• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4629801)   Today's Articles (324)   Subscriber (49735)
For: Zamfir LG, Rotariu L, Bala C. A novel, sensitive, reusable and low potential acetylcholinesterase biosensor for chlorpyrifos based on 1-butyl-3-methylimidazolium tetrafluoroborate/multiwalled carbon nanotubes gel. Biosens Bioelectron 2011;26:3692-5. [DOI: 10.1016/j.bios.2011.02.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/01/2011] [Accepted: 02/04/2011] [Indexed: 10/18/2022]
Number Cited by Other Article(s)
1
Manipulating mechanism of the electrokinetic flow of ionic liquids confined in silica nanochannel. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
2
Sradha S A, George L, P K, Varghese A. Recent advances in electrochemical and optical sensing of the organophosphate chlorpyrifos: a review. Crit Rev Toxicol 2022;52:431-448. [PMID: 36178423 DOI: 10.1080/10408444.2022.2122770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
3
Ozcelikay G, Karadurmus L, Bilge S, Sınağ A, Ozkan SA. New analytical strategies Amplified with 2D carbon nanomaterials for electrochemical sensing of food pollutants in water and soils sources. CHEMOSPHERE 2022;296:133974. [PMID: 35181423 DOI: 10.1016/j.chemosphere.2022.133974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/13/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
4
Park H, Park J, Lee G, Kim W, Park J. Detection of Chlorpyrifos Using Bio-Inspired Silver Nanograss. MATERIALS (BASEL, SWITZERLAND) 2022;15:3454. [PMID: 35629481 PMCID: PMC9146306 DOI: 10.3390/ma15103454] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023]
5
Research progress of acetylcholinesterase bioelectrochemical sensor based on carbon nanotube composite material in the detection of organophosphorus pesticides. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
6
Li W, Zhao Z, Yang W, Su Q, Na C, Zhang X, Zhao R, Song H. Immobilization of bovine hemoglobin on Au nanoparticles/MoS2 nanosheets - Chitosan modified screen-printed electrode as chlorpyrifos biosensor. Enzyme Microb Technol 2021;154:109959. [PMID: 34891104 DOI: 10.1016/j.enzmictec.2021.109959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 01/13/2023]
7
Sun Q, Du J, Tian L, Wu J, Zhang X. Detection of organophosphorus pesticides: exploring oxime as a probe with improved sensitivity by CeO2-modified electrode. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021;13:4634-4641. [PMID: 34542114 DOI: 10.1039/d1ay01235e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
8
Singh AP, Balayan S, Gupta S, Jain U, Sarin R, Chauhan N. Detection of pesticide residues utilizing enzyme-electrode interface via nano-patterning of TiO2 nanoparticles and molybdenum disulfide (MoS2) nanosheets. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
9
Soongsong J, Lerdsri J, Jakmunee J. A facile colorimetric aptasensor for low-cost chlorpyrifos detection utilizing gold nanoparticle aggregation induced by polyethyleneimine. Analyst 2021;146:4848-4857. [PMID: 34231560 DOI: 10.1039/d1an00771h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
10
Ultra-highly sensitive organophosphorus biosensor based on chitosan/tin disulfide and British housefly acetylcholinesterase. Food Chem 2020;324:126889. [DOI: 10.1016/j.foodchem.2020.126889] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 03/27/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022]
11
Soleymani J, Hasanzadeh M, shadjou N, Somi MH, Jouyban A. The role of nanomaterials on the cancer cells sensing based on folate receptor: Analytical approach. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115834] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
12
Lu X, Li Y, Tao L, Song D, Wang Y, Li Y, Gao F. Amorphous metal boride as a novel platform for acetylcholinesterase biosensor development and detection of organophosphate pesticides. NANOTECHNOLOGY 2019;30:055501. [PMID: 30499458 DOI: 10.1088/1361-6528/aaee3f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
13
Bakytkarim Y, Tursynbolat S, Zeng Q, Huang J, Wang L. A Highly Sensitive Determination of Parathion Pesticide by Solid-Phase Extraction on a Silicon Carbide Nanoparticles Modified Electrode. ChemistrySelect 2018. [DOI: 10.1002/slct.201802161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
14
Uniyal S, Sharma RK. Technological advancement in electrochemical biosensor based detection of Organophosphate pesticide chlorpyrifos in the environment: A review of status and prospects. Biosens Bioelectron 2018;116:37-50. [DOI: 10.1016/j.bios.2018.05.039] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 02/07/2023]
15
Talan A, Mishra A, Eremin SA, Narang J, Kumar A, Gandhi S. Ultrasensitive electrochemical immuno-sensing platform based on gold nanoparticles triggering chlorpyrifos detection in fruits and vegetables. Biosens Bioelectron 2018;105:14-21. [PMID: 29346076 DOI: 10.1016/j.bios.2018.01.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 02/08/2023]
16
Sgobbi LF, Machado SAS. Functionalized polyacrylamide as an acetylcholinesterase-inspired biomimetic device for electrochemical sensing of organophosphorus pesticides. Biosens Bioelectron 2017;100:290-297. [PMID: 28942211 DOI: 10.1016/j.bios.2017.09.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 11/16/2022]
17
Kaur N, Prabhakar N. Current scenario in organophosphates detection using electrochemical biosensors. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.04.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
18
Sigolaeva LV, Gladyr SY, Mergel O, Gelissen APH, Noyong M, Simon U, Pergushov DV, Kurochkin IN, Plamper FA, Richtering W. Easy-Preparable Butyrylcholinesterase/Microgel Construct for Facilitated Organophosphate Biosensing. Anal Chem 2017;89:6091-6098. [DOI: 10.1021/acs.analchem.7b00732] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
19
Khan N, Athar T, Fouad H, Umar A, Ansari ZA, Ansari SG. Application of pristine and doped SnO2 nanoparticles as a matrix for agro-hazardous material (organophosphate) detection. Sci Rep 2017;7:42510. [PMID: 28195202 PMCID: PMC5307345 DOI: 10.1038/srep42510] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/11/2017] [Indexed: 11/23/2022]  Open
20
Nanomaterials-Based Platforms for Environmental Monitoring. PAST, PRESENT AND FUTURE CHALLENGES OF BIOSENSORS AND BIOANALYTICAL TOOLS IN ANALYTICAL CHEMISTRY: A TRIBUTE TO PROFESSOR MARCO MASCINI 2017. [DOI: 10.1016/bs.coac.2017.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
21
Arduini F, Forchielli M, Scognamiglio V, Nikolaevna KA, Moscone D. Organophosphorous Pesticide Detection in Olive Oil by Using a Miniaturized, Easy-to-Use, and Cost-Effective Biosensor Combined with QuEChERS for Sample Clean-Up. SENSORS 2016;17:s17010034. [PMID: 28029127 PMCID: PMC5298607 DOI: 10.3390/s17010034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 11/16/2022]
22
Kurbanoglu S, Ozkan SA, Merkoçi A. Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications. Biosens Bioelectron 2016;89:886-898. [PMID: 27818056 DOI: 10.1016/j.bios.2016.09.102] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 02/08/2023]
23
Talarico D, Arduini F, Amine A, Cacciotti I, Moscone D, Palleschi G. Screen-printed electrode modified with carbon black and chitosan: a novel platform for acetylcholinesterase biosensor development. Anal Bioanal Chem 2016;408:7299-309. [DOI: 10.1007/s00216-016-9604-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/20/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
24
An electrochemical sensor modified with poly(3,4-ethylenedioxythiophene)-wrapped multi-walled carbon nanotubes for enzyme inhibition-based determination of organophosphates. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1871-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
25
Rotariu L, Lagarde F, Jaffrezic-Renault N, Bala C. Electrochemical biosensors for fast detection of food contaminants – trends and perspective. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.12.017] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
26
Singh VV. Recent Advances in Electrochemical Sensors for Detecting Weapons of Mass Destruction. A Review. ELECTROANAL 2016. [DOI: 10.1002/elan.201501088] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
27
Gilani RA, Rafique M, Rehman A, Munis MFH, Rehman SU, Chaudhary HJ. Biodegradation of chlorpyrifos by bacterial genusPseudomonas. J Basic Microbiol 2015;56:105-19. [DOI: 10.1002/jobm.201500336] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/25/2015] [Indexed: 11/11/2022]
28
Amine A, Arduini F, Moscone D, Palleschi G. Recent advances in biosensors based on enzyme inhibition. Biosens Bioelectron 2015;76:180-94. [PMID: 26227311 DOI: 10.1016/j.bios.2015.07.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/28/2015] [Accepted: 07/05/2015] [Indexed: 02/07/2023]
29
Xia N, Zhang Y, Chang K, Gai X, Jing Y, Li S, Liu L, Qu G. Ferrocene-phenylalanine hydrogels for immobilization of acetylcholinesterase and detection of chlorpyrifos. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.03.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
30
Demirci G, Doğaç Yİ, Teke M. A selective molecularly imprinted polymer for immobilization of acetylcholinesterase (AChE): an active enzyme targeted and efficient method. J Mol Recognit 2015;28:645-50. [DOI: 10.1002/jmr.2475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 02/20/2015] [Accepted: 03/02/2015] [Indexed: 11/10/2022]
31
Qiao L, Guo Y, Sun X, Jiao Y, Wang X. Electrochemical immunosensor with NiAl-layered double hydroxide/graphene nanocomposites and hollow gold nanospheres double-assisted signal amplification. Bioprocess Biosyst Eng 2015;38:1455-68. [DOI: 10.1007/s00449-015-1388-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/05/2015] [Indexed: 11/29/2022]
32
Molecularly engineered graphene surfaces for sensing applications: A review. Anal Chim Acta 2015;859:1-19. [DOI: 10.1016/j.aca.2014.07.031] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/09/2014] [Accepted: 07/20/2014] [Indexed: 11/23/2022]
33
PEREIRA NDM, OLIVEIRA FMD, PEREIRA NR, VERLY RM, SOUTO DEP, KUBOTA LT, TANAKA AA, DAMOS FS, LUZ RDCS. Ultrasensitive Biosensor for Detection of Organophosphorus Pesticides Based on a Macrocycle Complex/Carbon Nanotubes Composite and 1-Methyl-3-octylimidazolium Tetrafluoroborate as Binder Compound. ANAL SCI 2015;31:29-35. [DOI: 10.2116/analsci.31.29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
34
Arduini F, Forchielli M, Amine A, Neagu D, Cacciotti I, Nanni F, Moscone D, Palleschi G. Screen-printed biosensor modified with carbon black nanoparticles for the determination of paraoxon based on the inhibition of butyrylcholinesterase. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1370-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
35
Evtugyn GA, Shamagsumova RV, Padnya PV, Stoikov II, Antipin IS. Cholinesterase sensor based on glassy carbon electrode modified with Ag nanoparticles decorated with macrocyclic ligands. Talanta 2014;127:9-17. [DOI: 10.1016/j.talanta.2014.03.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/14/2014] [Accepted: 03/19/2014] [Indexed: 10/25/2022]
36
Acetylcholinesterase biosensor based on multi-walled carbon nanotubes-SnO2-chitosan nanocomposite. Bioprocess Biosyst Eng 2014;38:315-21. [DOI: 10.1007/s00449-014-1270-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/07/2014] [Indexed: 02/07/2023]
37
An electrochemical immunosensor based on interdigitated array microelectrode for the detection of chlorpyrifos. Bioprocess Biosyst Eng 2014;38:307-13. [DOI: 10.1007/s00449-014-1269-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/05/2014] [Indexed: 11/26/2022]
38
Zhai C, Guo Y, Sun X, Zheng Y, Wang X. An acetylcholinesterase biosensor based on graphene–gold nanocomposite and calcined layered double hydroxide. Enzyme Microb Technol 2014;58-59:8-13. [DOI: 10.1016/j.enzmictec.2014.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 02/06/2014] [Accepted: 02/08/2014] [Indexed: 11/29/2022]
39
Liu Y, Wei M. Development of acetylcholinesterase biosensor based on platinum–carbon aerogels composite for determination of organophosphorus pesticides. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.08.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
40
Govindhan M, Adhikari BR, Chen A. Nanomaterials-based electrochemical detection of chemical contaminants. RSC Adv 2014. [DOI: 10.1039/c4ra10399h] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]  Open
41
Mayorga-Martinez CC, Pino F, Kurbanoglu S, Rivas L, Ozkan SA, Merkoçi A. Iridium oxide nanoparticle induced dual catalytic/inhibition based detection of phenol and pesticide compounds. J Mater Chem B 2014;2:2233-2239. [DOI: 10.1039/c3tb21765e] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
42
On the behavior of acetylcholinesterase immobilized on carbon nanotubes in the presence of inhibitors. Colloids Surf B Biointerfaces 2013;111:30-5. [DOI: 10.1016/j.colsurfb.2013.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/29/2013] [Accepted: 05/12/2013] [Indexed: 11/21/2022]
43
Wei M, Zeng G, Lu Q. Determination of organophosphate pesticides using an acetylcholinesterase-based biosensor based on a boron-doped diamond electrode modified with gold nanoparticles and carbon spheres. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1078-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
44
Effect of chlorpyrifos on the inhibition of the enzyme acetylcholinesterase by cross-linking in water-supply samples and milk from dairy cattle. Talanta 2013;111:1-7. [DOI: 10.1016/j.talanta.2013.03.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 11/23/2022]
45
Polo-Luque M, Simonet B, Valcárcel M. Functionalization and dispersion of carbon nanotubes in ionic liquids. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.03.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
46
Zamfir LG, Rotariu L, Bala C. Acetylcholinesterase biosensor for carbamate drugs based on tetrathiafulvalene-tetracyanoquinodimethane/ionic liquid conductive gels. Biosens Bioelectron 2013;46:61-7. [PMID: 23500478 DOI: 10.1016/j.bios.2013.02.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 01/17/2023]
47
An amperometric immunosensor based on multi-walled carbon nanotubes-thionine-chitosan nanocomposite film for chlorpyrifos detection. SENSORS 2012;12:17247-61. [PMID: 23443396 PMCID: PMC3571836 DOI: 10.3390/s121217247] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 11/16/2022]
48
Rotariu L, Zamfir LG, Bala C. A rational design of the multiwalled carbon nanotube–7,7,8,8-tetracyanoquinodimethan sensor for sensitive detection of acetylcholinesterase inhibitors. Anal Chim Acta 2012;748:81-8. [DOI: 10.1016/j.aca.2012.08.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 08/13/2012] [Accepted: 08/28/2012] [Indexed: 10/27/2022]
49
Aragay G, Pino F, Merkoçi A. Nanomaterials for Sensing and Destroying Pesticides. Chem Rev 2012;112:5317-38. [DOI: 10.1021/cr300020c] [Citation(s) in RCA: 394] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
50
Liu S, Zheng Z, Li X. Advances in pesticide biosensors: current status, challenges, and future perspectives. Anal Bioanal Chem 2012;405:63-90. [DOI: 10.1007/s00216-012-6299-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 07/12/2012] [Accepted: 07/24/2012] [Indexed: 01/17/2023]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA