon D, Joo J, Lee J, Park KH, Jeon S. Magnetophoretic chromatography for the detection of pathogenic bacteria with the naked eye. Anal Chem 2013; 85:7594-8. [PMID: 23829782 DOI: 10.1021/ac401717f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A facile and sensitive analytical method that uses gold-coated magnetic nanoparticle clusters (Au/MNCs) and magnetophoretic chromatography with a precision pipet has been developed for the detection of Salmonella bacteria. Antibody-conjugated Au/MNCs are used to capture the Salmonella bacteria in milk and are then separated from the milk by applying an external magnetic field. The Salmonella-containing solution is sucked into a precision pipet tip to which a viscous polymer solution is then added. Once the magnetophoretic chromatography process has been carried out for 10 min, the presence of 100 cfu/mL Salmonella bacteria can be detected with the naked eye because the bacteria have become concentrated at the narrow pipet tip. The performance of this method was evaluated by using dynamic light scattering and light absorption spectroscopy.
Collapse
Affiliation(s)
- Donghoon Kwon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | | | | | | | | |
Collapse
|
32
|
Joo J, Yim C, Kwon D, Lee J, Shin HH, Cha HJ, Jeon S. A facile and sensitive detection of pathogenic bacteria using magnetic nanoparticles and optical nanocrystal probes. Analyst 2012; 137:3609-12. [PMID: 22576145 DOI: 10.1039/c2an35369e] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report a facile and sensitive analytical method for the detection of pathogenic bacteria. Salmonella bacteria in milk were captured by antibody-conjugated magnetic nanoparticles (MNPs) and separated from analyte samples by applying an external magnetic field. The MNP-Salmonella complexes were re-dispersed in a buffer solution then exposed to antibody-immobilized TiO(2) nanocrystals (TNs), which absorb UV light. After magnetically separating the MNP-Salmonella-TN complexes from solution, the UV-Vis absorption spectrum of the unbound TN solution was obtained. Because the light absorption intensity was reversely proportional to the Salmonella concentration, the assay exhibited high sensitivity toward low concentrations of Salmonella bacteria. The detection limit of Salmonella in milk was found to be more than 100 cfu mL(-1).
Collapse
Affiliation(s)
- Jinmyoung Joo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | | | | | | | | | | | | |
Collapse
|