1
|
Goldstein I, Alyas S, Asghar W, Ilyas A. Biosensors for the Isolation and Detection of Circulating Tumor Cells (CTCs) in Point-of-Care Settings. MICROMACHINES 2023; 14:mi14051035. [PMID: 37241658 DOI: 10.3390/mi14051035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
Circulating tumor cells (CTCs) are cells that have been shed from tumors and circulate in the bloodstream. These cells can also be responsible for further metastases and the spread of cancer. Taking a closer look and analyzing CTCs through what has come to be known as "liquid biopsy" has immense potential to further researchers' understanding of cancer biology. However, CTCs are very sparse and are therefore difficult to detect and capture. To combat this issue, researchers have attempted to create devices, assays, and further techniques to successfully isolate CTCs for analysis. In this work, new and existing biosensing techniques for CTC isolation, detection, and release/detachment are discussed and compared to evaluate their efficacy, specificity, and cost. Here, we specifically aim to evaluate and identify the potential success of these techniques and devices in point-of-care (POC) settings.
Collapse
Affiliation(s)
- Isaac Goldstein
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA
- Paul D. Schreiber High School, Port Washington, NY 11050, USA
| | - Sobia Alyas
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore 54000, Pakistan
| | - Waseem Asghar
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Azhar Ilyas
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA
- Department of Electrical and Computer Engineering, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
2
|
Xing L, Wan X, Yu MT, He YJ, Wang Y, Zhou TJ, Liu XY, Sun Y, Luo J, Wang WJ, Jiang HL. A novel whole blood purifier for efficient capture and separation of circulating tumor cells. Biosens Bioelectron 2023; 232:115292. [PMID: 37062202 DOI: 10.1016/j.bios.2023.115292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Circulating tumor cells (CTCs) as important biomarkers for noninvasive clinical diagnosis and prognostic evaluation are significant in predicting the overall survival and progression-free survival of cancer patients. However, the current typical CTCs separation and enrichment techniques were limited to a single collection of small-volume blood samples, which was inadequate to comprehensively profile the distribution of CTCs in the systemic blood. In addition, those techniques cannot reduce metastasis of CTCs unless adjuvant chemotherapy. Herein, inspired by hemodialysis, we designed a whole blood purifier (WBP) composed of a functionalized special spiral-like glass tube modified by anti-epithelial cell adhesion molecule (anti-EpCAM). The WBP allowed real-time capture, enrichment and removal of CTCs from systemic blood circulation, and the purified blood was immediately returned to the body. Furthermore, the WBP did not cause any organic damages in vivo. This approach achieves the high accuracy of liquid biopsy technology and is expected to become an effective clinical adjuvant therapy for tumor metastasis.
Collapse
Affiliation(s)
- Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Xing Wan
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Ming-Tao Yu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Yu-Jing He
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Yi Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Ying Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Ying Sun
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun Luo
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Wen-Jia Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Olmos CM, Rosero G, Fernández-Cabada T, Booth R, Der M, Cabaleiro JM, Debut A, Cumbal L, Pérez MS, Lerner B. Hybrid microchannel-solid state micropore device for fast and optical cell detection. RSC Adv 2020; 10:5361-5370. [PMID: 35498312 PMCID: PMC9049143 DOI: 10.1039/c9ra09939e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/20/2020] [Indexed: 11/28/2022] Open
Abstract
This paper presents a methodology for cell detection and counting using a device that combines PDMS (polydimethylsiloxane) microfluidic multilayer channels with a single solid state micropore. Optimal conditions of solid-state micropore fabrication from crystalline silicon wafers are presented. Micropores of varying size can be obtained by directly etching using an etchant agent concentration of 50 wt% KOH, at varying temperatures (40, 60, 80 °C) and voltages (100, 500, 1000 mV). Scanning Electron Microscopy (SEM), and profilometry techniques have been used for the micropore characterization. In order to find optimal conditions for cell detection a COMSOL Multiphysics simulation was performed. Pressure drop, shear stress, fluid viscosities and flow rates parameters were evaluated. The potential viability of the device for cell detection and counting, avoiding cellular damage, is demonstrated. This paper presents a methodology for cell detection and counting using a device that combines PDMS (polydimethylsiloxane) microfluidic multilayer channels with a single solid state micropore.![]()
Collapse
Affiliation(s)
- Carol M. Olmos
- Facultad Regional Haedo
- Universidad Tecnológica Nacional (UTN)
- Haedo
- Argentina
| | - Gustavo Rosero
- Facultad Regional Haedo
- Universidad Tecnológica Nacional (UTN)
- Haedo
- Argentina
| | | | | | - Manuel Der
- Departamento de Física
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires (UBA)
- Cuidad Universitaria
- Buenos Aires
| | - Juan M. Cabaleiro
- CONICET-Fluid Dynamics Laboratory
- Facultad de ingeniería
- Universidad de Buenos Aires (UBA)
- Buenos Aires
- Argentina
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología
- Universidad de las Fuerzas Armadas ESPE
- Sangolquí
- Ecuador
| | - Luis Cumbal
- Centro de Nanociencia y Nanotecnología
- Universidad de las Fuerzas Armadas ESPE
- Sangolquí
- Ecuador
| | - Maximiliano S. Pérez
- Facultad Regional Haedo
- Universidad Tecnológica Nacional (UTN)
- Haedo
- Argentina
- Instituto de Ingeniería Biomédica
| | - Betiana Lerner
- Facultad Regional Haedo
- Universidad Tecnológica Nacional (UTN)
- Haedo
- Argentina
- Department of Electrical and Computer Engineering
| |
Collapse
|
4
|
Polarization Induced Electro-Functionalization of Pore Walls: A Contactless Technology. BIOSENSORS-BASEL 2019; 9:bios9040121. [PMID: 31614545 PMCID: PMC6956341 DOI: 10.3390/bios9040121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022]
Abstract
This review summarizes recent advances in micro- and nanopore technologies with a focus on the functionalization of pores using a promising method named contactless electro-functionalization (CLEF). CLEF enables the localized grafting of electroactive entities onto the inner wall of a micro- or nano-sized pore in a solid-state silicon/silicon oxide membrane. A voltage or electrical current applied across the pore induces the surface functionalization by electroactive entities exclusively on the inside pore wall, which is a significant improvement over existing methods. CLEF's mechanism is based on the polarization of a sandwich-like silicon/silicon oxide membrane, creating electronic pathways between the core silicon and the electrolyte. Correlation between numerical simulations and experiments have validated this hypothesis. CLEF-induced micro- and nanopores functionalized with antibodies or oligonucleotides were successfully used for the detection and identification of cells and are promising sensitive biosensors. This technology could soon be successfully applied to planar configurations of pores, such as restrictions in microfluidic channels.
Collapse
|
5
|
Abdallah MG, Almugaiteeb TI, Raza MU, Battiste JD, Kim YT, Iqbal SM. Glioblastoma Multiforme heterogeneity profiling with solid-state micropores. Biomed Microdevices 2019; 21:79. [PMID: 31414186 DOI: 10.1007/s10544-019-0416-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal type of brain cancer. It is characterized by widespread heterogeneity at the cellular and molecular levels. The detection of this heterogeneity is valuable for accurate diagnosis. Herein, solid-state 20 μm diameter micropore made in thin suspended silicon dioxide membrane is used as cell sensor device. The device relies on a cell's mechano-physical properties as an indicator to differentiate between the subtypes of GBM. A library of GBM cell lines (U251, U87, D54 EGFRviii, and G55) was created by measuring the differences in cell's micropore translocation properties from their distinct electrical profiles. Each GBM subtype has distinct phenotype and this was delineated in their cell translocation behaviors. The library was used to distinguish cells from samples of brain tumor patients. The micropore device accurately profiled GBM patient samples for cell subtypes by comparing data with the GBM library. The micropore approach is simple, can be implemented at low cost and can be used in the clinical setups and operation theaters to detect and identify GBM subtypes from patient samples.
Collapse
Affiliation(s)
- Mohammad G Abdallah
- Nano-Bio Lab, University of Texas at Arlington, Arlington, TX, 76019, USA.,Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX, 76019, USA.,Nanotechnology Research Center, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Turki I Almugaiteeb
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76010, USA.,Research Product Development Company Innovations (RPDC), Riyadh, Kingdom of Saudi Arabia
| | - Muhammad Usman Raza
- Nano-Bio Lab, University of Texas at Arlington, Arlington, TX, 76019, USA.,Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX, 76019, USA.,Nanotechnology Research Center, University of Texas at Arlington, Arlington, TX, 76019, USA.,Intel Corporation, Santa Clara, CA, 95054, USA
| | - James D Battiste
- University of Oklahoma Health Science Center, Oklahoma City, OK, 73104, USA
| | - Young-Tae Kim
- Nanotechnology Research Center, University of Texas at Arlington, Arlington, TX, 76019, USA.,Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76010, USA.,Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Samir M Iqbal
- Nano-Bio Lab, University of Texas at Arlington, Arlington, TX, 76019, USA. .,ST Engineering Matters, Arlington, TX, 76010, USA.
| |
Collapse
|
6
|
Ismail A, Voci S, Pham P, Leroy L, Maziz A, Descamps L, Kuhn A, Mailley P, Livache T, Buhot A, Leichlé T, Bouchet-Spinelli A, Sojic N. Enhanced Bipolar Electrochemistry at Solid-State Micropores: Demonstration by Wireless Electrochemiluminescence Imaging. Anal Chem 2019; 91:8900-8907. [PMID: 31241899 DOI: 10.1021/acs.analchem.9b00559] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bipolar electrochemistry (BPE) is a powerful method based on the wireless polarization of a conductive object that induces the asymmetric electroactivity at its two extremities. A key physical limitation of BPE is the size of the conductive object because the shorter the object, the larger is the potential necessary for sufficient polarization. Micrometric and nanometric objects are thus extremely difficult to address by BPE due to the very high potentials required, in the order of tens of kV or more. Herein, the synergetic actions of BPE and of planar micropores integrated in a microfluidic device lead to the spatial confinement of the potential drop at the level of the solid-state micropore, and thus to a locally enhanced polarization of a bipolar electrode. Electrochemiluminescence (ECL) is emitted in half of the electroactive micropore and reveals the asymmetric polarization in this spatial restriction. Micrometric deoxidized silicon electrodes located in the micropore are polarized at a very low potential (7 V), which is more than 2 orders of magnitude lower compared to the classic bipolar configurations. This behavior is intrinsically associated with the unique properties of the micropores, where the sharp potential drop is focused. The presented approach offers exciting perspectives for BPE of micro/nano-objects, such as dynamic BPE with objects passing through the pores or wireless ECL-emitting micropores.
Collapse
Affiliation(s)
- Abdulghani Ismail
- Univ. Grenoble Alpes, CEA, CNRS, INAC-SyMMES , 38000 Grenoble , France
| | - Silvia Voci
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM,UMR 5255 , F-33400 , Talence , France
| | | | - Loïc Leroy
- Univ. Grenoble Alpes, CEA, CNRS, INAC-SyMMES , 38000 Grenoble , France
| | - Ali Maziz
- LAAS-CNRS, Université de Toulouse , 31400 Toulouse , France
| | - Lucie Descamps
- Univ. Grenoble Alpes, CEA, CNRS, INAC-SyMMES , 38000 Grenoble , France
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM,UMR 5255 , F-33400 , Talence , France
| | | | - Thierry Livache
- Univ. Grenoble Alpes, CEA, CNRS, INAC-SyMMES , 38000 Grenoble , France
| | - Arnaud Buhot
- Univ. Grenoble Alpes, CEA, CNRS, INAC-SyMMES , 38000 Grenoble , France
| | | | | | - Neso Sojic
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM,UMR 5255 , F-33400 , Talence , France
| |
Collapse
|
7
|
Herrada CA, Kabir MA, Altamirano R, Asghar W. Advances in Diagnostic Methods for Zika Virus Infection. J Med Device 2018; 12:0408021-4080211. [PMID: 30662580 DOI: 10.1115/1.4041086] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/31/2018] [Indexed: 12/11/2022] Open
Abstract
The Zika virus (ZIKV) is one of the most infamous mosquito-borne flavivirus on recent memory due to its potential association with high mortality rates in fetuses, microcephaly and neurological impairments in neonates, and autoimmune disorders. The severity of the disease, as well as its fast spread over several continents, has urged the World Health Organization (WHO) to declare ZIKV a global health concern. In consequence, over the past couple of years, there has been a significant effort for the development of ZIKV diagnostic methods, vaccine development, and prevention strategies. This review focuses on the most recent aspects of ZIKV research which includes the outbreaks, genome structure, multiplication and propagation of the virus, and more importantly, the development of serological and molecular detection tools such as Zika IgM antibody capture enzyme-linked immunosorbent assay (Zika MAC-ELISA), plaque reduction neutralization test (PRNT), reverse transcription quantitative real-time polymerase chain reaction (qRT-PCR), reverse transcription-loop mediated isothermal amplification (RT-LAMP), localized surface plasmon resonance (LSPR) biosensors, nucleic acid sequence-based amplification (NASBA), and recombinase polymerase amplification (RPA). Additionally, we discuss the limitations of currently available diagnostic methods, the potential of newly developed sensing technologies, and also provide insight into future areas of research.
Collapse
Affiliation(s)
- Carlos A Herrada
- Department of Computer Engineering and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
| | - Md Alamgir Kabir
- Department of Computer Engineering and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
| | - Rommel Altamirano
- Department of Computer Engineering and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
| | - Waseem Asghar
- Department of Computer Engineering and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
| |
Collapse
|
8
|
Khetani S, Mohammadi M, Nezhad AS. Filter-based isolation, enrichment, and characterization of circulating tumor cells. Biotechnol Bioeng 2018; 115:2504-2529. [DOI: 10.1002/bit.26787] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Sultan Khetani
- Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory; University of Calgary; Calgary Canada
- Center for BioEngineering Research and Education, University of Calgary; Calgary Canada
| | - Mehdi Mohammadi
- Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory; University of Calgary; Calgary Canada
- Center for BioEngineering Research and Education, University of Calgary; Calgary Canada
- Department of Biological Sciences; University of Calgary; Calgary Canada
| | - Amir Sanati Nezhad
- Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory; University of Calgary; Calgary Canada
- Center for BioEngineering Research and Education, University of Calgary; Calgary Canada
| |
Collapse
|
9
|
Sharma S, Zhuang R, Long M, Pavlovic M, Kang Y, Ilyas A, Asghar W. Circulating tumor cell isolation, culture, and downstream molecular analysis. Biotechnol Adv 2018; 36:1063-1078. [PMID: 29559380 DOI: 10.1016/j.biotechadv.2018.03.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
Circulating tumor cells (CTCs) are a major contributor of cancer metastases and hold a promising prognostic significance in cancer detection. Performing functional and molecular characterization of CTCs provides an in-depth knowledge about this lethal disease. Researchers are making efforts to design devices and develop assays for enumeration of CTCs with a high capture and detection efficiency from whole blood of cancer patients. The existing and on-going research on CTC isolation methods has revealed cell characteristics which are helpful in cancer monitoring and designing of targeted cancer treatments. In this review paper, a brief summary of existing CTC isolation methods is presented. We also discuss methods of detaching CTC from functionalized surfaces (functional assays/devices) and their further use for ex-vivo culturing that aid in studies regarding molecular properties that encourage metastatic seeding. In the clinical applications section, we discuss a number of cases that CTCs can play a key role for monitoring metastases, drug treatment response, and heterogeneity profiling regarding biomarkers and gene expression studies that bring treatment design further towards personalized medicine.
Collapse
Affiliation(s)
- Sandhya Sharma
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Rachel Zhuang
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Marisa Long
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Mirjana Pavlovic
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yunqing Kang
- Department of Ocean & Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; Department of Biomedical Science, College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Azhar Ilyas
- Department of Electrical & Computer Engineering, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Waseem Asghar
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA; Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
10
|
Discriminating single-bacterial shape using low-aspect-ratio pores. Sci Rep 2017; 7:17371. [PMID: 29234023 PMCID: PMC5727063 DOI: 10.1038/s41598-017-17443-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/27/2017] [Indexed: 11/26/2022] Open
Abstract
Conventional concepts of resistive pulse analysis is to discriminate particles in liquid by the difference in their size through comparing the amount of ionic current blockage. In sharp contrast, we herein report a proof-of-concept demonstration of the shape sensing capability of solid-state pore sensors by leveraging the synergy between nanopore technology and machine learning. We found ionic current spikes of similar patterns for two bacteria reflecting the closely resembled morphology and size in an ultra-low thickness-to-diameter aspect-ratio pore. We examined the feasibility of a machine learning strategy to pattern-analyse the sub-nanoampere corrugations in each ionic current waveform and identify characteristic electrical signatures signifying nanoscopic differences in the microbial shape, thereby demonstrating discrimination of single-bacterial cells with accuracy up to 90%. This data-analytics-driven microporescopy capability opens new applications of resistive pulse analyses for screening viruses and bacteria by their unique morphologies at a single-particle level.
Collapse
|
11
|
Coarsey CT, Esiobu N, Narayanan R, Pavlovic M, Shafiee H, Asghar W. Strategies in Ebola virus disease (EVD) diagnostics at the point of care. Crit Rev Microbiol 2017; 43:779-798. [PMID: 28440096 PMCID: PMC5653233 DOI: 10.1080/1040841x.2017.1313814] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/21/2016] [Accepted: 03/25/2017] [Indexed: 12/13/2022]
Abstract
Ebola virus disease (EVD) is a devastating, highly infectious illness with a high mortality rate. The disease is endemic to regions of Central and West Africa, where there is limited laboratory infrastructure and trained staff. The recent 2014 West African EVD outbreak has been unprecedented in case numbers and fatalities, and has proven that such regional outbreaks can become a potential threat to global public health, as it became the source for the subsequent transmission events in Spain and the USA. The urgent need for rapid and affordable means of detecting Ebola is crucial to control the spread of EVD and prevent devastating fatalities. Current diagnostic techniques include molecular diagnostics and other serological and antigen detection assays; which can be time-consuming, laboratory-based, often require trained personnel and specialized equipment. In this review, we discuss the various Ebola detection techniques currently in use, and highlight the potential future directions pertinent to the development and adoption of novel point-of-care diagnostic tools. Finally, a case is made for the need to develop novel microfluidic technologies and versatile rapid detection platforms for early detection of EVD.
Collapse
Affiliation(s)
- Chad T. Coarsey
- Department of Computer and Electrical Engineering & Computer Science, Florida Atlantic University, Boca Raton, FL, United States
- Asghar-Lab: Micro and Nanotechnology in Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Nwadiuto Esiobu
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, United States
| | - Ramswamy Narayanan
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, United States
| | - Mirjana Pavlovic
- Department of Computer and Electrical Engineering & Computer Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Hadi Shafiee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Waseem Asghar
- Department of Computer and Electrical Engineering & Computer Science, Florida Atlantic University, Boca Raton, FL, United States
- Asghar-Lab: Micro and Nanotechnology in Medicine, Florida Atlantic University, Boca Raton, FL, United States
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
12
|
Safavieh M, Coarsey C, Esiobu N, Memic A, Vyas JM, Shafiee H, Asghar W. Advances in Candida detection platforms for clinical and point-of-care applications. Crit Rev Biotechnol 2017; 37:441-458. [PMID: 27093473 PMCID: PMC5083221 DOI: 10.3109/07388551.2016.1167667] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Invasive candidiasis remains one of the most serious community and healthcare-acquired infections worldwide. Conventional Candida detection methods based on blood and plate culture are time-consuming and require at least 2-4 days to identify various Candida species. Despite considerable advances for candidiasis detection, the development of simple, compact and portable point-of-care diagnostics for rapid and precise testing that automatically performs cell lysis, nucleic acid extraction, purification and detection still remains a challenge. Here, we systematically review most prominent conventional and nonconventional techniques for the detection of various Candida species, including Candida staining, blood culture, serological testing and nucleic acid-based analysis. We also discuss the most advanced lab on a chip devices for candida detection.
Collapse
Affiliation(s)
- Mohammadali Safavieh
- Division of Biomedical Engineering, Division of Renal medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Chad Coarsey
- Department of Computer Engineering and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA
- College of Engineering and Computer Science, Asghar-Lab, Micro and Nanotechnologies for Medicine, Boca Raton, FL, USA
| | - Nwadiuto Esiobu
- Biological Sciences Department, Florida Atlantic University, Davie, FL, USA
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jatin Mahesh Vyas
- Department of Medicine, Division of Infectious Disease, Massachusetts General Hospital, Boston, MA, USA
| | - Hadi Shafiee
- Division of Biomedical Engineering, Division of Renal medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Waseem Asghar
- Department of Computer Engineering and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA
- College of Engineering and Computer Science, Asghar-Lab, Micro and Nanotechnologies for Medicine, Boca Raton, FL, USA
- Biological Sciences Department, Florida Atlantic University, Davie, FL, USA
| |
Collapse
|
13
|
Sher M, Zhuang R, Demirci U, Asghar W. Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms. Expert Rev Mol Diagn 2017; 17:351-366. [PMID: 28103450 PMCID: PMC5529145 DOI: 10.1080/14737159.2017.1285228] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/18/2017] [Indexed: 01/11/2023]
Abstract
INTRODUCTION There is a significant interest in developing inexpensive portable biosensing platforms for various applications including disease diagnostics, environmental monitoring, food safety, and water testing at the point-of-care (POC) settings. Current diagnostic assays available in the developed world require sophisticated laboratory infrastructure and expensive reagents. Hence, they are not suitable for resource-constrained settings with limited financial resources, basic health infrastructure, and few trained technicians. Cellulose and flexible transparency paper-based analytical devices have demonstrated enormous potential for developing robust, inexpensive and portable devices for disease diagnostics. These devices offer promising solutions to disease management in resource-constrained settings where the vast majority of the population cannot afford expensive and highly sophisticated treatment options. Areas covered: In this review, the authors describe currently developed cellulose and flexible transparency paper-based microfluidic devices, device fabrication techniques, and sensing technologies that are integrated with these devices. The authors also discuss the limitations and challenges associated with these devices and their potential in clinical settings. Expert commentary: In recent years, cellulose and flexible transparency paper-based microfluidic devices have demonstrated the potential to become future healthcare options despite a few limitations such as low sensitivity and reproducibility.
Collapse
Affiliation(s)
- Mazhar Sher
- Computer Engineering & Electrical Engineering and Computer Science Lab, Florida Atlantic University, Boca Raton, FL, USA
- Asghar-Lab, Micro and Nanotechnology for Medicine, College of Engineering and Computer Science, Boca Raton, FL, USA
| | - Rachel Zhuang
- Asghar-Lab, Micro and Nanotechnology for Medicine, College of Engineering and Computer Science, Boca Raton, FL, USA
| | - Utkan Demirci
- The Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, USA
- Department of Electrical Engineering (by courtesy), Stanford University, Stanford, CA 94305, USA
| | - Waseem Asghar
- Computer Engineering & Electrical Engineering and Computer Science Lab, Florida Atlantic University, Boca Raton, FL, USA
- Asghar-Lab, Micro and Nanotechnology for Medicine, College of Engineering and Computer Science, Boca Raton, FL, USA
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
14
|
Hanif M, Hafeez A, Suleman Y, Mustafa Rafique M, Butt AR, Iqbal SM. An accelerated framework for the classification of biological targets from solid-state micropore data. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 134:53-67. [PMID: 27480732 DOI: 10.1016/j.cmpb.2016.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 05/05/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
Micro- and nanoscale systems have provided means to detect biological targets, such as DNA, proteins, and human cells, at ultrahigh sensitivity. However, these devices suffer from noise in the raw data, which continues to be significant as newer and devices that are more sensitive produce an increasing amount of data that needs to be analyzed. An important dimension that is often discounted in these systems is the ability to quickly process the measured data for an instant feedback. Realizing and developing algorithms for the accurate detection and classification of biological targets in realtime is vital. Toward this end, we describe a supervised machine-learning approach that records single cell events (pulses), computes useful pulse features, and classifies the future patterns into their respective types, such as cancerous/non-cancerous cells based on the training data. The approach detects cells with an accuracy of 70% from the raw data followed by an accurate classification when larger training sets are employed. The parallel implementation of the algorithm on graphics processing unit (GPU) demonstrates a speedup of three to four folds as compared to a serial implementation on an Intel Core i7 processor. This incredibly efficient GPU system is an effort to streamline the analysis of pulse data in an academic setting. This paper presents for the first time ever, a non-commercial technique using a GPU system for realtime analysis, paired with biological cluster targeting analysis.
Collapse
Affiliation(s)
- Madiha Hanif
- Nano-Bio Lab, University of Texas at Arlington, Arlington, TX 76019; Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019; Nanotechnology Research Center, University of Texas at Arlington, Arlington, TX 76019
| | - Abdul Hafeez
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060
| | - Yusuf Suleman
- Nano-Bio Lab, University of Texas at Arlington, Arlington, TX 76019; Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX 76019
| | | | - Ali R Butt
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060
| | - Samir M Iqbal
- Nano-Bio Lab, University of Texas at Arlington, Arlington, TX 76019; Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019; Nanotechnology Research Center, University of Texas at Arlington, Arlington, TX 76019; Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76019; Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
| |
Collapse
|
15
|
Sperm processing for advanced reproductive technologies: Where are we today? Biotechnol Adv 2016; 34:578-587. [DOI: 10.1016/j.biotechadv.2016.01.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/24/2016] [Accepted: 01/30/2016] [Indexed: 11/19/2022]
|
16
|
Ilyas A, Odatsu T, Shah A, Monte F, Kim HKW, Kramer P, Aswath PB, Varanasi VG. Amorphous Silica: A New Antioxidant Role for Rapid Critical-Sized Bone Defect Healing. Adv Healthc Mater 2016; 5:2199-213. [PMID: 27385056 PMCID: PMC6635139 DOI: 10.1002/adhm.201600203] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/25/2016] [Indexed: 12/23/2022]
Abstract
Traumatic fractures cause structurally unstable sites due to severe bone loss. Such fractures generate a high yield of reactive oxygen species (ROS) that can lead to oxidative stress. Excessive and prolonged ROS activity impedes osteoblast differentiation and instigates long healing times. Stimulation of antioxidants such as superoxide dismutase (SOD1), are crucial to reduce ROS, stimulate osteogenesis, and strengthen collagen and mineral formation. Yet, no current fixative devices have shown an ability to enhance collagen matrix formation through antioxidant expression. This study reports plasma-enhanced chemical vapor deposition based amorphous silicon oxynitride (Si(ON)x) as a potential new fracture healing biomaterial that adheres well to the implant surface, releases Si(+4) to enhance osteogenesis, and forms a surface hydroxyapatite for collagen mineral attachment. These materials provide a sustained release of Si(+4) in physiological environment for extended times. The dissolution rate partially depends on the film chemistry and can be controlled by varying O/N ratio. The presence of Si(+4) enhances SOD1, which stimulates other osteogenic markers downstream and leads to rapid mineral formation. In vivo testing using a rat critical-sized calvarial defect model shows a more rapid bone-regeneration for these biomaterials as compared to control groups, that implies the clinical significance of the presented biomaterial.
Collapse
Affiliation(s)
- Azhar Ilyas
- Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, TX, 75246, USA
| | - Tetsuro Odatsu
- Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, TX, 75246, USA
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki, 852-8588, Japan
| | - Ami Shah
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Felipe Monte
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital, Dallas, TX, 75219, USA
| | - Harry K W Kim
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital, Dallas, TX, 75219, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Philip Kramer
- Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, TX, 75246, USA
| | - Pranesh B Aswath
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Venu G Varanasi
- Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, TX, 75246, USA.
| |
Collapse
|
17
|
Ali W, Ilyas A, Bui L, Sayles B, Hur Y, Kim YT, Iqbal SM. Differentiating Metastatic and Non-metastatic Tumor Cells from Their Translocation Profile through Solid-State Micropores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4924-4934. [PMID: 27035212 DOI: 10.1021/acs.langmuir.6b00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cancer treatment, care, and outcomes are much more effective if started at early stages of the disease. The presence of malignant cancer cells in human samples such as blood or biopsied tissue can be used to reduce overtreatment and underdiagnosis as well as for prognosis monitoring. Reliable quantification of metastatic tumor cells (MTCs) and non-metastatic tumor cells (NMTCs) from human samples can help in cancer staging as well. We report a simple, fast, and reliable approach to identify and quantify metastatic and non-metastatic cancer cells from whole biological samples in a point-of-care manner. The metastatic (MDA MB-231) and non-metastatic (MCF7) breast cancer cells were pushed through a solid-state micropore made in a 200 nm thin SiO2 membrane while measuring current across the micropore. The cells generated very distinctive translocation profiles. The translocation differences stemmed from their peculiar mechanophysical properties. The detection efficiency of the device for each type of tumor cells was ∼75%. MTCs showed faster translocation (36%) and 34% less pore blockage than NMTCs. The micropore approach is simple, exact, and quantitative for metastatic cell detection in a lab-on-a chip setting, without the need for any preprocessing of the sample.
Collapse
Affiliation(s)
| | | | | | | | | | - Young-Tae Kim
- Department of Urology, University of Texas Southwestern Medical Center at Dallas , Dallas, Texas 75235, United States
| | - Samir M Iqbal
- Department of Urology, University of Texas Southwestern Medical Center at Dallas , Dallas, Texas 75235, United States
| |
Collapse
|
18
|
Ali W, Moghaddam FJ, Raza MU, Bui L, Sayles B, Kim YT, Iqbal SM. Electromechanical transducer for rapid detection, discrimination and quantification of lung cancer cells. NANOTECHNOLOGY 2016; 27:195101. [PMID: 27023745 DOI: 10.1088/0957-4484/27/19/195101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tumor cells are malignant derivatives of normal cells. There are characteristic differences in the mechanophysical properties of normal and tumor cells, and these differences stem from the changes that occur in the cell cytoskeleton during cancer progression. There is a need for viable whole blood processing techniques for rapid and reliable tumor cell detection that do not require tagging. Micropore biosensors have previously been used to differentiate tumor cells from normal cells and we have used a micropore-based electromechanical transducer to differentiate one type of tumor cells from the other types. This device generated electrical signals that were characteristic of the cell properties. Three non-small cell lung cancer (NSCLC) cell lines, NCl-H1155, A549 and NCI-H460, were successfully differentiated. NCI-H1155, due to their comparatively smaller size, were found to be the quickest in translocating through the micropore. Their translocation through a 15 μm micropore caused electrical pulses with an average translocation time of 101 ± 9.4 μs and an average peak amplitude of 3.71 ± 0.42 μA, whereas translocation of A549 and NCI-H460 caused pulses with average translocation times of 126 ± 17.9 μs and 148 ± 13.7 μs and average peak amplitudes of 4.58 ± 0.61 μA and 5.27 ± 0.66 μA, respectively. This transformation of the differences in cell properties into differences in the electrical profiles (i.e. the differences in peak amplitudes and translocation times) with this electromechanical transducer is a quantitative way to differentiate these lung cancer cells. The solid-state micropore device processed whole biological samples without any pre-processing requirements and is thus ideal for point-of-care applications.
Collapse
Affiliation(s)
- Waqas Ali
- Nano-Bio Lab, University of Texas at Arlington, Arlington, Texas 76019, USA. Department of Electrical Engineering, University of Texas at Arlington, Arlington, Texas 76019, USA. Nanotechnology Research Center, University of Texas at Arlington, Arlington, Texas 76019, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Asghar W, El Assal R, Shafiee H, Pitteri S, Paulmurugan R, Demirci U. Engineering cancer microenvironments for in vitro 3-D tumor models. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2015; 18:539-553. [PMID: 28458612 PMCID: PMC5407188 DOI: 10.1016/j.mattod.2015.05.002] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The natural microenvironment of tumors is composed of extracellular matrix (ECM), blood vasculature, and supporting stromal cells. The physical characteristics of ECM as well as the cellular components play a vital role in controlling cancer cell proliferation, apoptosis, metabolism, and differentiation. To mimic the tumor microenvironment outside the human body for drug testing, two-dimensional (2-D) and murine tumor models are routinely used. Although these conventional approaches are employed in preclinical studies, they still present challenges. For example, murine tumor models are expensive and difficult to adopt for routine drug screening. On the other hand, 2-D in vitro models are simple to perform, but they do not recapitulate natural tumor microenvironment, because they do not capture important three-dimensional (3-D) cell-cell, cell-matrix signaling pathways, and multi-cellular heterogeneous components of the tumor microenvironment such as stromal and immune cells. The three-dimensional (3-D) in vitro tumor models aim to closely mimic cancer microenvironments and have emerged as an alternative to routinely used methods for drug screening. Herein, we review recent advances in 3-D tumor model generation and highlight directions for future applications in drug testing.
Collapse
Affiliation(s)
- Waseem Asghar
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratories, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Department of Computer Engineering & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Rami El Assal
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratories, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Hadi Shafiee
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratories, Division of Biomedical Engineering, Division of Infectious Diseases, Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Sharon Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Ramasamy Paulmurugan
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Utkan Demirci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratories, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratories, Division of Biomedical Engineering, Division of Infectious Diseases, Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
20
|
Goyal G, Mulero R, Ali J, Darvish A, Kim MJ. Low aspect ratio micropores for single-particle and single-cell analysis. Electrophoresis 2015; 36:1164-71. [DOI: 10.1002/elps.201400570] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/13/2015] [Accepted: 02/14/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Gaurav Goyal
- School of Biomedical Engineering, Science and Health Systems; Drexel University; Philadelphia PA USA
| | - Rafael Mulero
- Department of Mechanical Engineering and Mechanics; Drexel University; Philadelphia PA USA
| | - Jamel Ali
- Department of Mechanical Engineering and Mechanics; Drexel University; Philadelphia PA USA
| | - Armin Darvish
- School of Biomedical Engineering, Science and Health Systems; Drexel University; Philadelphia PA USA
| | - Min Jun Kim
- School of Biomedical Engineering, Science and Health Systems; Drexel University; Philadelphia PA USA
- Department of Mechanical Engineering and Mechanics; Drexel University; Philadelphia PA USA
| |
Collapse
|