1
|
Del Villar I, Gonzalez‐Valencia E, Kwietniewski N, Burnat D, Armas D, Pituła E, Janik M, Matías IR, Giannetti A, Torres P, Chiavaioli F, Śmietana M. Nano-Photonic Crystal D-Shaped Fiber Devices for Label-Free Biosensing at the Attomolar Limit of Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310118. [PMID: 39044375 PMCID: PMC11425293 DOI: 10.1002/advs.202310118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/24/2024] [Indexed: 07/25/2024]
Abstract
Maintaining both high sensitivity and large figure of merit (FoM) is crucial in regard to the performance of optical devices, particularly when they are intended for use as biosensors with extremely low limit of detection (LoD). Here, a stack of nano-assembled layers in the form of 1D photonic crystal, deposited on D-shaped single-mode fibers, is created to meet these criteria, resulting in the generation of Bloch surface wave resonances. The increase in the contrast between high and low refractive index (RI) nano-layers, along with the reduction of losses, enables not only to achieve high sensitivity, but also a narrowed resonance bandwidth, leading to a significant enhancement in the FoM. Preliminary testing for bulk RI sensitivity is carried out, and the effect of an additional nano-layer that mimics a biological layer where binding interactions occur is also considered. Finally, the biosensing capability is assessed by detecting immunoglobulin G in serum at very low concentrations, and a record LoD of 70 aM is achieved. An optical fiber biosensor that is capable of attaining extraordinarily low LoD in the attomolar range is not only a remarkable technical outcome, but can also be envisaged as a powerful tool for early diagnosis of diseases.
Collapse
Affiliation(s)
- Ignacio Del Villar
- Electrical, Electronic and Communications Engineering DepartmentPublic University of NavarrePamplona31006Spain
- Institute of Smart Cities (ISC)Public University of NavarraPamplona31006Spain
| | - Esteban Gonzalez‐Valencia
- Department of Electronic and Telecommunications EngineeringInstituto Tecnológico MetropolitanoMedellín050013Colombia
- Departamento de FísicaUniversidad Nacional de Colombia – Sede MedellínA.A. 3840Medellín050034Colombia
| | - Norbert Kwietniewski
- Warsaw University of TechnologyInstitute of Microelectronics and OptoelectronicsWarszawa00‐662Poland
| | - Dariusz Burnat
- Warsaw University of TechnologyInstitute of Microelectronics and OptoelectronicsWarszawa00‐662Poland
| | - Dayron Armas
- Electrical, Electronic and Communications Engineering DepartmentPublic University of NavarrePamplona31006Spain
| | - Emil Pituła
- Warsaw University of TechnologyInstitute of Microelectronics and OptoelectronicsWarszawa00‐662Poland
| | - Monika Janik
- Warsaw University of TechnologyInstitute of Microelectronics and OptoelectronicsWarszawa00‐662Poland
| | - Ignacio R. Matías
- Electrical, Electronic and Communications Engineering DepartmentPublic University of NavarrePamplona31006Spain
- Institute of Smart Cities (ISC)Public University of NavarraPamplona31006Spain
| | - Ambra Giannetti
- National Research Council of Italy (CNR)Institute of Applied Physics “Nello Carrara”Sesto Fiorentino50019Italy
| | - Pedro Torres
- Departamento de FísicaUniversidad Nacional de Colombia – Sede MedellínA.A. 3840Medellín050034Colombia
| | - Francesco Chiavaioli
- National Research Council of Italy (CNR)Institute of Applied Physics “Nello Carrara”Sesto Fiorentino50019Italy
| | - Mateusz Śmietana
- Warsaw University of TechnologyInstitute of Microelectronics and OptoelectronicsWarszawa00‐662Poland
- Łukasiewicz Research Network – Institute of Microelectronics and PhotonicsWarszawa02‐668Poland
| |
Collapse
|
2
|
Gürcan D, Baysoy E, Kaleli-Can G. Anti-IgG Doped Melanin Nanoparticles Functionalized Quartz Tuning Fork Immunosensors for Immunoglobulin G Detection: In Vitro and In Silico Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:4319. [PMID: 39001098 PMCID: PMC11243786 DOI: 10.3390/s24134319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
The quartz tuning fork (QTF) is a promising instrument for biosensor applications due to its advanced properties such as high sensitivity to physical quantities, cost-effectiveness, frequency stability, and high-quality factor. Nevertheless, the fork's small size and difficulty in modifying the prongs' surfaces limit its wide use in experimental research. Our study presents the development of a QTF immunosensor composed of three active layers: biocompatible natural melanin nanoparticles (MNPs), glutaraldehyde (GLU), and anti-IgG layers, for the detection of immunoglobulin G (IgG). Frequency shifts of QTFs after MNP functionalization, GLU activation, and anti-IgG immobilization were measured with an Asensis QTF F-master device. Using QTF immunosensors that had been modified under optimum conditions, the performance of QTF immunosensors for IgG detection was evaluated. Accordingly, a finite element method (FEM)-based model was produced using the COMSOL Multiphysics software program (COMSOL License No. 2102058) to simulate the effect of deposited layers on the QTF resonance frequency. The experimental results, which demonstrated shifts in frequency with each layer during QTF surface functionalization, corroborated the simulation model predictions. A modelling error of 0.05% was observed for the MNP-functionalized QTF biosensor compared to experimental findings. This study validated a simulation model that demonstrates the advantages of a simulation-based approach to optimize QTF biosensors, thereby reducing the need for extensive laboratory work.
Collapse
Affiliation(s)
- Dilhan Gürcan
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Engin Baysoy
- Department of Biomedical Engineering, Bahçeşehir University, İstanbul 34353, Türkiye
| | - Gizem Kaleli-Can
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| |
Collapse
|
3
|
Zhang X, Yarman A, Bagheri M, El-Sherbiny IM, Hassan RYA, Kurbanoglu S, Waffo AFT, Zebger I, Karabulut TC, Bier FF, Lieberzeit P, Scheller FW. Imprinted Polymers on the Route to Plastibodies for Biomacromolecules (MIPs), Viruses (VIPs), and Cells (CIPs). ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:107-148. [PMID: 37884758 DOI: 10.1007/10_2023_234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Around 30% of the scientific papers published on imprinted polymers describe the recognition of proteins, nucleic acids, viruses, and cells. The straightforward synthesis from only one up to six functional monomers and the simple integration into a sensor are significant advantages as compared with enzymes or antibodies. Furthermore, they can be synthesized against toxic substances and structures of low immunogenicity and allow multi-analyte measurements via multi-template synthesis. The affinity is sufficiently high for protein biomarkers, DNA, viruses, and cells. However, the cross-reactivity of highly abundant proteins is still a challenge.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
| | - Aysu Yarman
- Molecular Biotechnology, Faculty of Science, Turkish-German University, Istanbul, Turkey
| | - Mahdien Bagheri
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, Vienna, Austria
| | - Ibrahim M El-Sherbiny
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza, Egypt
- Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Rabeay Y A Hassan
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza, Egypt
- Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | | | - Ingo Zebger
- Institut für Chemie, PC 14 Technische Universität Berlin, Berlin, Germany
| | | | - Frank F Bier
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
| | - Peter Lieberzeit
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, Vienna, Austria.
| | - Frieder W Scheller
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany.
| |
Collapse
|
4
|
Renzi E, Piper A, Nastri F, Merkoçi A, Lombardi A. An Artificial Miniaturized Peroxidase for Signal Amplification in Lateral Flow Immunoassays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207949. [PMID: 36942720 DOI: 10.1002/smll.202207949] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Signal amplification strategies are widely used for improving the sensitivity of lateral flow immunoassays (LFiAs). Herein, the artificial miniaturized peroxidase Fe(III)-MimochromeVI*a (FeMC6*a), immobilized on gold nanoparticles (AuNPs), is used as a strategy to obtain catalytic signal amplification in sandwich immunoassays on lateral flow strips. The assay scheme uses AuNPs decorated with the mini-peroxidase FeMC6*a and anti-human-IgG as a detection antibody (dAb), for the detection of human-IgG, as a model analyte. Recognition of the analyte by the capture and detection antibodies is first evidenced by the appearance of a red color in the test line (TL), due to the accumulation of AuNPs. Subsequent addition of 3,3',5,5'-tetramethylbenzidine (TMB) induces an increase of the test line color, due to the TMB being converted into an insoluble colored product, catalyzed by FeMC6*a. This work shows that FeMC6*a acts as an efficient catalyst in paper, increasing the sensitivity of an LFiA up to four times with respect to a conventional LFiA. Furthermore, FeMC6*a achieves lower limits of detection that are found in control experiments where it is replaced with horseradish peroxidase (HRP), its natural counterpart. This study represents a significant proof-of-concept for the development of more sensitive LFiAs, for different analytes, based on properly designed artificial metalloenzymes.
Collapse
Affiliation(s)
- Emilia Renzi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 21, Napoli, 80126, Italy
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Andrew Piper
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Flavia Nastri
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 21, Napoli, 80126, Italy
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 21, Napoli, 80126, Italy
| |
Collapse
|
5
|
Xie H, Sun Y, Zhang R, Zhang Y, Zhao M. Surface imprinted bio-nanocomposites for affinity separation of a cellular DNA repair protein. Biopolymers 2023; 114:e23537. [PMID: 36972353 DOI: 10.1002/bip.23537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional DNA repair protein localized in different subcellular compartments. The mechanisms responsible for the highly regulated subcellular localization and "interactomes" of this protein are not fully understood but have been closely correlated to the posttranslational modifications in different biological context. In this work, we attempted to develop a bio-nanocomposite with antibody-like properties that could capture APE1 from cellular matrices to enable the comprehensive study of this protein. By fixing the template APE1 on the avidin-modified surface of silica-coated magnetic nanoparticles, we first added 3-aminophenylboronic acid to react with the glycosyl residues of avidin, followed by addition of 2-acrylamido-2-methylpropane sulfonic acid as the second functional monomer to perform the first step imprinting reaction. To further enhance the affinity and selectivity of the binding sites, we carried out the second step imprinting reaction with dopamine as the functional monomer. After the polymerization, we modified the nonimprinted sites with methoxypoly(ethylene glycol) amine (mPEG-NH2 ). The resulting molecularly imprinted polymer-based bio-nanocomposite showed high affinity, specificity, and capacity for template APE1. It allowed for the extraction of APE1 from the cell lysates with high recovery and purity. Moreover, the bound protein could be effectively released from the bio-nanocomposite with high activity. The bio-nanocomposite offers a very useful tool for the separation of APE1 from various complex biological samples.
Collapse
Affiliation(s)
- Huaisyuan Xie
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ying Sun
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ruilan Zhang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yuxuan Zhang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
6
|
Shangguan Q, Chen Z, Yang H, Cheng S, Yang W, Yi Z, Wu X, Wang S, Yi Y, Wu P. Design of Ultra-Narrow Band Graphene Refractive Index Sensor. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22176483. [PMID: 36080942 PMCID: PMC9460058 DOI: 10.3390/s22176483] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 05/27/2023]
Abstract
The paper proposes an ultra-narrow band graphene refractive index sensor, consisting of a patterned graphene layer on the top, a dielectric layer of SiO2 in the middle, and a bottom Au layer. The absorption sensor achieves the absorption efficiency of 99.41% and 99.22% at 5.664 THz and 8.062 THz, with the absorption bandwidths 0.0171 THz and 0.0152 THz, respectively. Compared with noble metal absorbers, our graphene absorber can achieve tunability by adjusting the Fermi level and relaxation time of the graphene layer with the geometry of the absorber unchanged, which greatly saves the manufacturing cost. The results show that the sensor has the properties of polarization-independence and large-angle insensitivity due to the symmetric structure. In addition, the practical application of testing the content of hemoglobin biomolecules was conducted, the frequency of first resonance mode shows a shift of 0.017 THz, and the second resonance mode has a shift of 0.016 THz, demonstrating the good frequency sensitivity of our sensor. The S (sensitivities) of the sensor were calculated at 875 GHz/RIU and 775 GHz/RIU, and quality factors FOM (Figure of Merit) are 26.51 and 18.90, respectively; and the minimum limit of detection is 0.04. By comparing with previous similar sensors, our sensor has better sensing performance, which can be applied to photon detection in the terahertz band, biochemical sensing, and other fields.
Collapse
Affiliation(s)
- Qianyi Shangguan
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Zihao Chen
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hua Yang
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
| | - Shubo Cheng
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Wenxing Yang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Shifa Wang
- School of Electronic and Information Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Yougen Yi
- College of Physics and Electronics, Central South University, Changsha 410083, China
| | - Pinghui Wu
- Fujian Provincial Key Laboratory for Advanced Micro-Nano Photonics Technology and Devices, Quanzhou Normal University, Quanzhou 362000, China
| |
Collapse
|
7
|
Thapa S, Singh KRB, Verma R, Singh J, Singh RP. State-of-the-Art Smart and Intelligent Nanobiosensors for SARS-CoV-2 Diagnosis. BIOSENSORS 2022; 12:637. [PMID: 36005033 PMCID: PMC9405813 DOI: 10.3390/bios12080637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/16/2022]
Abstract
The novel coronavirus appeared to be a milder infection initially, but the unexpected outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), commonly called COVID-19, was transmitted all over the world in late 2019 and caused a pandemic. Human health has been disastrously affected by SARS-CoV-2, which is still evolving and causing more serious concerns, leading to the innumerable loss of lives. Thus, this review provides an outline of SARS-CoV-2, of the traditional tools to diagnose SARS-CoV-2, and of the role of emerging nanomaterials with unique properties for fabricating biosensor devices to diagnose SARS-CoV-2. Smart and intelligent nanomaterial-enabled biosensors (nanobiosensors) have already proven their utility for the diagnosis of several viral infections, as various detection strategies based on nanobiosensor devices are already present, and several other methods are also being investigated by researchers for the determination of SARS-CoV-2 disease; however, considerably more is undetermined and yet to be explored. Hence, this review highlights the utility of various nanobiosensor devices for SARS-CoV-2 determination. Further, it also emphasizes the future outlook of nanobiosensing technologies for SARS-CoV-2 diagnosis.
Collapse
Affiliation(s)
- Sushma Thapa
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Kshitij RB Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ranjana Verma
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh, India
| |
Collapse
|
8
|
Mendes JP, Coelho LCC, Jorge PAS, Pereira CM. Differential Refractometric Biosensor for Reliable Human IgG Detection: Proof of Concept. BIOSENSORS 2022; 12:515. [PMID: 35884318 PMCID: PMC9312733 DOI: 10.3390/bios12070515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
A new sensing platform based on long-period fiber gratings (LPFGs) for direct, fast, and selective detection of human immunoglobulin G (IgG; Mw = 150 KDa) was developed and characterized. The transducer's high selectivity is based on the specific interaction of a molecularly imprinted polymer (MIPs) design for IgG detection. The sensing scheme is based on differential refractometric measurements, including a correction system based on a non-imprinted polymer (NIP)-coated LPFG, allowing reliable and more sensitive measurements, improving the rejection of false positives in around 30%. The molecular imprinted binding sites were performed on the surface of a LPFG with a sensitivity of about 130 nm/RIU and a FOM of 16 RIU-1. The low-cost and easy to build device was tested in a working range from 1 to 100 nmol/L, revealing a limit of detection (LOD) and a sensitivity of 0.25 nmol/L (0.037 µg/mL) and 0.057 nm.L/nmol, respectively. The sensor also successfully differentiates the target analyte from the other abundant elements that are present in the human blood plasma.
Collapse
Affiliation(s)
- João P. Mendes
- Centro de Investigação em Química UP (CIQUP)—Instituto de Ciências Moleculares (IMS), Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (J.P.M.); (C.M.P.)
- INESC TEC—Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal;
- Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Luís C. C. Coelho
- INESC TEC—Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal;
- Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Pedro A. S. Jorge
- INESC TEC—Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal;
- Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Carlos M. Pereira
- Centro de Investigação em Química UP (CIQUP)—Instituto de Ciências Moleculares (IMS), Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (J.P.M.); (C.M.P.)
- Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| |
Collapse
|
9
|
Çorman ME, Armutcu C, Karasu T, Özgür E, Uzun L. Highly Selective Benzo[a]Pyrene Detection Even under Competitive Conditions with Molecularly Imprinted Surface Plasmon Resonance Sensor. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2080725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- M. Emin Çorman
- Gulhane Faculty of Pharmacy, Department of Biochemistry, University of Health Sciences, Ankara, Turkey
- Faculty of Science, Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Canan Armutcu
- Faculty of Science, Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Tunca Karasu
- Faculty of Science, Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Erdoğan Özgür
- Faculty of Science, Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Lokman Uzun
- Faculty of Science, Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
10
|
Molecularly Imprinted Polymer-Based Sensors for SARS-CoV-2: Where Are We Now? Biomimetics (Basel) 2022; 7:biomimetics7020058. [PMID: 35645185 PMCID: PMC9149885 DOI: 10.3390/biomimetics7020058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
Since the first reported case of COVID-19 in 2019 in China and the official declaration from the World Health Organization in March 2021 as a pandemic, fast and accurate diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has played a major role worldwide. For this reason, various methods have been developed, comprising reverse transcriptase-polymerase chain reaction (RT-PCR), immunoassays, clustered regularly interspaced short palindromic repeats (CRISPR), reverse transcription loop-mediated isothermal amplification (RT-LAMP), and bio(mimetic)sensors. Among the developed methods, RT-PCR is so far the gold standard. Herein, we give an overview of the MIP-based sensors utilized since the beginning of the pandemic.
Collapse
|
11
|
Ceylan Cömert Ş, Özgür E, Uzun L, Odabaşı M. The creation of selective imprinted cavities on quartz crystal microbalance electrode for the detection of melamine in milk sample. Food Chem 2022; 372:131254. [PMID: 34818729 DOI: 10.1016/j.foodchem.2021.131254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 11/04/2022]
Abstract
Molecularly imprinted polymer based nanofilms specific to melamine were synthesized on quartz crystal microbalance (QCM) electrode surface. Contact angle measurements, atomic force microscopy, ellipsometry and scanning electron microscopy were used for characterizations process. Some of the findings of the study are as follows: pH 6.0 was found as optimal working pH for melamine detection. Prepared MIP QCM electrode showed a linearity of 99.53% in the concentration range of 50-1000 ng/mL. Langmuir-Freundlich hybrid model was the best fitted isotherm for whole concentration range. The performance of MIP QCM electrode was also confirmed by determining of melamine in melamine spiked milk samples. As a conclusion, the results figured out that not only QCM nanosensor for specific melamine detection but also polymerization strategy were classified as an intriguing alternative for developing new melamine sensing platforms. Limit of detection (LOD) and limit of quantification (LOQ) were calculated as 2.3 ng/mL and 7.8 ng/mL, respectively.
Collapse
Affiliation(s)
| | - Erdoğan Özgür
- Hacettepe University, Advanced Technologies Application and Research Center, Ankara, Turkey
| | - Lokman Uzun
- Hacettepe University, Department of Chemistry, Ankara, Turkey.
| | - Mehmet Odabaşı
- Aksaray University, Department of Chemistry, Aksaray, Turkey.
| |
Collapse
|
12
|
Sharafeldin M, Davis JJ. Characterising the biosensing interface. Anal Chim Acta 2022; 1216:339759. [DOI: 10.1016/j.aca.2022.339759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/08/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022]
|
13
|
A Versatile Terahertz Chemical Microscope and Its Application for the Detection of Histamine. PHOTONICS 2022. [DOI: 10.3390/photonics9010026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Terahertz waves have gained increasingly more attention because of their unique characteristics and great potential in a variety of fields. In this study, we introduced the recent progress of our versatile terahertz chemical microscope (TCM) in the detection of small biomolecules, ions, cancer cells, and antibody–antigen immunoassaying. We highlight the advantages of our TCM for chemical sensing and biosensing, such as label-free, high-sensitivity, rapid response, non-pretreatment, and minute amount sample consumption, compared with conventional methods. Furthermore, we demonstrated its new application in detection of allergic-related histamine at low concentration in buffer solutions.
Collapse
|
14
|
Liu X, Ma L, Yan W, Aazmi A, Fang M, Xu X, Kang H, Xu X. A review of recent progress toward the efficient separation of circulating tumor cells via micro‐/nanostructured microfluidic chips. VIEW 2022. [DOI: 10.1002/viw.20210013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xiaoshi Liu
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education Shanghai Key Laboratory of D&A for Metal‐Functional Materials School of Materials Science and Engineering Institute for Advanced Study Tongji University Shanghai P. R. China
| | - Liang Ma
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education Shanghai Key Laboratory of D&A for Metal‐Functional Materials School of Materials Science and Engineering Institute for Advanced Study Tongji University Shanghai P. R. China
- State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou P. R. China
- School of Mechanical Engineering Zhejiang University Hangzhou P. R. China
| | - Wenyuan Yan
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education Shanghai Key Laboratory of D&A for Metal‐Functional Materials School of Materials Science and Engineering Institute for Advanced Study Tongji University Shanghai P. R. China
| | - Abdellah Aazmi
- State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou P. R. China
- School of Mechanical Engineering Zhejiang University Hangzhou P. R. China
| | - Minghe Fang
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education Shanghai Key Laboratory of D&A for Metal‐Functional Materials School of Materials Science and Engineering Institute for Advanced Study Tongji University Shanghai P. R. China
| | - Xiuzhen Xu
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education Shanghai Key Laboratory of D&A for Metal‐Functional Materials School of Materials Science and Engineering Institute for Advanced Study Tongji University Shanghai P. R. China
| | - Hanyue Kang
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education Shanghai Key Laboratory of D&A for Metal‐Functional Materials School of Materials Science and Engineering Institute for Advanced Study Tongji University Shanghai P. R. China
| | - Xiaobin Xu
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education Shanghai Key Laboratory of D&A for Metal‐Functional Materials School of Materials Science and Engineering Institute for Advanced Study Tongji University Shanghai P. R. China
| |
Collapse
|
15
|
Li Z, Li X, Xian W, Xie H, Sun Y, Zhang Y, Wang J, Li H, Jin C, Liu X, Zhu Z, Zhao M. Construction of nano receptors for ubiquitin and ubiquitinated proteins based on the region-specific interactions between ubiquitin and polydopamine. J Mater Chem B 2022; 10:6627-6633. [DOI: 10.1039/d2tb00255h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ubiquitination is a prevalent post-translational modification that controls a multitude of important biological processes. Due to the low abundance of ubiquitinated proteins, highly efficient separation and enrichment approaches are required...
Collapse
|
16
|
Çakır O, Bakhshpour M, Göktürk I, Yılmaz F, Baysal Z. Sensitive and selective detection of amitrole based on molecularly imprinted nanosensor. J Mol Recognit 2021; 34:e2929. [PMID: 34378825 DOI: 10.1002/jmr.2929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 04/30/2021] [Accepted: 07/26/2021] [Indexed: 11/09/2022]
Abstract
SPR sensor used for amitrole detection was prepared without using any modification. Molecularly imprinted SPR sensor enabled high selectivity for amitrole pesticide. Amino acid-based functional monomer MATrp was integrated as a recognition element. Tailor-made SPR sensor enables real-time monitoring of amitrole pesticide. Synthetic recognition sites provided by MATrp were prepared without labeling.
Collapse
Affiliation(s)
- Oğuz Çakır
- Science and Technology Application and Research Center, Dicle University, Diyarbakır, Turkey
| | | | - Ilgım Göktürk
- Department of Chemistry, Hacettepe University, Beytepe, Turkey
| | - Fatma Yılmaz
- Department of Chemistry Technology, Bolu Abant Izzet Baysal University, Gerede, Turkey
| | - Zübeyde Baysal
- Faculty of Science, Department of Chemistry, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
17
|
“Out of Pocket” Protein Binding—A Dilemma of Epitope Imprinted Polymers Revealed for Human Hemoglobin. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060128] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The epitope imprinting approach applies exposed peptides as templates to synthesize Molecularly Imprinted Polymers (MIPs) for the recognition of the parent protein. While generally the template protein binding to such MIPs is considered to occur via the epitope-shaped cavities, unspecific interactions of the analyte with non-imprinted polymer as well as the detection method used may add to the complexity and interpretation of the target rebinding. To get new insights on the effects governing the rebinding of analytes, we electrosynthesized two epitope-imprinted polymers using the N-terminal pentapeptide VHLTP-amide of human hemoglobin (HbA) as the template. MIPs were prepared either by single-step electrosynthesis of scopoletin/pentapeptide mixtures or electropolymerization was performed after chemisorption of the cysteine extended VHLTP peptide. Rebinding of the target peptide and the parent HbA protein to the MIP nanofilms was quantified by square wave voltammetry using a redox probe gating, surface enhanced infrared absorption spectroscopy, and atomic force microscopy. While binding of the pentapeptide shows large influence of the amino acid sequence, all three methods revealed strong non-specific binding of HbA to both polyscopoletin-based MIPs with even higher affinities than the target peptides.
Collapse
|
18
|
Piccoli JP, Soares AC, Oliveira ON, Cilli EM. Nanostructured functional peptide films and their application in C-reactive protein immunosensors. Bioelectrochemistry 2020; 138:107692. [PMID: 33291002 DOI: 10.1016/j.bioelechem.2020.107692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022]
Abstract
Peptides with an active redox molecule are incorporated into nanostructured films for electrochemical biosensors with stable and controllable physicochemical properties. In this study, we synthesized three ferrocene (Fc)-containing peptides with the sequence Fc-Glu-(Ala)n-Cys-NH2, which could form self-assembled monolayers on gold and be attached to antibodies. The peptide with two alanines (n = 2) yielded the immunosensor with the highest performance in detecting C-reactive protein (CRP), a biomarker of inflammation. Using electrochemical impedance-derived capacitive spectroscopy, the limit of detection was 240 pM with a dynamic range that included clinically relevant CRP concentrations. With a combination of electrochemical methods and polarization-modulated infrared reflection-absorption spectroscopy, we identified the chemical groups involved in the antibody-CRP interaction, and were able to relate the highest performance for the peptide with n = 2 to chain length and efficient packing in the organized films. These strategies to design peptides and methods to fabricate the immunosensors are generic, and can be applied to other types of biosensors, including in low cost platforms for point-of-care diagnostics.
Collapse
Affiliation(s)
- Julia P Piccoli
- São Carlos Institute of Physics, University of São Paulo, 13566-590 São Carlos - SP, Brazil
| | - Andrey C Soares
- São Carlos Institute of Physics, University of São Paulo, 13566-590 São Carlos - SP, Brazil; Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos - SP, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, 13566-590 São Carlos - SP, Brazil.
| | - Eduardo M Cilli
- Institute of Chemistry, São Paulo State University, 14800-060 Araraquara - SP, Brazil.
| |
Collapse
|
19
|
Salvo P, Vivaldi FM, Bonini A, Biagini D, Bellagambi FG, Miliani FM, Di Francesco F, Lomonaco T. Biosensors for Detecting Lymphocytes and Immunoglobulins. BIOSENSORS 2020; 10:E155. [PMID: 33121071 PMCID: PMC7694141 DOI: 10.3390/bios10110155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
Lymphocytes (B, T and natural killer cells) and immunoglobulins are essential for the adaptive immune response against external pathogens. Flow cytometry and enzyme-linked immunosorbent (ELISA) kits are the gold standards to detect immunoglobulins, B cells and T cells, whereas the impedance measurement is the most used technique for natural killer cells. For point-of-care, fast and low-cost devices, biosensors could be suitable for the reliable, stable and reproducible detection of immunoglobulins and lymphocytes. In the literature, such biosensors are commonly fabricated using antibodies, aptamers, proteins and nanomaterials, whereas electrochemical, optical and piezoelectric techniques are used for detection. This review describes how these measurement techniques and transducers can be used to fabricate biosensors for detecting lymphocytes and the total content of immunoglobulins. The various methods and configurations are reported, along with the advantages and current limitations.
Collapse
Affiliation(s)
- Pietro Salvo
- Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy;
| | - Federico M. Vivaldi
- Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy;
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Andrea Bonini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Francesca G. Bellagambi
- Institut des Sciences Analytiques, UMR 5280, Université Lyon 1, 5, rue de la Doua, 69100 Villeurbanne, France;
| | - Filippo M. Miliani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (A.B.); (D.B.); (F.M.M.); (F.D.F.); (T.L.)
| |
Collapse
|
20
|
Çimen D, Bereli N, Günaydın S, Denizli A. Detection of cardiac troponin-I by optic biosensors with immobilized anti-cardiac troponin-I monoclonal antibody. Talanta 2020; 219:121259. [PMID: 32887150 DOI: 10.1016/j.talanta.2020.121259] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/05/2023]
Abstract
In this study, it is aimed to determine cardiac troponin I by a surface plasmon resonance biosensor immobilized anti-cardiac troponin I monoclonal antibody. The immobilized anti-cardiac troponin I monoclonal antibody surface plasmon resonance biosensors were characterized with ellipsometry, atomic force microscopy and contact angle analysis. After that, surface plasmon resonance biosensor system was completed to biosensor system to investigate kinetic properties for cardiac tropinin I. The sensing ability of surface plasmon resonance biosensor was investigated with 0.001-8.0 ng/mL concentrations of cardiac tropinin I solutions. The limit of detection and limit of quantification were calculated as 0.00012 ng/mL and 0.00041 ng/mL, respectively. To show the selectivity of surface plasmon resonance biosensor competitive adsorption of cardiac tropinin I, myoglobin, immunoglobulin G and prostate specific antigen were investigated. Surface plasmon resonance biosensor was investigated five times with 0.5 ng/mL concentrations of cardiac tropinin I solution to show reuse of the chip. The results showed that surface plasmon resonance biosensor has high selectivity for cardiac tropinin I. The reproducibility of surface plasmon resonance sensors was investigated both on the same day and on different days for five times. To determine the usability, selectivity and validation studies of surface plasmon resonance biosensors were performed by enzyme-linked immunosorbent assay method.
Collapse
Affiliation(s)
- Duygu Çimen
- Hacettepe University, Department of Chemistry, Beytepe, Ankara, Turkey
| | - Nilay Bereli
- Hacettepe University, Department of Chemistry, Beytepe, Ankara, Turkey
| | - Serdar Günaydın
- Department of Cardiovascular Surgery, Ankara Numune Education Hospital, Ankara, Turkey
| | - Adil Denizli
- Hacettepe University, Department of Chemistry, Beytepe, Ankara, Turkey.
| |
Collapse
|
21
|
Hu Z, Wang X, Chen X. Bisphosphorylated fructose-modified magnetic Zr-Organic framework: A dual-hydrophilic sorbent for selective adsorption of immunoglobulin G. Anal Chim Acta 2020; 1112:16-23. [DOI: 10.1016/j.aca.2020.03.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
|
22
|
Gao L, Xiang W, Deng Z, Shi K, Wang H, Shi H. Cocaine detection using aptamer and molybdenum disulfide-gold nanoparticle-based sensors. Nanomedicine (Lond) 2020; 15:325-335. [PMID: 31976806 DOI: 10.2217/nnm-2019-0046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: The current work highlighted a novel colorimetric sensor based on aptamer and molybdenum disulfide (MoS2)-gold nanoparticles (AuNPs) that was developed for cocaine detection with high sensitivity. Materials & methods: Due to the presence of the plasmon resonance band on the surface of AuNPs, AuNPs aggregated and the color was changed from red to blue after adding a certain concentration of NaCl. We used MoS2 to optimize the sensing system of AuNPs. The folded conformation of the aptamer in combination with cocaine enhanced the salt tolerance of the MoS2-AuNPs, effectively preventing their aggregation. Results & conclusion: The detection limit of cocaine was 7.49 nM with good selectivity. The method based on MoS2-AuNPs colorimetry sensor is simple, quick, label-free and low cost.
Collapse
Affiliation(s)
- Li Gao
- Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, PR China
| | - Wenwen Xiang
- Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, PR China
| | - Zebin Deng
- Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, PR China
| | - Keqing Shi
- Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, PR China
| | - Huixing Wang
- Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, PR China
| | - Haixia Shi
- Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, PR China
| |
Collapse
|
23
|
Qiu X, Chen W, Luo Y, Wang Y, Wang Y, Guo H. Highly sensitive α-amanitin sensor based on molecularly imprinted photonic crystals. Anal Chim Acta 2020; 1093:142-149. [DOI: 10.1016/j.aca.2019.09.066] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/03/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
|
24
|
Yang K, Li S, Liu L, Chen Y, Zhou W, Pei J, Liang Z, Zhang L, Zhang Y. Epitope Imprinting Technology: Progress, Applications, and Perspectives toward Artificial Antibodies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902048. [PMID: 31423663 DOI: 10.1002/adma.201902048] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Epitope imprinting is a promising tool to generate antibody-like specific recognition sites. Recently, because of the ease of obtaining templates, the flexibility in selecting monomers, their resistance to harsh environments, and the high specificity toward targets, epitope-imprinted materials have attracted much attention in various fields, such as bioanalysis, clinical therapy, and pharmacy. Here, the discussion is focused on the current representative epitope imprinting technologies, including epitope bulk imprinting and epitope surface imprinting. Moreover, the application of epitope-imprinted materials to the recognition of peptides, proteins, and cells is reviewed. Finally, the remaining challenges arising from the intrinsic properties of epitope imprinting are discussed, and future development in the field is prospected.
Collapse
Affiliation(s)
- Kaiguang Yang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Senwu Li
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lukuan Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuwan Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wen Zhou
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiaqi Pei
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
25
|
Jalilzadeh M, Çimen D, Özgür E, Esen C, Denizli A. Design and preparation of imprinted surface plasmon resonance (SPR) nanosensor for detection of Zn(II) ions. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1617634] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Duygu Çimen
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Erdoğan Özgür
- Department of Chemistry, Hacettepe University, Ankara, Turkey
- Department of Chemistry, Aksaray University, Aksaray, Turkey
| | - Cem Esen
- Department of Chemistry, Aydın Adnan Menderes University, Aydın, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
26
|
Zhang X, Liu S, Pan J, Jia H, Chen Z, Guo T. Multifunctional oligomer immobilized on quartz crystal microbalance: a facile and stabilized molecular imprinting strategy for glycoprotein detection. Anal Bioanal Chem 2019; 411:3941-3949. [DOI: 10.1007/s00216-019-01867-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/17/2019] [Accepted: 04/24/2019] [Indexed: 01/02/2023]
|
27
|
Bergdahl GE, Hedström M, Mattiasson B. Capacitive Sensor to Monitor Enzyme Activity by Following Degradation of Macromolecules in Real Time. Appl Biochem Biotechnol 2019; 189:374-383. [PMID: 31020512 PMCID: PMC6754820 DOI: 10.1007/s12010-019-03006-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/27/2019] [Indexed: 11/29/2022]
Abstract
A capacitive sensor was developed to analyze the presence and enzymatic activity of a model protease from standard solutions by following the degradation of the substrate in real time. The enzyme was chosen based on its specific digestion of the hinge region of immunoglobulin G (IgG). Real-time enzyme activity was monitored by measuring the change in capacitance (∆C) based on the release of IgG fragments after enzymatic digestion by the enzyme. The results indicated that the developed capacitive system might be used successfully for label-free and real-time monitoring of enzymatic activity of different enzymes in a sensitive, rapid, and inexpensive manner in biotechnological, environmental, and clinical applications.
Collapse
Affiliation(s)
- Gizem Ertürk Bergdahl
- CapSenze Biosystems AB, Lund, Sweden. .,Department of Biotechnology, Lund University, Lund, Sweden.
| | - Martin Hedström
- CapSenze Biosystems AB, Lund, Sweden.,Department of Biotechnology, Lund University, Lund, Sweden
| | - Bo Mattiasson
- CapSenze Biosystems AB, Lund, Sweden.,Department of Biotechnology, Lund University, Lund, Sweden
| |
Collapse
|
28
|
Cao Z, Chen Y, Li D, Cheng J, Liu C. Fabrication of Phosphate-Imprinted PNIPAM/SiO₂ Hybrid Particles and Their Phosphate Binding Property. Polymers (Basel) 2019; 11:E253. [PMID: 30960237 PMCID: PMC6419039 DOI: 10.3390/polym11020253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 12/12/2022] Open
Abstract
A SiO₂ microsphere imprinted by phosphate ions was prepared with the use of phosphate ion as the template molecule and tetraethoxysilane as the precursor. Thereafter, the imprinted SiO₂ microspheres were modified with 3-(trimethoxysilyl)propyl methacrylate (TMSPMA@SiO₂), followed by introducing the double bond. In the presence of TMSPMA@SiO₂, using N-isopropylacrylamide as monomer, and potassium persulfate as initiator, polymer/inorganic hybrid particles (PNIPAM/SiO₂) were prepared. Fourier transform infrared spectroscopy, thermogravimetric analysis, nitrogen adsorption-desorption test, and transmission electron microscope were employed for the characterization of molecular imprinted SiO₂ microspheres and PNIPAM/SiO₂ hybrid particles. The effects of phosphate concentration, pH value, and adsorption temperature on the phosphate binding properties of PNIPAM/SiO₂ hybrid particles were studied by UV-vis spectrophotometer. The experimental results shed light on the fact that the PNIPAM structure is beneficial for the improvement of the adsorption ability of phosphate-imprinted SiO₂ microspheres. With the increase in the initial phosphate concentration, the adsorption capacity of hybrid particles to phosphate ions increased to 274 mg/g at pH = 7 and 15 °C. The acid condition and the temperature below the low critical solution temperature (LCST) of PNIPAM are favorable to the adsorption of phosphate ions by PNIPAM/SiO₂ hybrid particles, and the maximum adsorption capacity can reach 287 mg/g (at pH = 5 and 15 °C). The phosphate imprinted polymer/inorganic hybrid material is expected to be put to use in the fields of phosphate ions adsorption, separation, and recovery.
Collapse
Affiliation(s)
- Zheng Cao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China.
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Yuyuan Chen
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Dan Li
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Junfeng Cheng
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China.
- National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University), Changzhou 213164, China.
| | - Chunlin Liu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China.
- Huaide College, Changzhou University, Changzhou 213016, China.
| |
Collapse
|
29
|
Gao S, Chen S, Lu Q. Cell-imprinted biomimetic interface for intelligent recognition and efficient capture of CTCs. Biomater Sci 2019; 7:4027-4035. [DOI: 10.1039/c9bm01008d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Synergistically contributing to plastic and natural antibodies, a cell-imprinted biomimetic interface exhibited high sensitivity and efficiency in CTC capture, providing novel insight into cell–biointerface interactions.
Collapse
Affiliation(s)
- Su Gao
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Shuangshuang Chen
- School of Chemical Science and Engineering
- Tong Ji University
- Shanghai
- China
| | - Qinghua Lu
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai
- China
| |
Collapse
|
30
|
Chen N, Guo W, Lin Z, Wei Q, Chen G. Label-free sensitive luminescence biosensor for immunoglobulin G based on Ag 6Au 6 ethisterone cluster-estrogen receptor α aggregation and graphene. Talanta 2018; 185:243-248. [PMID: 29759196 DOI: 10.1016/j.talanta.2018.03.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 03/12/2018] [Accepted: 03/24/2018] [Indexed: 11/17/2022]
Abstract
A specific and label-free "on-off-on" luminescence biosensor based on a novel heterometallic cluster [Ag6Au6(ethisterone)12]-estrogen receptor α (Ag6Au6Eth-ERα) aggregation utilizing graphene oxide (GO) as a quencher to lead a small background signal was firstly constructed to detect immunoglobulin G (IgG) with a simple process and high selectivity. The efficient photoluminescent (PL) Ag6Au6Eth-ERα aggregation is strongly quenched by GO. In the presence of IgG, the PL of this system will be restored, and perceivable by human eyes under UV lamp excitation (365 nm). The quenching mechanism of GO on Ag6Au6Eth-ERα and enhancement mechanism of IgG on Ag6Au6Eth-ERα-GO were investigated in detail. Under the optimum conditions, the biosensor for high sensitive IgG detection expressed a wider linear range of 0.0078-10 ng/mL and a lower detection limit of 0.65 pg/mL with good stability and repeatability, which provided a new approach for label-free IgG detection.
Collapse
Affiliation(s)
- Nannan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wenjing Guo
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhixiang Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiaohua Wei
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Guonan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
31
|
Ertürk G, Lood R. Ultrasensitive Detection of Biomarkers by Using a Molecular Imprinting Based Capacitive Biosensor. J Vis Exp 2018. [PMID: 29553527 PMCID: PMC5931318 DOI: 10.3791/57208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The ability to detect and quantitate biomolecules in complex solutions has always been highly sought-after within natural science; being used for the detection of biomarkers, contaminants, and other molecules of interest. A commonly used technique for this purpose is the Enzyme-linked Immunosorbent Assay (ELISA), where often one antibody is directed towards a specific target molecule, and a second labeled antibody is used for the detection of the primary antibody, allowing for the absolute quantification of the biomolecule under study. However, the usage of antibodies as recognition elements limits the robustness of the method; as does the need of using labeled molecules. To overcome these limitations, molecular imprinting has been implemented, creating artificial recognition sites complementary to the template molecule, and obsoleting the necessity of using antibodies for initial binding. Further, for even higher sensitivity, the secondary labeled antibody can be replaced by biosensors relying on the capacitance for the quantification of the target molecule. In this protocol, we describe a method to rapidly and label-free detect and quantitate low-abundant biomolecules (proteins and viruses) in complex samples, with a sensitivity that is significantly better than commonly used detection systems such as the ELISA. This is all mediated by molecular imprinting in combination with a capacitance biosensor.
Collapse
Affiliation(s)
- Gizem Ertürk
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University
| | - Rolf Lood
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University;
| |
Collapse
|
32
|
Jetzschmann KJ, Yarman A, Rustam L, Kielb P, Urlacher VB, Fischer A, Weidinger IM, Wollenberger U, Scheller FW. Molecular LEGO by domain-imprinting of cytochrome P450 BM3. Colloids Surf B Biointerfaces 2018; 164:240-246. [PMID: 29413602 DOI: 10.1016/j.colsurfb.2018.01.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/24/2018] [Indexed: 01/16/2023]
Abstract
HYPOTHESIS Electrosynthesis of the MIP nano-film after binding of the separated domains or holo-cytochrome BM3 via an engineered anchor should result in domain-specific cavities in the polymer layer. EXPERIMENTS Both the two domains and the holo P450 BM3 have been bound prior polymer deposition via a N-terminal engineered his6-anchor to the electrode surface. Each step of MIP preparation was characterized by cyclic voltammetry of the redox-marker ferricyanide. Rebinding after template removal was evaluated by quantifying the suppression of the diffusive permeability of the signal for ferricyanide and by the NADH-dependent reduction of cytochrome c by the reductase domain (BMR). FINDINGS The working hypothesis is verified by the discrimination of the two domains by the respective MIPs: The holoenzyme P450 BM3 was ca. 5.5 times more effectively recognized by the film imprinted with the oxidase domain (BMO) as compared to the BMR-MIP or the non-imprinted polymer (NIP). Obviously, a cavity is formed during the imprinting process around the his6-tag-anchored BMR which cannot accommodate the broader BMO or the P450 BM3. The affinity of the MIP towards P450 BM3 is comparable with that to the monomer in solution. The his6-tagged P450 BM3 binds (30 percent) stronger which shows the additive effect of the interaction with the MIP and the binding to the electrode.
Collapse
Affiliation(s)
- K J Jetzschmann
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam, Germany
| | - A Yarman
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam, Germany; Faculty of Science, Molecular Biotechnology, Turkish-German University, Sahinkaya Cad. 86, 34820 Beykoz, Istanbul, Turkey
| | - L Rustam
- Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - P Kielb
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - V B Urlacher
- Institute of Biochemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - A Fischer
- Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - I M Weidinger
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - U Wollenberger
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam, Germany
| | - F W Scheller
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
33
|
Naraprawatphong R, Kawamura A, Miyata T. Preparation of molecularly imprinted hydrogel layer SPR sensor chips with lectin-recognition sites via SI-ATRP. Polym J 2018. [DOI: 10.1038/s41428-017-0013-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Saylan Y, Yilmaz F, Özgür E, Derazshamshir A, Yavuz H, Denizli A. Molecular Imprinting of Macromolecules for Sensor Applications. SENSORS 2017; 17:s17040898. [PMID: 28422082 PMCID: PMC5426548 DOI: 10.3390/s17040898] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 02/06/2023]
Abstract
Molecular recognition has an important role in numerous living systems. One of the most important molecular recognition methods is molecular imprinting, which allows host compounds to recognize and detect several molecules rapidly, sensitively and selectively. Compared to natural systems, molecular imprinting methods have some important features such as low cost, robustness, high recognition ability and long term durability which allows molecularly imprinted polymers to be used in various biotechnological applications, such as chromatography, drug delivery, nanotechnology, and sensor technology. Sensors are important tools because of their ability to figure out a potentially large number of analytical difficulties in various areas with different macromolecular targets. Proteins, enzymes, nucleic acids, antibodies, viruses and cells are defined as macromolecules that have wide range of functions are very important. Thus, macromolecules detection has gained great attention in concerning the improvement in most of the studies. The applications of macromolecule imprinted sensors will have a spacious exploration according to the low cost, high specificity and stability. In this review, macromolecules for molecularly imprinted sensor applications are structured according to the definition of molecular imprinting methods, developments in macromolecular imprinting methods, macromolecular imprinted sensors, and conclusions and future perspectives. This chapter follows the latter strategies and focuses on the applications of macromolecular imprinted sensors. This allows discussion on how sensor strategy is brought to solve the macromolecules imprinting.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| | - Fatma Yilmaz
- Department of Chemistry Technology, Abant Izzet Baysal University, 14900 Bolu, Turkey.
| | - Erdoğan Özgür
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| | - Ali Derazshamshir
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| | - Handan Yavuz
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| | - Adil Denizli
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| |
Collapse
|
35
|
Ertürk G, Mattiasson B. Molecular Imprinting Techniques Used for the Preparation of Biosensors. SENSORS 2017; 17:s17020288. [PMID: 28165419 PMCID: PMC5335940 DOI: 10.3390/s17020288] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/10/2017] [Accepted: 01/28/2017] [Indexed: 01/13/2023]
Abstract
Molecular imprinting is the technology of creating artificial recognition sites in polymeric matrices which are complementary to the template in their size, shape and spatial arrangement of the functional groups. Molecularly imprinted polymers (MIPs) and their incorporation with various transducer platforms are among the most promising approaches for detection of several analytes. There are a variety of molecular imprinting techniques used for the preparation of biomimetic sensors including bulk imprinting, surface imprinting (soft lithography, template immobilization, grafting, emulsion polymerization) and epitope imprinting. This chapter presents an overview of all of these techniques with examples from particular publications.
Collapse
Affiliation(s)
| | - Bo Mattiasson
- CapSenze Biosystems AB, Lund SE-22363, Sweden.
- Department of Biotechnology, Lund University, Lund SE-22369, Sweden.
| |
Collapse
|
36
|
Jetzschmann KJ, Zhang X, Yarman A, Wollenberger U, Scheller FW. Label-Free MIP Sensors for Protein Biomarkers. SPRINGER SERIES ON CHEMICAL SENSORS AND BIOSENSORS 2017. [DOI: 10.1007/5346_2017_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
A novel electrochemical immunosensor based on nonenzymatic Ag@Au-Fe3O4 nanoelectrocatalyst for protein biomarker detection. Biosens Bioelectron 2016; 85:343-350. [DOI: 10.1016/j.bios.2016.04.100] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022]
|
38
|
Menger M, Yarman A, Erdőssy J, Yildiz HB, Gyurcsányi RE, Scheller FW. MIPs and Aptamers for Recognition of Proteins in Biomimetic Sensing. BIOSENSORS 2016; 6:E35. [PMID: 27438862 PMCID: PMC5039654 DOI: 10.3390/bios6030035] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/04/2016] [Accepted: 07/11/2016] [Indexed: 12/12/2022]
Abstract
Biomimetic binders and catalysts have been generated in order to substitute the biological pendants in separation techniques and bioanalysis. The two major approaches use either "evolution in the test tube" of nucleotides for the preparation of aptamers or total chemical synthesis for molecularly imprinted polymers (MIPs). The reproducible production of aptamers is a clear advantage, whilst the preparation of MIPs typically leads to a population of polymers with different binding sites. The realization of binding sites in the total bulk of the MIPs results in a higher binding capacity, however, on the expense of the accessibility and exchange rate. Furthermore, the readout of the bound analyte is easier for aptamers since the integration of signal generating labels is well established. On the other hand, the overall negative charge of the nucleotides makes aptamers prone to non-specific adsorption of positively charged constituents of the sample and the "biological" degradation of non-modified aptamers and ionic strength-dependent changes of conformation may be challenging in some application.
Collapse
Affiliation(s)
- Marcus Menger
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, Potsdam D-14476, Germany.
| | - Aysu Yarman
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 25-26, Potsdam D-14476, Germany.
- Turkish-German University, Faculty of Science, Molecular Biotechnology, Sahinkaya Cad. No. 86, Bekoz, Istanbul 34820, Turkey.
| | - Júlia Erdőssy
- MTA-BME "Lendület" Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111, Hungary.
| | - Huseyin Bekir Yildiz
- Department of Materials Science and Nanotechnology Engineering, KTO Karatay University, Konya 42020, Turkey.
| | - Róbert E Gyurcsányi
- MTA-BME "Lendület" Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111, Hungary.
| | - Frieder W Scheller
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, Potsdam D-14476, Germany.
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 25-26, Potsdam D-14476, Germany.
| |
Collapse
|
39
|
Mourão CA, Carmignotto GP, Bueno SMA. Separation of human IgG fragments using copper, nickel, zinc, and cobalt chelated to CM-Asp-agarose by positive and negative chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1017-1018:163-173. [DOI: 10.1016/j.jchromb.2016.01.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/20/2016] [Accepted: 01/30/2016] [Indexed: 10/22/2022]
|
40
|
Liang J, Guan M, Huang G, Qiu H, Chen Z, Li G, Huang Y. Highly sensitive covalently functionalized light-addressable potentiometric sensor for determination of biomarker. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:185-91. [PMID: 27040210 DOI: 10.1016/j.msec.2016.02.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 11/18/2022]
Abstract
A biomarker is related to the biological status of a living organism and shows great promise for the early prediction of a related disease. Herein we presented a novel structured light-addressable potentiometric sensor (LAPS) for the determination of a model biomarker, human immunoglobulin G (hIgG). In this system, the goat anti-human immunoglobulin G antibody was used as recognition element and covalently immobilized on the surface of light-addressable potentiometric sensor chip to capture human immunoglobulin G. Due to the light addressable capability of light-addressable potentiometric sensor, human immunoglobulin G dissolved in the supporting electrolyte solution can be detected by monitoring the potential shifts of the sensor. In order to produce a stable photocurrent, the laser diode controlled by field-programmable gate array was used as the light emitter to drive the light-addressable potentiometric sensor. A linear correlation between the potential shift response and the concentration of human immunoglobulin G was achieved and the corresponding regression equation was ΔV (V)=0.00714ChIgG (μg/mL)-0.0147 with a correlation coefficient of 0.9968 over a range 0-150 μg/mL. Moreover, the light-addressable potentiometric sensor system also showed acceptable stability and reproducibility. All the results demonstrated that the system was more applicable to detection of disease biomarkers with simple operation, multiple-sample format and might hold great promise in various environmental, food, and clinical applications.
Collapse
Affiliation(s)
- Jintao Liang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; Guangxi Experiment Center of Information Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Mingyuan Guan
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Guoyin Huang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Hengming Qiu
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Zhengcheng Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Guiyin Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; Guangxi Experiment Center of Information Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China.
| | - Yong Huang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; Guangxi Experiment Center of Information Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China.
| |
Collapse
|
41
|
Asymmetric Mach-Zehnder Interferometer Based Biosensors for Aflatoxin M1 Detection. BIOSENSORS-BASEL 2016; 6:bios6010001. [PMID: 26751486 PMCID: PMC4810393 DOI: 10.3390/bios6010001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 11/21/2022]
Abstract
In this work, we present a study of Aflatoxin M1 detection by photonic biosensors based on Si3N4 Asymmetric Mach–Zehnder Interferometer (aMZI) functionalized with antibodies fragments (Fab′). We measured a best volumetric sensitivity of 104 rad/RIU, leading to a Limit of Detection below 5 × 10−7 RIU. On sensors functionalized with Fab′, we performed specific and non-specific sensing measurements at various toxin concentrations. Reproducibility of the measurements and re-usability of the sensor were also investigated.
Collapse
|
42
|
Ertürk G, Mattiasson B. From imprinting to microcontact imprinting-A new tool to increase selectivity in analytical devices. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1021:30-44. [PMID: 26739371 DOI: 10.1016/j.jchromb.2015.12.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/14/2015] [Indexed: 12/18/2022]
Abstract
Molecular imprinting technology has been successfully applied to small molecular templates but a slow progress has been made in macromolecular imprinting owing to the challenges in natural properties of macromolecules, especially proteins. In this review, the macromolecular imprinting approaches are discussed with examples from recent publications. A new molecular imprinting strategy, microcontact imprinting is highlighted with its recent applications.
Collapse
Affiliation(s)
- Gizem Ertürk
- Hacettepe University, Department of Biology, Ankara, Turkey
| | - Bo Mattiasson
- Department of Biotechnology, Lund University, Lund, Sweden; CapSenze HB, Medicon Village, Lund, Sweden.
| |
Collapse
|
43
|
Ertürk G, Hedström M, Tümer MA, Denizli A, Mattiasson B. Real-time prostate-specific antigen detection with prostate-specific antigen imprinted capacitive biosensors. Anal Chim Acta 2015; 891:120-9. [DOI: 10.1016/j.aca.2015.07.055] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 07/19/2015] [Accepted: 07/24/2015] [Indexed: 12/18/2022]
|
44
|
Liu Y, Huang S, Li Z, Zhao M. Molecularly Imprinted Polymers as Tools for Bioassays and Biotransformation. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 150:207-26. [DOI: 10.1007/10_2015_315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27:297-401. [PMID: 24700625 DOI: 10.1002/jmr.2347] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/28/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022]
Abstract
Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004-2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930-2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed.
Collapse
|
46
|
Yola ML, Eren T, Atar N. Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma. Biosens Bioelectron 2014; 60:277-85. [DOI: 10.1016/j.bios.2014.04.045] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/10/2014] [Accepted: 04/22/2014] [Indexed: 12/17/2022]
|
47
|
Ertürk G, Berillo D, Hedström M, Mattiasson B. Microcontact-BSA imprinted capacitive biosensor for real-time, sensitive and selective detection of BSA. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2014; 3:65-72. [PMID: 28626651 PMCID: PMC5466099 DOI: 10.1016/j.btre.2014.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 11/28/2022]
Abstract
An analytical method is presented, combining novel microcontact imprinting technique and capacitive biosensor technology for the detection of BSA. Glass cover slips were used for preparation of protein stamps. The microcontact-BSA imprinted gold electrodes were prepared in the presence of methacrylic acid (MAA) and poly-ethylene glycol dimethacrylate (PEGDMA) as the cross-linker by bringing the protein stamp and the gold electrode into contact under UV-polymerization. Real-time BSA detection studies were performed in the concentration range of 1.0 × 10-20-1.0 × 10-8 M with a limit of detection (LOD) of 1.0 × 10-19 M. Cross-reactivity towards HSA and IgG were 5 and 3%, respectively. The electrodes were used for >70 assays during 2 months and retained their binding properties during all that time. The NIP (non-imprinted) electrode was used as a reference. The microcontact imprinting technology combined with the biosensor applications is a promising technology for future applications.
Collapse
|
48
|
Molecularly Imprinted Supermacroporous Cryogels for Myoglobin Recognition. Appl Biochem Biotechnol 2014; 173:1250-62. [DOI: 10.1007/s12010-014-0844-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/02/2014] [Indexed: 11/27/2022]
|
49
|
Development of molecular imprinted nanosensor for determination of tobramycin in pharmaceuticals and foods. Talanta 2014; 120:318-24. [DOI: 10.1016/j.talanta.2013.10.064] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/28/2013] [Accepted: 10/31/2013] [Indexed: 11/23/2022]
|
50
|
|