1
|
Cui X, Lv L, Zhao K, Tian P, Chao X, Li Y, Zhang B. Exo Ⅲ-assisted amplification signal strategy synergized with Au@Pt NFs/CoSe 2 for sensitive detection of enrofloxacin. Bioelectrochemistry 2024; 160:108750. [PMID: 38852385 DOI: 10.1016/j.bioelechem.2024.108750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Overuse of enrofloxacin (ENR) has posed a potential threat to ecosystems and public health, so it is critical to sensitive and accurate determination of ENR residues. In this work, a novel ultra-sensitive and specific electrochemical aptasensor was fabricated based on the cobalt diselenide loaded gold and platinum nanoflowers (Au@Pt NFs/ CoSe2) and Exonuclease III (Exo III)-assisted cycle amplification strategy for the detection of ENR. Au@Pt NFs/ CoSe2 nanosheets as the substrate material, with large surface area, accelerate electron transfer and attach more DNA probes on the electrode substrate, have effectively enhanced the electrochemical performance of the electrode. With the existence of Enrofloxacin (ENR), the aptamer recognizes and binds to ENR, thus the signal probe cDNA was released and immobilized onto the electrode surface to hybridized with methylene blue (MB) labelled DNA (MB-DNA), thereby triggering the Exo III-assisted cycle for further signal amplification. As expected, the prepared aptasensor demonstrated excellent sensitivity and selectivity, with a wide linear range from 5.0 × 10-6 ng/mL to 1.0 × 10-2 ng/mL for ENR, a low detection limit of 1.59 × 10-6 ng/mL. Consequently, this strategy provided a promising avenue for ultrasensitive and accurate detection of ENR in milk samples.
Collapse
Affiliation(s)
- Xiaoying Cui
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Lina Lv
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China; JIANGSU YUYUE KAILITE BIOTECHNOLOGY Co., LTD., Danyang, Baisheng Road1#, Zhenjiang 212300, Jiangsu Province, People's Republic of China
| | - Ke Zhao
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Panpan Tian
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China; China National Chemical Huayi Engineering And Technology Group Co., Ltd, Jinhai Road 6055#, Fengxian District, 201406 Shanghai, People's Republic of China
| | - Xipeng Chao
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Ying Li
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Baozhong Zhang
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China.
| |
Collapse
|
2
|
Zhou Y, Zhang J, Sun H, Tao D, Xu B, Han X, Ren R, Ruan J, Steinaa L, Hemmink JD, Han J, Li X, Xu J, Zhao S, Xie S, Zhao C. Sensitive and Specific Exonuclease III-Assisted Recombinase-Aided Amplification Colorimetric Assay for Rapid Detection of Nucleic Acids. ACS Synth Biol 2023; 12:2877-2886. [PMID: 37729559 DOI: 10.1021/acssynbio.3c00137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The development of a contamination-free and on-site nucleic acid detection platform with high sensitivity and specificity but low-cost for the detection of pathogenic nucleic acids is critical for infectious disease diagnosis and surveillance. In this study, we combined the recombinase-aided amplification (RAA) with the exonuclease III (Exo III)-assisted signal amplification into a platform for sensitive and specific detection of nucleic acids of African swine fever virus (ASFV). We found that this platform enabled a naked eye visual detection of ASFV at a detection limit as low as 2 copies/μL in 30 min. As expected, no cross-reactivity was observed with other porcine viruses. In addition, to avoid aerosol contamination, a one-tube RAA-Exo III colorimetric assay was also established for the accurate detection of ASFV in clinical samples. Taken together, we developed a rapid, instrument-free, and low-cost Exo III-assisted RAA colorimetric-assay-based nucleic acid detection platform.
Collapse
Affiliation(s)
- Yuan Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Jinfu Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Haowen Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Dagang Tao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Bingrong Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xiaosong Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Ruimin Ren
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Jinxue Ruan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Lucilla Steinaa
- Animal and Human Health Program, Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Johanneke D Hemmink
- Animal and Human Health Program, Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, P. R. China
- Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, P. R. China
- Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, P. R. China
| | - Jing Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, P. R. China
- Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, P. R. China
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, P. R. China
- Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, P. R. China
| | - Changzhi Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
3
|
Shen Y, Yuan H, Guo Z, Li XQ, Yang Z, Zong C. Exonuclease III Can Efficiently Cleave Linear Single-Stranded DNA: Reshaping Its Experimental Applications in Biosensors. BIOSENSORS 2023; 13:581. [PMID: 37366946 DOI: 10.3390/bios13060581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Exonuclease III (Exo III) has been generally used as a double-stranded DNA (dsDNA)-specific exonuclease that does not degrade single-stranded DNA (ssDNA). Here, we demonstrate that Exo III at concentrations above 0.1 unit/μL can efficiently digest linear ssDNA. Moreover, the dsDNA specificity of Exo III is the foundation of many DNA target recycling amplification (TRA) assays. We demonstrate that with 0.3 and 0.5 unit/μL Exo III, the degradation of an ssDNA probe, free or fixed on a solid surface, was not discernibly different, regardless of the presence or absence of target ssDNA, indicating that Exo III concentration is critical in TRA assays. The study has expanded the Exo III substrate scope from dsDNA to both dsDNA and ssDNA, which will reshape its experimental applications.
Collapse
Affiliation(s)
- Yi Shen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Haoyu Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Zixuan Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xiu-Qing Li
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB E3B 4Z7, Canada
- NutraHealth Products and Technologies Inc., Fredericton, NB E3B 6J5, Canada
| | - Zhiqing Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Rizhao Science and Technology Innovation Service Center, Rizhao 276825, China
| | - Chengli Zong
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Qu H, Fan C, Chen M, Zhang X, Yan Q, Wang Y, Zhang S, Gong Z, Shi L, Li X, Liao Q, Xiang B, Zhou M, Guo C, Li G, Zeng Z, Wu X, Xiong W. Recent advances of fluorescent biosensors based on cyclic signal amplification technology in biomedical detection. J Nanobiotechnology 2021; 19:403. [PMID: 34863202 PMCID: PMC8645109 DOI: 10.1186/s12951-021-01149-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
The cyclic signal amplification technology has been widely applied for the ultrasensitive detection of many important biomolecules, such as nucleic acids, proteins, enzymes, adenosine triphosphate (ATP), metal ions, exosome, etc. Due to their low content in the complex biological samples, traditional detection methods are insufficient to satisfy the requirements for monitoring those biomolecules. Therefore, effective and sensitive biosensors based on cyclic signal amplification technology are of great significance for the quick and simple diagnosis and treatment of diseases. Fluorescent biosensor based on cyclic signal amplification technology has become a research hotspot due to its simple operation, low cost, short time, high sensitivity and high specificity. This paper introduces several cyclic amplification methods, such as rolling circle amplification (RCA), strand displacement reactions (SDR) and enzyme-assisted amplification (EAA), and summarizes the research progress of using this technology in the detection of different biomolecules in recent years, in order to provide help for the research of more efficient and sensitive detection methods.
Collapse
Affiliation(s)
- Hongke Qu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Mingjian Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Qijia Yan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.,Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.,Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Xu Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Liu H, You Y, Zhu Y, Zheng H. Recent advances in the exonuclease III-assisted target signal amplification strategy for nucleic acid detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5103-5119. [PMID: 34664562 DOI: 10.1039/d1ay01275d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The detection of nucleic acids has become significantly important in molecular diagnostics, gene therapy, mutation analysis, forensic investigations and biomedical development, and so on. In recent years, exonuclease III (Exo III) as an enzyme in the 3'-5' exonuclease family has evolved as a frequently used technique for signal amplification of low level DNA target detection. Different from the traditional target amplification strategies, the Exo III-assisted amplification strategy has been used for target DNA detection through directly amplifying the amounts of signal reagents. The Exo III-assisted amplification strategy has its unique advantages and characters, because the character of non-specific recognition of Exo III can overcome the limitation of a target-to-probe ratio of 1 : 1 in the traditional nucleic acid hybridization assay and acquire higher sensitivity. In this review, we selectively discuss the recent advances in the Exo III-assisted amplification strategy, including the amplification strategy integrated with nanomaterials, biosensors, hairpin probes and other nucleic acid detection methods. We also discuss the strengths and limitations of each strategy and methods to overcome the limitations.
Collapse
Affiliation(s)
- Hongyu Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Yuhao You
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Youzhuo Zhu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| |
Collapse
|
6
|
Fu J, Li J, Chen J, Li Y, Liu J, Su X, Shi S. Ultra-specific nucleic acid testing by target-activated nucleases. Crit Rev Biotechnol 2021; 42:1061-1078. [PMID: 34706599 DOI: 10.1080/07388551.2021.1983757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Specific and sensitive detection of nucleic acids is essential to clinical diagnostics and biotechnological applications. Currently, amplification steps are necessary for most detection methods due to the low concentration of nucleic acid targets in real samples. Although amplification renders high sensitivity, poor specificity is prevalent because of the lack of highly accurate precise strategies, resulting in significant false positives and false negatives. Nucleases exhibit high catalytic activity for nucleic acid cleavage which is regulated in a programmable manner. This review focuses on the latest progress in nucleic acid testing methods based on the target-activated nucleases. It summarizes the property of enzymes such as CRISPR/Cas, Argonautes, and some gene-editing irrelevant nucleases, which have been leveraged to create highly specific and sensitive nucleic acid testing tools. We elaborate on recent advances in the field of nuclease-mediated DNA recognition techniques for nucleic acid detection, and discuss its future applications and challenges in molecular diagnostics.
Collapse
Affiliation(s)
- Jinyu Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Junjie Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jing Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yabei Li
- Department of Neurosurgery, People's Hospital of Shijiazhuang, Shijiazhuang, China
| | - Jiajia Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xin Su
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
7
|
Gao J, Li Y, Li W, Zeng C, Xi F, Huang J, Cui L. 2'- O-Methyl molecular beacon: a promising molecular tool that permits elimination of sticky-end pairing and improvement of detection sensitivity. RSC Adv 2020; 10:41618-41624. [PMID: 35516551 PMCID: PMC9057772 DOI: 10.1039/d0ra07341e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/20/2020] [Indexed: 01/24/2023] Open
Abstract
An innovative 2'-O-methyl molecular beacon (MB) has been designed and prepared with improved thermal stability and unique nuclease resistance. The employment of 2'-O-methyl MBs helps efficiently suppress the background signal, while DNase I is responsible for the signal amplification and elimination of sticky-end pairing. The coupled use of 2'-O-methyl MBs and DNase I makes it possible to develop an enzyme-aided strategy for amplified detection of DNA targets in a sensitive and specific fashion. The analysis requires only mix-and-measure steps that can be accomplished within half an hour. The detection sensitivity is theoretically determined as 27.4 pM, which is nearly 200-fold better than that of the classic MB-based assay. This proposed sensing system also shows desired selectivity. All these features are of great importance for the design and application of MBs in biological, chemical, and biomedical fields.
Collapse
Affiliation(s)
- Jiafeng Gao
- Department of Chemistry, Zhejiang Sci-Tech University Hangzhou 310008 P. R. China
| | - Yang Li
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University Guangzhou 510515 P. R. China
| | - Wenqin Li
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University Guangzhou 510515 P. R. China
| | - Chaofei Zeng
- Department of Chemistry, Zhejiang Sci-Tech University Hangzhou 310008 P. R. China
| | - Fengna Xi
- Department of Chemistry, Zhejiang Sci-Tech University Hangzhou 310008 P. R. China
| | - Jiahao Huang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University Guangzhou 510515 P. R. China
| | - Liang Cui
- Department of Chemistry, Zhejiang Sci-Tech University Hangzhou 310008 P. R. China
| |
Collapse
|
8
|
Zhang C, Miao P, Sun M, Yan M, Liu H. Progress in miRNA Detection Using Graphene Material-Based Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901867. [PMID: 31379135 DOI: 10.1002/smll.201901867] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/20/2019] [Indexed: 05/16/2023]
Abstract
MicroRNAs (miRNAs) are short, endogenous, noncoding RNAs that play critical roles in physiologic and pathologic processes and are vital biomarkers for several disease diagnostics and therapeutics. Therefore, rapid, low-cost, sensitive, and selective detection of miRNAs is of paramount importance and has aroused increasing attention in the field of medical research. Among the various reported miRNA sensors, devices based on graphene and its derivatives, which form functional supramolecular nanoassemblies of π-conjugated molecules, have been revealed to have great potential due to their extraordinary electrical, chemical, optical, mechanical, and structural properties. This Review critically and comprehensively summarizes the recent progress in miRNA detection based on graphene and its derivative materials, with an emphasis on i) the underlying working principles of these types of sensors, and the unique roles and advantages of graphene materials; ii) state-of-the-art protocols recently developed for high-performance miRNA sensing, including representative examples; and iii) perspectives and current challenges for graphene sensors. This Review intends to provide readers with a deep understanding of the design and future of miRNA detection devices.
Collapse
Affiliation(s)
- Congcong Zhang
- Institute for Advanced Interdisciplinary Research, Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan, 250011, China
| | - Pei Miao
- Department of Chemistry, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250011, China
| | - Mingyuan Sun
- Institute for Advanced Interdisciplinary Research, Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan, 250011, China
| | - Mei Yan
- Department of Chemistry, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250011, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research, Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan, 250011, China
- Center of Bio & Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
9
|
Wang SX, Liu KS, Lou YF, Wang SQ, Peng YB, Chen JP, Huang JH, Xie SX, Cui L, Wang X. RNase H meets molecular beacons: an ultrasensitive fluorometric assay for nucleic acids. Mikrochim Acta 2018; 185:375. [DOI: 10.1007/s00604-018-2909-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/30/2018] [Indexed: 12/31/2022]
|
10
|
Wu T, Chen W, Yang Z, Tan H, Wang J, Xiao X, Li M, Zhao M. DNA terminal structure-mediated enzymatic reaction for ultra-sensitive discrimination of single nucleotide variations in circulating cell-free DNA. Nucleic Acids Res 2018; 46:e24. [PMID: 29190359 PMCID: PMC5829738 DOI: 10.1093/nar/gkx1218] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/08/2017] [Accepted: 11/23/2017] [Indexed: 12/18/2022] Open
Abstract
Sensitive detection of the single nucleotide variants in cell-free DNA (cfDNA) may provide great opportunity for minimally invasive diagnosis and prognosis of cancer and other related diseases. Here, we demonstrate a facile new strategy for quantitative measurement of cfDNA mutations at low abundance in the cancer patients' plasma samples. The method takes advantage of a novel property of lambda exonuclease which effectively digests a 5'-fluorophore modified dsDNA with a 2-nt overhang structure and sensitively responds to the presence of mismatched base pairs in the duplex. It achieves a limit of detection as low as 0.02% (percentage of the mutant type) for BRAFV600E mutation, NRASQ61R mutation and three types of EGFR mutations (G719S, T790M and L858R). The method enabled identification of BRAFV600E and EGFRL858R mutations in the plasma of different cancer patients within only 3.5 h. Moreover, the terminal structure-dependent reaction greatly simplifies the probe design and reduces the cost, and the assay only requires a regular real-time PCR machine. This new method may serve as a practical tool for quantitative measurement of low-abundance mutations in clinical samples for providing genetic mutation information with prognostic or therapeutic implications.
Collapse
Affiliation(s)
- Tongbo Wu
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Chen
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ziyu Yang
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Haocheng Tan
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiayu Wang
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xianjin Xiao
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengyuan Li
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Zhang H, Zhou L, Zhu Z, Yang C. Recent Progress in Aptamer-Based Functional Probes for Bioanalysis and Biomedicine. Chemistry 2016; 22:9886-900. [PMID: 27243551 DOI: 10.1002/chem.201503543] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 02/16/2016] [Indexed: 01/01/2023]
Abstract
Nucleic acid aptamers are short synthetic DNA or RNA sequences that can bind to a wide range of targets with high affinity and specificity. In recent years, aptamers have attracted increasing research interest due to their unique features of high binding affinity and specificity, small size, excellent chemical stability, easy chemical synthesis, facile modification, and minimal immunogenicity. These properties make aptamers ideal recognition ligands for bioanalysis, disease diagnosis, and cancer therapy. This review highlights the recent progress in aptamer selection and the latest applications of aptamer-based functional probes in the fields of bioanalysis and biomedicine.
Collapse
Affiliation(s)
- Huimin Zhang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Leiji Zhou
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhi Zhu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chaoyong Yang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
12
|
Nucleic acid tool enzymes-aided signal amplification strategy for biochemical analysis: status and challenges. Anal Bioanal Chem 2015; 408:2793-811. [DOI: 10.1007/s00216-015-9240-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/13/2015] [Accepted: 12/01/2015] [Indexed: 11/27/2022]
|
13
|
Abstract
Isothermal amplification of nucleic acids is a simple process that rapidly and efficiently accumulates nucleic acid sequences at constant temperature. Since the early 1990s, various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). These isothermal amplification methods have been used for biosensing targets such as DNA, RNA, cells, proteins, small molecules, and ions. The applications of these techniques for in situ or intracellular bioimaging and sequencing have been amply demonstrated. Amplicons produced by isothermal amplification methods have also been utilized to construct versatile nucleic acid nanomaterials for promising applications in biomedicine, bioimaging, and biosensing. The integration of isothermal amplification into microsystems or portable devices improves nucleic acid-based on-site assays and confers high sensitivity. Single-cell and single-molecule analyses have also been implemented based on integrated microfluidic systems. In this review, we provide a comprehensive overview of the isothermal amplification of nucleic acids encompassing work published in the past two decades. First, different isothermal amplification techniques are classified into three types based on reaction kinetics. Then, we summarize the applications of isothermal amplification in bioanalysis, diagnostics, nanotechnology, materials science, and device integration. Finally, several challenges and perspectives in the field are discussed.
Collapse
Affiliation(s)
- Yongxi Zhao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Feng Chen
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Qian Li
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Chunhai Fan
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China.,School of Life Science & Technology, ShanghaiTech University , Shanghai 200031, China
| |
Collapse
|
14
|
Gerasimova YV, Kolpashchikov DM. Enzyme-assisted target recycling (EATR) for nucleic acid detection. Chem Soc Rev 2015; 43:6405-38. [PMID: 24901032 DOI: 10.1039/c4cs00083h] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fast, reliable and sensitive methods for nucleic acid detection are of growing practical interest with respect to molecular diagnostics of cancer, infectious and genetic diseases. Currently, PCR-based and other target amplification strategies are most extensively used in practice. At the same time, such assays have limitations that can be overcome by alternative approaches. There is a recent explosion in the design of methods that amplify the signal produced by a nucleic acid target, without changing its copy number. This review aims at systematization and critical analysis of the enzyme-assisted target recycling (EATR) signal amplification technique. The approach uses nucleases to recognize and cleave the probe-target complex. Cleavage reactions produce a detectable signal. The advantages of such techniques are potentially low sensitivity to contamination and lack of the requirement of a thermal cycler. Nucleases used for EATR include sequence-dependent restriction or nicking endonucleases or sequence independent exonuclease III, lambda exonuclease, RNase H, RNase HII, AP endonuclease, duplex-specific nuclease, DNase I, or T7 exonuclease. EATR-based assays are potentially useful for point-of-care diagnostics, single nucleotide polymorphisms genotyping and microRNA analysis. Specificity, limit of detection and the potential impact of EATR strategies on molecular diagnostics are discussed.
Collapse
Affiliation(s)
- Yulia V Gerasimova
- Chemistry Department, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, USA.
| | | |
Collapse
|
15
|
Zhao W, Qin Z, Zhang C, Zhao M, Luo H. A label-free double-amplification system for sensitive detection of single-stranded DNA and thrombin by liquid chromatography-mass spectrometry. Chem Commun (Camb) 2015; 50:9846-8. [PMID: 25025531 DOI: 10.1039/c4cc03559c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A label-free double amplification system has been developed by using a ternary DNA probe containing the poly(adenine-thymine) sequence assisted by exonuclease III degradation. The method achieved more than 600-fold signal amplification and allowed sensitive detection of single-stranded DNA and thrombin at the pM level by using liquid chromatography/mass spectrometry.
Collapse
Affiliation(s)
- Wenbo Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | | | | | |
Collapse
|
16
|
Ma JL, Yin BC, Ye BC. A novel linear molecular beacon based on DNA-scaffolded silver nanocluster for DNA detection via exonuclease III-assisted cyclic amplification. RSC Adv 2015. [DOI: 10.1039/c5ra11271k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Developing label-free molecular beacon (MB)-based methods for DNA detection has been of great significance in bioanalysis because of their simplicity, low cost, and specificity.
Collapse
Affiliation(s)
- Jin-Liang Ma
- Lab of Biosystem and Microanalysis
- Biomedical Nanotechnology Center
- State Key Laboratory of Bioreactor Engineering
- East China University of Science & Technology
- Shanghai 200237
| | - Bin-Cheng Yin
- Lab of Biosystem and Microanalysis
- Biomedical Nanotechnology Center
- State Key Laboratory of Bioreactor Engineering
- East China University of Science & Technology
- Shanghai 200237
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis
- Biomedical Nanotechnology Center
- State Key Laboratory of Bioreactor Engineering
- East China University of Science & Technology
- Shanghai 200237
| |
Collapse
|
17
|
Song W, Zhang Q, Sun W. Ultrasensitive detection of nucleic acids by template enhanced hybridization followed by rolling circle amplification and catalytic hairpin assembly. Chem Commun (Camb) 2015; 51:2392-5. [DOI: 10.1039/c4cc09453k] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ultrasensitive protocol for fluorescent detection of DNA is designed by combining the template enhanced hybridization process (TEHP) with Rolling Circle Amplification (RCA) and Catalytic Hairpin Assembly (CHA), showing a remarkable amplification efficiency.
Collapse
Affiliation(s)
- Weiling Song
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Qiao Zhang
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Wenbo Sun
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| |
Collapse
|
18
|
Huang KJ, Liu YJ, Zhai QF. Ultrasensitive biosensing platform based on layered vanadium disulfide–graphene composites coupling with tetrahedron-structured DNA probes and exonuclease III assisted signal amplification. J Mater Chem B 2015; 3:8180-8187. [DOI: 10.1039/c5tb01239b] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An electrochemical aptasensor is developed to sensitively detect PDGF-BB based on vanadium disulfide–graphene composites and exonuclease III signal amplification.
Collapse
Affiliation(s)
- Ke-Jing Huang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Yu-Jie Liu
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Qiu-Fen Zhai
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| |
Collapse
|
19
|
Xu G, Wang G, He X, Zhu Y, Chen L, Zhang X. An ultrasensitive electrochemical method for detection of Ag(+) based on cyclic amplification of exonuclease III activity on cytosine-Ag(+)-cytosine. Analyst 2014; 138:6900-6. [PMID: 24071747 DOI: 10.1039/c3an01320k] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ag(+) is known to bind very strongly with cytosine-cytosine (C-C) mismatches in DNA duplexes to form C-Ag(+)-C base pairs. Exonuclease III (Exo III) can catalyze the stepwise removal of mononucleotides of duplex DNA. In this work, we study Exo III activity on DNA hybrids containing C-Ag(+)-C base pairs. Our experiments show that Ag(+) ions could intentionally trigger the activity of Exo III towards a designed cytosine-rich DNA oligonucleotide (C-rich probe) by the conformational change of the probe. Our sensing strategy uses this conformation-dependent activity of Exo III, which is controlled through the cyclical shuffling of Ag(+) ions between the solid DNA hybrid and the solution phase. This interesting conversion has led to the development of an ultrasensitive detection platform for Ag(+) ions with a detection limit of 0.03 nM and a total assay time possible within minutes. This simple detection strategy could also be used for the detection of other metal ions which exhibit specific interactions with natural or synthetic bases.
Collapse
Affiliation(s)
- Gang Xu
- College of Chemistry and Materials Science, Anhui Key Laboratory of Functional Molecular Solids, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University, Wuhu, 241000, P R China.
| | | | | | | | | | | |
Collapse
|
20
|
Wang F, Lu CH, Willner I. From cascaded catalytic nucleic acids to enzyme-DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. Chem Rev 2014; 114:2881-941. [PMID: 24576227 DOI: 10.1021/cr400354z] [Citation(s) in RCA: 498] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fuan Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | | | | |
Collapse
|
21
|
Cui L, Zhu Z, Lin N, Zhang H, Guan Z, Yang CJ. A T7 exonuclease-assisted cyclic enzymatic amplification method coupled with rolling circle amplification: a dual-amplification strategy for sensitive and selective microRNA detection. Chem Commun (Camb) 2014; 50:1576-8. [DOI: 10.1039/c3cc48707e] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A T7 exonuclease-assisted cyclic enzymatic amplification method (CEAM) was combined with rolling circle amplification (RCA) to develop a RCA–CEAM dual amplification method for ultrasensitive detection of microRNA with excellent selectivity.
Collapse
Affiliation(s)
- Liang Cui
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Key Laboratory for Chemical Biology of Fujian Province
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
| | - Zhi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Key Laboratory for Chemical Biology of Fujian Province
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
| | - Ninghang Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Key Laboratory for Chemical Biology of Fujian Province
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
| | - Huimin Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Key Laboratory for Chemical Biology of Fujian Province
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
| | - Zhichao Guan
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Key Laboratory for Chemical Biology of Fujian Province
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
| | - Chaoyong James Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Key Laboratory for Chemical Biology of Fujian Province
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
| |
Collapse
|
22
|
Hu L, Tan T, Chen G, Zhang K, Zhu JJ. Ultrasensitive electrochemical detection of BCR/ABL fusion gene fragment based on polymerase assisted multiplication coupling with quantum dot tagging. Electrochem commun 2013. [DOI: 10.1016/j.elecom.2013.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
23
|
Zhang M, Le HN, Ye BC. Graphene oxide-based fluorescent "on/off" switch for visual bioassay using "molecular beacon"-hosted Hoechst dyes. ACS APPLIED MATERIALS & INTERFACES 2013; 5:8278-8282. [PMID: 23968374 DOI: 10.1021/am402429n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this study, the fluorescence of Hoechst dyes is significantly lit up by addition of our designed MB probe, forming a complex of "molecular beacon"-hosted Hoechst dyes (HMB). Combined with this property, a novel graphene oxide (GO)-based fluorescent "on/off" switch was developed to visually follow bioassay utilizing HMB as signal indicators and GO as an excellent energy acceptor to efficiently quench the fluorescence of HMB in a label-easy format. We have demonstrated its application for label-easy fluorescence "turn on" detection of sequence-specific DNA and "turn off" detection of exonuclease with sensitivity and selectivity in a single step in homogeneous solution. Compared to traditional molecular beacons, the proposed design is cost-effective and simple to prepare without fluorescence labeling or chemical modification.
Collapse
Affiliation(s)
- Min Zhang
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology , Meilong Road 130, Shanghai 200237, China
| | | | | |
Collapse
|
24
|
Zheng A, Luo M, Xiang D, Xiang X, Ji X, He Z. A label-free signal amplification assay for DNA detection based on exonuclease III and nucleic acid dye SYBR Green I. Talanta 2013; 114:49-53. [DOI: 10.1016/j.talanta.2013.03.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/23/2013] [Accepted: 03/28/2013] [Indexed: 01/12/2023]
|
25
|
Cui L, Ke G, Lin X, Song Y, Zhang H, Guan Z, Zhu Z, Yang CJ. Cyclic enzymatic amplification method (CEAM) based on exonuclease III for highly sensitive bioanalysis. Methods 2013; 63:202-11. [PMID: 23872062 DOI: 10.1016/j.ymeth.2013.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/23/2013] [Accepted: 07/02/2013] [Indexed: 12/15/2022] Open
Abstract
Nucleic acid molecular probes (NAMPs) have been widely used in the sensing of various chemical and biological substances, as well as physical parameters. However, for traditional nucleic acid molecular probes, the stoichiometric 1:1 binding ratio limits the signal enhancement and thus the sensitivity of the assay. In order to overcome this problem, the cyclic enzymatic amplification method (CEAM) based on exonuclease III has been applied in optical and electrical detection of DNA, proteins and small molecules with excellent sensitivity, selectivity, versatility and simplicity. In this review, the working principle of CEAM is first introduced, followed by the applications of CEAM using different output signals for various analytes. Finally, experimental designs and procedures of CEAM are discussed in detail using displacing probes-based CEAM and linear molecular beacons (LMBs)-based CEAM as two examples.
Collapse
Affiliation(s)
- Liang Cui
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Science, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Cui L, Song Y, Ke G, Guan Z, Zhang H, Lin Y, Huang Y, Zhu Z, Yang CJ. Graphene oxide protected nucleic acid probes for bioanalysis and biomedicine. Chemistry 2013; 19:10442-51. [PMID: 23839798 DOI: 10.1002/chem.201301292] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recently, the binding ability of DNA on GO and resulting nuclease resistance have attracted increasing attention, leading to new applications both in vivo and in vitro. In vivo, nucleic acids absorbed on GO can be effectively protected from enzymatic degradation and biological interference in complicated samples, making it useful for targeted delivery, gene regulation, intracellular detection and imaging with high uptake efficiencies, high intracellular stability, and very low toxicity. In vitro, the adsorption of ssDNA on GO surface and desorption of dsDNA or well-folded ssDNA from GO surface result in the protection and deprotection of DNA from nucleic digestion, respectively, which has led to target-triggered cyclic enzymatic amplification methods (CEAM) for amplified detection of analytes with sensitivity 2-3 orders of magnitude higher than that of 1:1 binding strategies. This Concept article explores some of the latest developments in this field.
Collapse
Affiliation(s)
- Liang Cui
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wu S, Duan N, Ma X, Xia Y, Wang H, Wang Z. A highly sensitive fluorescence resonance energy transfer aptasensor for staphylococcal enterotoxin B detection based on exonuclease-catalyzed target recycling strategy. Anal Chim Acta 2013; 782:59-66. [PMID: 23708285 DOI: 10.1016/j.aca.2013.04.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/07/2013] [Accepted: 04/10/2013] [Indexed: 12/24/2022]
Abstract
An ultrasensitive fluorescence resonance energy transfer (FRET) bioassay was developed to detect staphylococcal enterotoxin B (SEB), a low molecular exotoxin, using an aptamer-affinity method coupled with upconversion nanoparticles (UCNPs)-sensing, and the fluorescence intensity was prominently enhanced using an exonuclease-catalyzed target recycling strategy. To construct this aptasensor, both fluorescence donor probes (complementary DNA1-UCNPs) and fluorescence quencher probes (complementary DNA2-Black Hole Quencher3 (BHQ3)) were hybridized to an SEB aptamer, and double-strand oligonucleotides were fabricated, which quenched the fluorescence of the UCNPs via FRET. The formation of an aptamer-SEB complex in the presence of the SEB analyte resulted in not only the dissociation of aptamer from the double-strand DNA but also both the disruption of the FRET system and the restoration of the UCNPs fluorescence. In addition, the SEB was liberated from the aptamer-SEB complex using exonuclease I, an exonuclease specific to single-stranded DNA, for analyte recycling by selectively digesting a particular DNA (SEB aptamer). Based on this exonuclease-catalyzed target recycling strategy, an amplified fluorescence intensity could be produced using different SEB concentrations. Using optimized experimental conditions produced an ultrasensitive aptasensor for the detection of SEB, with a wide linear range of 0.001-1 ng mL(-1) and a lower detection limit (LOD) of 0.3 pg mL(-1) SEB (at 3σ). The fabricated aptasensor was used to measure SEB in a real milk samples and validated using the ELISA method. Furthermore, a novel aptasensor FRET assay was established for the first time using 30 mol% Mn(2+) ions doped NaYF4:Yb/Er (20/2 mol%) UCNPs as the donor probes, which suggests that UCNPs are superior fluorescence labeling materials for food safety analysis.
Collapse
Affiliation(s)
- Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | | | | | | | | | | |
Collapse
|
28
|
Chen C, Li B. Graphene oxide-based homogenous biosensing platform for ultrasensitive DNA detection based on chemiluminescence resonance energy transfer and exonuclease III-assisted target recycling amplification. J Mater Chem B 2013; 1:2476-2481. [DOI: 10.1039/c3tb20270d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
29
|
Zhang H, Li F, Dever B, Li XF, Le XC. DNA-mediated homogeneous binding assays for nucleic acids and proteins. Chem Rev 2012; 113:2812-41. [PMID: 23231477 DOI: 10.1021/cr300340p] [Citation(s) in RCA: 339] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hongquan Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | | | | | | | | |
Collapse
|
30
|
Xu Q, Cao A, Zhang LF, Zhang CY. Rapid and Label-Free Monitoring of Exonuclease III-Assisted Target Recycling Amplification. Anal Chem 2012; 84:10845-51. [DOI: 10.1021/ac303095z] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Qinfeng Xu
- Single-molecule Detection and
Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Anping Cao
- Single-molecule Detection and
Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ling-fei Zhang
- Single-molecule Detection and
Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Weihai Municipal Center for Disease Control and Prevention, Shandong
264200, China
| | - Chun-yang Zhang
- Single-molecule Detection and
Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
31
|
Zhu Z, Gao F, Lei J, Dong H, Ju H. A Competitive Strategy Coupled with Endonuclease-Assisted Target Recycling for DNA Detection Using Silver-Nanoparticle-Tagged Carbon Nanospheres as Labels. Chemistry 2012; 18:13871-6. [DOI: 10.1002/chem.201201307] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Indexed: 01/09/2023]
|
32
|
Ji H, Yan F, Lei J, Ju H. Ultrasensitive Electrochemical Detection of Nucleic Acids by Template Enhanced Hybridization Followed with Rolling Circle Amplification. Anal Chem 2012; 84:7166-71. [DOI: 10.1021/ac3015356] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hanxu Ji
- State Key Laboratory of Analytical
Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093, P.R. China
| | - Feng Yan
- Jiangsu Institute of Cancer Prevention and Cure, Nanjing 210009, P.R.
China
| | - Jianping Lei
- State Key Laboratory of Analytical
Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093, P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical
Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093, P.R. China
| |
Collapse
|
33
|
Miranda-Castro R, Marchal D, Limoges B, Mavré F. Homogeneous electrochemical monitoring of exonuclease III activity and its application to nucleic acid testing by target recycling. Chem Commun (Camb) 2012; 48:8772-4. [DOI: 10.1039/c2cc34511k] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Cui L, Lin X, Lin N, Song Y, Zhu Z, Chen X, Yang CJ. Graphene oxide-protected DNA probes for multiplex microRNA analysis in complex biological samples based on a cyclic enzymatic amplification method. Chem Commun (Camb) 2012; 48:194-6. [DOI: 10.1039/c1cc15412e] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Luo M, Xiang X, Xiang D, Yang S, Ji X, He Z. A universal platform for amplified multiplexed DNA detection based on exonuclease III-coded magnetic microparticle probes. Chem Commun (Camb) 2012; 48:7416-8. [DOI: 10.1039/c2cc33249c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Ju E, Yang X, Lin Y, Pu F, Ren J, Qu X. Exonuclease-aided amplification for label-free and fluorescence turn-on DNA detection based on aggregation-induced quenching. Chem Commun (Camb) 2012; 48:11662-4. [DOI: 10.1039/c2cc37039e] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|