1
|
Liao YJ, Li DD, Cai ZL, Cao Y, Yu DL, Zhang HY, Kiflu AB, Huang ZY, Li XN, Luo TR. Detection of rabies virus via exciton energy transfer between CdTe quantum dots and Au nanoparticles. Front Vet Sci 2022; 9:1079916. [PMID: 36619964 PMCID: PMC9813487 DOI: 10.3389/fvets.2022.1079916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Rabies is a fatal encephalitis caused by the rabies virus. The diagnosis of the disease depends in large part on the exposure history of the victim and clinical manifestations of the disease. Rapid rabies diagnosis is an important step in its prevention and control. Therefore, for accurate and timely diagnosis and prevention of rabies, we developed nanomaterials for a novel photoelectrochemical biosensing approach (PBA) for the rapid and reliable diagnosis of rabies virus. This approach uses high-efficiency exciton energy transfer between cadmium telluride quantum dots and Au nanoparticles and is low cost, and easy to miniaturize. By constructing PBA, rabies virus can be detected quickly and with a high degree of sensitivity and specificity; the minimum detection concentration limit for rabies virus is approximately 2.16 ffu/mL of rabies virus particles, or 2.53 × 101 fg/mL of rabies virus RNA. PBA could also detect rabies virus in the brain and lung tissue from rabid dogs and mice with better sensitivity than RT-PCR.
Collapse
Affiliation(s)
- Yan-Juan Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China,Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Nanning, Guangxi, China,Key Laboratory of Protection and Utilization of Marine Resources, Guangxi University for Nationalities, Nanning, Guangxi, China
| | - Duo-Duo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Zong-Ling Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Ying Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Dong-Ling Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Hong-Yun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Abraha Bahlbi Kiflu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Zai Yin Huang
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Nanning, Guangxi, China,Key Laboratory of Protection and Utilization of Marine Resources, Guangxi University for Nationalities, Nanning, Guangxi, China
| | - Xiao-Ning Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China,*Correspondence: Xiao-Ning Li
| | - Ting Rong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China,Ting Rong Luo
| |
Collapse
|
2
|
Ratiometric Electrochemical Biosensing of Methyltransferase Activity. Catalysts 2022. [DOI: 10.3390/catal12111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this work, a novel ratiometric electrochemical readout platform was proposed and developed for the fast and flexible analysis of M.SssI methyltransferase (MTase) activity. In this platform, two hairpin DNAs (H1 and H2) were designed. H1 contains the palindromic sequence of 5′-CCGG-3′ in its stem which could be methylated and hybridize with H2 labeled by methylene blue (MB) as one of the signal reporters on a gold electrode (GE) in the presence of M.SssI MTase. Additionally, a specific immunoreaction was introduced by conjugating an anti-5-methylcytosine antibody, a DNA CpG methylation recognition unit, with 1,3-ferrocenedicarboxylic acid (Fc) as the second signal reporter. The results showed that when the Fc tag approaches, the MB tag was far from the gold electrode surface, resulting in a decrease in the oxidation peak current of MB (IMB) and an increase in the oxidation peak current of Fc (IFc). The ratiometric electrochemical method above shows the linear range of detection was 0 U/mL 40 U/mL with a detection limit of 0.083 U/mL (the mean signal of blank measures þ3s).
Collapse
|
3
|
Wang M, Liu J, Zhang C, Li G, Ye B, Zou L. A highly sensitive photoelectrochemical aptsensor based on photocathode CuInS2 for the detection of tobramycin. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Yang J, Luo F, Wang J, Qiu B, Shen J, Zhang L, Lin Z. Ultrasensitive Photoelectrochemical Biosensor for microRNA-155 Based on Energy Transfer between Au Nanocages and Red Emission Carbon Dot-Assembled Nanosheets Coupled with the Duplex-Specific Nuclease Enzyme-Assisted Target Recycling Strategy. Anal Chem 2021; 94:1482-1490. [PMID: 34968408 DOI: 10.1021/acs.analchem.1c05081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Energy transfer (ET) is an effective tool to construct photoelectrochemical (PEC) biosensors for its high sensitivity. Since the materials to develop ET systems are limited, exploring new and universal ET systems is significant. Herein, new photoactive nanosheets (R-CDs NS) formed by self-assembling of red emission carbon dots (R-CDs) have been synthesized, which exhibit wide visible light absorption and stable photocurrent response and have an obvious sensitization effect for TiO2. Gold nanocages (AuNCs), whose absorption overlap well with the R-CDs' emission, were synthesized and served as PEC quenchers for the photosensitized system that consists of TiO2 and R-CDs. The ET between R-CDs and AuNCs can boost the recombination of photogenerated electron-hole pairs of R-CDs and results in a quenched photocurrent of this system. MicroRNA-155 was chosen as a model target. First, the nanocomposite containing R-CDs NS and AuNCs was prepared through DNA modification and hybridization. In the absence of the target, AuNCs and R-CDs were close enough for ET, with TiO2-modified FTO serving as the working electrode, and a quenched photocurrent was detected. In the presence of the target, the disintegration of the nanocomposite was induced through target hybridization and DNA hydrolyzation, leading to the separation of AuNCs and R-CDs NS, and the ET disappeared and led to a high photocurrent. With duplex-specific nuclease enzyme-assisted target recycling, the high sensitivity enabled the sensor to monitor the target in cancer cells. The sensor has a low detection limit of 71 aM. The sensing platform has high sensitivity, good selectivity, and reproducibility.
Collapse
Affiliation(s)
- Jiao Yang
- Department of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China.,Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jie Shen
- Department of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China.,Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Lin Zhang
- Department of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China.,Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Zhenyu Lin
- Department of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China.,Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.,Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| |
Collapse
|
5
|
Tao Y, Chen L, Pan M, Zhu F, Zhu D. Tailored Biosensors for Drug Screening, Efficacy Assessment, and Toxicity Evaluation. ACS Sens 2021; 6:3146-3162. [PMID: 34516080 DOI: 10.1021/acssensors.1c01600] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biosensors have been flourishing in the field of drug discovery with pronounced developments in the past few years. They facilitate the screening and discovery of innovative drugs. However, there is still a lack of critical reviews that compare the merits and shortcomings of these biosensors from a pharmaceutical point of view. This contribution presents a critical and up-to-date overview on the recent progress of tailored biosensors, including surface plasmon resonance, fluorescent, photoelectrochemical, and electrochemical systems with emphasis on their mechanisms and applications in drug screening, efficacy assessment, and toxicity evaluation. Multiple functional nanomaterials have also been incorporated into the biosensors. Representative examples of each type of biosensors are discussed in terms of design strategy, response mechanism, and potential applications. In the end, we also compare the results and summarize the major insights gained from the works, demonstrating the challenges and prospects of biosensors-assisted drug discovery.
Collapse
Affiliation(s)
- Yi Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lin Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiling Pan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fei Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dong Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| |
Collapse
|
6
|
Cai Y, Zhang Y, Wang H, Lin X, Yu K, Li C, Jie G. Cyclometalated Iridium(III) Complex-Sensitized NiO-Based-Cathodic Photoelectrochemical Platform for DNA Methyltransferase Assay. ACS APPLIED BIO MATERIALS 2021; 4:6103-6111. [PMID: 35006914 DOI: 10.1021/acsabm.1c00445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This work reports an efficient [(C6)2Ir(dppz)]+PF6- (C6 = coumarin 6 and dppz = dipyridophenazine)-sensitized NiO photocathode and its application in photoelectrochemical (PEC) bioanalysis field for the first time. This dye-sensitized NiO photocathode was found to exhibit a markedly enhanced cathodic photocurrent. A sensitive cathodic PEC platform was proposed integrating the as-prepared photocathode with enzyme-free cascaded amplification strategies of the catalytic hairpin assembly (CHA) and the hybridization chain reaction (HCR) for DNA methyltransferase (MTase) assay. A hairpin DNA(HDam) with specific recognition site of Dam MTase in its stem was designed. The site of HDam was methylated in the presence of Dam MTase and then cut by endonuclease DpnI. The released loop fragment, as an initiator, triggered the CHA circuit and the follow-up HCR circuit, resulting in long dsDNA concatemers on the ITO electrode. Numerous [(C6)2Ir(dppz)]+PF6- were intercalated into dsDNA, and highly efficient signal amplification was realized. Benefiting from the superior iridium(III) complex-sensitized NiO photocathode and effective amplification strategy, a detection limit of 0.0028 U/mL for the determination of Dam MTase was achieved. Moreover, this work further demonstrated that these proposed tactics could be applied to screen Dam MTase activity inhibitors.
Collapse
Affiliation(s)
- Yueyuan Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yingtao Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Huan Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiaojia Lin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Kunpeng Yu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Chunxiang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
7
|
Fu N, Wang L, Zou X, Li C, Zhang S, Zhao B, Gao Y, Wang L. A photoelectrochemical sensor based on a reliable basic photoactive matrix possessing good analytical performance for miRNA-21 detection. Analyst 2021; 145:7388-7396. [PMID: 32935667 DOI: 10.1039/d0an01297a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The basic photoactive matrixes on transparent electrodes are essential for the performance of photoelectrochemical (PEC) biosensors. Herein, we demonstrate an optimized fabrication strategy toward a reliable ITO/TiO2/AuNP photoanode by sequential deposition of TiO2/Au nanoparticles (Au NPs) on indium tin oxide (ITO) substrates. The identified fabrication conditions include spin-coating tetraisopropyl titanate on ITO slices followed by in situ electrodeposition of Au NPs and finally the thermal annealing treatment. By the conjugation of the thiolated hairpin NH2-DNA sequence and CdTe quantum dots (QDs) onto the thus-prepared photoanodes, a novel PEC sensor for the ultrasensitive detection of miRNA was constructed. The proposed PEC sensor offered advantages including simple structure, storage stability and excellent detection reproducibility as well as sensitivity and specificity toward miRNA-21. Finally, we found that this PEC displayed a broad detection linear range of 1.0 fM to 1.0 nM with a low detection limit of 0.37 fM. This PEC sensor can also excellently discriminate the mismatched miRNA. Moreover, the PEC sensor also showed a satisfactory result in normal human serum sample analysis. These findings emphasized the importance of basic photoactive matrixes for the fabrication of PEC sensors, providing solid fundamental insights for future application of metal oxide substrates for other PEC applications, especially PEC biosensors.
Collapse
Affiliation(s)
- Nina Fu
- Key Laboratory for Organic Electronics and Information Displays &Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Victorious A, Saha S, Pandey R, Soleymani L. Enhancing the Sensitivity of Photoelectrochemical DNA Biosensing Using Plasmonic DNA Barcodes and Differential Signal Readout. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amanda Victorious
- School of Biomedical Engineering McMaster University 1280 Main Street West Hamilton Ontario L8S 4L7 Canada
| | - Sudip Saha
- School of Biomedical Engineering McMaster University 1280 Main Street West Hamilton Ontario L8S 4L7 Canada
| | - Richa Pandey
- Department of Engineering Physics McMaster University 1280 Main Street West Hamilton Ontario L8S 4L7 Canada
| | - Leyla Soleymani
- School of Biomedical Engineering McMaster University 1280 Main Street West Hamilton Ontario L8S 4L7 Canada
- Department of Engineering Physics McMaster University 1280 Main Street West Hamilton Ontario L8S 4L7 Canada
| |
Collapse
|
9
|
Victorious A, Saha S, Pandey R, Soleymani L. Enhancing the Sensitivity of Photoelectrochemical DNA Biosensing Using Plasmonic DNA Barcodes and Differential Signal Readout. Angew Chem Int Ed Engl 2021; 60:7316-7322. [PMID: 33403773 DOI: 10.1002/anie.202014329] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/16/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Amanda Victorious
- School of Biomedical Engineering McMaster University 1280 Main Street West Hamilton Ontario L8S 4L7 Canada
| | - Sudip Saha
- School of Biomedical Engineering McMaster University 1280 Main Street West Hamilton Ontario L8S 4L7 Canada
| | - Richa Pandey
- Department of Engineering Physics McMaster University 1280 Main Street West Hamilton Ontario L8S 4L7 Canada
| | - Leyla Soleymani
- School of Biomedical Engineering McMaster University 1280 Main Street West Hamilton Ontario L8S 4L7 Canada
- Department of Engineering Physics McMaster University 1280 Main Street West Hamilton Ontario L8S 4L7 Canada
| |
Collapse
|
10
|
Zhou Y, Yin H, Zhao WW, Ai S. Electrochemical, electrochemiluminescent and photoelectrochemical bioanalysis of epigenetic modifiers: A comprehensive review. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213519] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Zhang S, Huang J, Lu J, Liu M, Chen X, Su S, Mo F, Zheng J. Electrochemical and Optical Biosensing Strategies for DNA Methylation Analysis. Curr Med Chem 2020; 27:6159-6187. [DOI: 10.2174/0929867326666190903161750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Abstract
DNA methylation is considered as a crucial part of epigenetic modifications and a popular
research topic in recent decades. It usually occurs with a methyl group adding to the fifth carbon
atom of cytosine while the base sequence of DNA remains unchanged. DNA methylation has significant
influences on maintaining cell functions, genetic imprinting, embryonic development and
tumorigenesis procedures and hence the analysis of DNA methylation is of great medical significance.
With the development of analytical techniques and further research on DNA methylation,
numerous DNA methylation detection strategies based on biosensing technology have been developed
to fulfill various study requirements. This article reviewed the development of electrochemistry
and optical biosensing analysis of DNA methylation in recent years; in addition, we also reviewed
some recent advances in the detection of DNA methylation using new techniques, such as
nanopore biosensors, and highlighted the key technical and biological challenges involved in these
methods. We hope this paper will provide useful information for the selection and establishment of
analysis of DNA methylation.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Jian Huang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Jingrun Lu
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Min Liu
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Xi Chen
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Shasha Su
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Fei Mo
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Junsong Zheng
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| |
Collapse
|
12
|
Araiza-Olivera D, Gutierrez-Aguilar M, Espinosa-García AM, García-García JA, Tapia-Orozco N, Sánchez-Pérez C, Palacios-Reyes C, Escárcega D, Villalón-López DN, García-Arrazola R. From bench to bedside: Biosensing strategies to evaluate endocrine disrupting compounds based on epigenetic events and their potential use in medicine. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103450. [PMID: 32622887 DOI: 10.1016/j.etap.2020.103450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
The relationship between endocrine system disorders and health risks due to chemical environmental compounds has become a growing concern in recent years. Involuntary exposure to endocrine disruptors (EDCs) is associated with the worldwide increase of diseases such as cancer, obesity, diabetes, and neurocortical disorders. EDCs are compounds that target the nuclear hormonereceptors (NHR) leading to epigenetic changes. Consequently, the use of biosensing strategies based on epigenetic events have a great potential to provide outstanding information about the exposition of EDCs and their evaluation in human health. This review addresses the novel trends in biosensing EDCs evaluation based on DNA methylation assays associated with different human diseases.
Collapse
Affiliation(s)
- D Araiza-Olivera
- Department of Chemistry and Biomolecules, Institute of Chemistry, UNAM, Mexico.
| | | | - A M Espinosa-García
- Unidad de Medicina Genómica, Hospital General de México, Dr. Balmis 148, Mexico City, Mexico.
| | - J A García-García
- Department of Education, Hospital General de México, Dr. Balmis 148, Mexico City, Mexico.
| | - N Tapia-Orozco
- Departmentof Food Science and Biotechnology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Ave. Universidad 3000, 04510, Coyoacán, Mexico City, Mexico.
| | - C Sánchez-Pérez
- Institute of Applied Sciences and Technology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Ave. Universidad 3000, 04510, Coyoacán, Mexico City, Mexico.
| | - C Palacios-Reyes
- Laboratory of Genetics and Molecular Diagnostics, Juarez Hospital of Mexico, Mexico City, Mexico.
| | - D Escárcega
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Ciudad de México, calle del Puente 222, Ejidos de Huipulco, Tlalpan 14380, Mexico City, Mexico.
| | - Demelza N Villalón-López
- Instituto Politénico Nacional-Escuela Nacional de Ciencias Biológicas, Departamento de Química Orgánica, Prolongación de Carpio y Plande Ayala, colonia Casco de Santo Tomás. Del, Miguel Hidalgo, 11350, Mexico.
| | - R García-Arrazola
- Departmentof Food Science and Biotechnology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Ave. Universidad 3000, 04510, Coyoacán, Mexico City, Mexico.
| |
Collapse
|
13
|
Photoelectrochemical aptasensor with low background noise. Mikrochim Acta 2020; 187:622. [PMID: 33089357 DOI: 10.1007/s00604-020-04601-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
In photoelectrochemical (PEC) detection, enhancing the PEC signal and depressing the blank signal are conducive to improve the sensitivity. Because the carbon nanotube (CNT) effectively transfers photogenerated electrons from SnSe to the electrode, the composite nanomaterial CNTs/SnSe generates a strong PEC signal. Methionine (Met), AuNPs, and probe DNA are woven together forming a nanoprobe which is used as a quencher to quench the PEC signal of CNTs/SnSe. When the nanoprobe and CNTs/SnSe are modified onto the electrode, there is a low blank signal. In the presence of metastatic breast cancer cells, the cells interact with the aptamer of dsDNA; concomitantly, cDNA is released to trigger catalytic hairpin assembly (CHA). As a result, a new dsDNA which has an overhang is formed. The nanoprobe on the surface of the electrode hybridizes with the newly formed dsDNA. Subsequently, the nanoprobe is released from the surface of the electrode and the quenching effect between the nanoprobe and the CNTs/SnSe disappears. The PEC aptasensor is linear in the concentration range of 300-5,000 cells/mL, and the detection limit is 180 cells/mL under optimized conditions. The relative standard deviation (RSD) is 3.6% at 10,000 cells/mL. This work demonstrates a promising strategy using CNTs/SnSe as the photoactive material and Met-AuNPs as the quencher to establish a PEC aptasensor with a high PEC response and low blank signal. It can be used to detect bioactive substances at ultralow levels prospectively. Graphical abstract.
Collapse
|
14
|
Gu C, Gai P, Kong X, Hou T, Li F. Self-Powered Biosensing Platform Based on “Signal-On” Enzymatic Biofuel Cell for DNA Methyltransferase Activity Analysis and Inhibitor Screening. Anal Chem 2020; 92:5426-5430. [DOI: 10.1021/acs.analchem.0c00160] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chengcheng Gu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Panpan Gai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Xinke Kong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Feng Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| |
Collapse
|
15
|
Resonance energy transfer in electrochemiluminescent and photoelectrochemical bioanalysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115745] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Meng L, Xiao K, Zhang X, Du C, Chen J. A novel signal-off photoelectrochemical biosensor for M.SssI MTase activity assay based on GQDs@ZIF-8 polyhedra as signal quencher. Biosens Bioelectron 2020; 150:111861. [DOI: 10.1016/j.bios.2019.111861] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 01/16/2023]
|
17
|
Ma F, Zhang Q, Zhang CY. Nanomaterial-based biosensors for DNA methyltransferase assay. J Mater Chem B 2020; 8:3488-3501. [DOI: 10.1039/c9tb02458a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We review the recent advances in the development of nanomaterial-based biosensors for DNA methyltransferase assay.
Collapse
Affiliation(s)
- Fei Ma
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Qian Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Chun-yang Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
18
|
Li Y, Sun S, Tian X, Qiu JG, Jiang B, Zhang CY. A dumbbell probe-based dual signal amplification strategy for sensitive detection of multiple DNA methyltransferases. Chem Commun (Camb) 2020; 56:13627-13630. [DOI: 10.1039/d0cc05991a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Integration of a dumbbell probe with dual signal amplification enables simultaneously sensitive detection of multiple DNA methyltransferases.
Collapse
Affiliation(s)
- Yueying Li
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals
| | - Shuli Sun
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals
| | - Xiaorui Tian
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals
| | - Jian-Ge Qiu
- Academy of Medical Sciences
- Zhengzhou University
- Zhengzhou 450000
- China
| | - BingHua Jiang
- Academy of Medical Sciences
- Zhengzhou University
- Zhengzhou 450000
- China
| | - Chun-yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals
| |
Collapse
|
19
|
Wang C, Chen M, Wu J, Mo F, Fu Y. Multi-functional electrochemiluminescence aptasensor based on resonance energy transfer between Au nanoparticles and lanthanum ion-doped cadmium sulfide quantum dots. Anal Chim Acta 2019; 1086:66-74. [DOI: 10.1016/j.aca.2019.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/02/2019] [Accepted: 08/03/2019] [Indexed: 12/31/2022]
|
20
|
Victorious A, Saha S, Pandey R, Didar TF, Soleymani L. Affinity-Based Detection of Biomolecules Using Photo-Electrochemical Readout. Front Chem 2019; 7:617. [PMID: 31572709 PMCID: PMC6749010 DOI: 10.3389/fchem.2019.00617] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/26/2019] [Indexed: 11/22/2022] Open
Abstract
Detection and quantification of biologically-relevant analytes using handheld platforms are important for point-of-care diagnostics, real-time health monitoring, and treatment monitoring. Among the various signal transduction methods used in portable biosensors, photoelectrochemcial (PEC) readout has emerged as a promising approach due to its low limit-of-detection and high sensitivity. For this readout method to be applicable to analyzing native samples, performance requirements beyond sensitivity such as specificity, stability, and ease of operation are critical. These performance requirements are governed by the properties of the photoactive materials and signal transduction mechanisms that are used in PEC biosensing. In this review, we categorize PEC biosensors into five areas based on their signal transduction strategy: (a) introduction of photoactive species, (b) generation of electron/hole donors, (c) use of steric hinderance, (d) in situ induction of light, and (e) resonance energy transfer. We discuss the combination of strengths and weaknesses that these signal transduction systems and their material building blocks offer by reviewing the recent progress in this area. Developing the appropriate PEC biosensor starts with defining the application case followed by choosing the materials and signal transduction strategies that meet the application-based specifications.
Collapse
Affiliation(s)
- Amanda Victorious
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Sudip Saha
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Richa Pandey
- Department of Engineering Physics, McMaster University, Hamilton, ON, Canada
| | - Tohid F. Didar
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada
| | - Leyla Soleymani
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Engineering Physics, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
21
|
Hou T, Xu N, Wang W, Ge L, Li F. Label-free and immobilization-free photoelectrochemical biosensing strategy using methylene blue in homogeneous solution as signal probe for facile DNA methyltransferase activity assay. Biosens Bioelectron 2019; 141:111395. [DOI: 10.1016/j.bios.2019.111395] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/12/2019] [Accepted: 05/30/2019] [Indexed: 10/26/2022]
|
22
|
Li Z, Zhou X, Yang J, Fu B, Zhang Z. Near-Infrared-Responsive Photoelectrochemical Aptasensing Platform Based on Plasmonic Nanoparticle-Decorated Two-Dimensional Photonic Crystals. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21417-21423. [PMID: 31140775 DOI: 10.1021/acsami.9b07128] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The photoelectrochemical (PEC) analysis is an emerging and fast developing biosensing technique. However, the in vivo PEC biosensing in deep tissue is seriously hampered because of the shallow penetration depth of ultraviolet and visible light. Expanding the optical absorption wavelength of photoelectrodes from the visible light region into the near-infrared (NIR) light region is highly desirable because of its deep tissue penetrability and minimal invasiveness for organisms, but the exploration of the facile strategy to implement efficient NIR absorption with good biocompatibility is still challenging. Herein, a NIR PEC aptasensor is proposed by coupling plasmonic nanoparticles (NPs) into periodic two-dimensional nanocavity (NC) photonic crystals as photoelectrodes, where the Au NPs are sputtered on a periodic two-dimensional TiO2 NC photonic crystal substrate to significantly enhance the NIR PEC response and successfully achieve sensitive PEC detection of Hg2+ under irradiation of NIR light in blood. We believe that the proposed NIR-responsive Au/TiO2 NC-based PEC aptasensor will open a new in vivo biosensing model for a series of important biomolecules and pave up an avenue for the practical applications of PEC biosensing in deep tissue or even in organs and brain of the living body.
Collapse
Affiliation(s)
- Zhenzhen Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Xue Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Jing Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Baihe Fu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Zhonghai Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| |
Collapse
|
23
|
Lv J, Chen X, Chen S, Li H, Deng H. A visible light induced ultrasensitive photoelectrochemical sensor based on Cu3Mo2O9/BaTiO3 p–n heterojunction for detecting oxytetracycline. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Zhan Y, Tang J, Huang D, Zou L, Ye B. Quenched sandwich-type photoelectrochemical aptasensor for protein detection based on exciton energy transfer. Talanta 2019; 198:302-309. [PMID: 30876565 DOI: 10.1016/j.talanta.2019.02.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 12/16/2022]
Abstract
This work proposes a quenched photoelectrochemical sensing method for highly selective and sensitive detection of protein via Energy Transfer (ET) effect between the AuNPs and CdS:Mn quantum dots. This detection was performed on a sandwich-type aptamer sensing interface. Chitosan modified CdS:Mn/TiO2/ITO electrode was used to immobilize capture DNA (S1) via -CONH- bond. In the presence of target protein, AuNPs labeled DNA (AuNPs-S2) was further bonded to the protein to fabricate sandwich sensing platform, which forced the AuNPs away from the electrode surface. In this state, the photocurrent was greatly depressed, mainly due to two factors: (a) the ET effect produced by interparticle distance between CdS:Mn and AuNPs; (b) the steric hindrance of AuNPs-S2 partly obstructs the diffusion of the electron donor. The photocurrent decreased with the increasing concentration of the target protein. Using thrombin as a target, this sensitized method showed a detectable range of 0.1 pM to 8 nM and a detection limit of 30 fM. It possessed high selectivity and good stability for detection of thrombin. This method is extremely flexible and can be extended to varieties of protein targets.
Collapse
Affiliation(s)
- Yi Zhan
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jing Tang
- Henan Provincial Institute of Cultural Relics and Archaeology, Zhengzhou 450001, PR China
| | - Di Huang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lina Zou
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Baoxian Ye
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
25
|
Xue H, Chen K, Zhou Q, Pan D, Zhang Y, Shen Y. Antimony selenide/graphene oxide composite for sensitive photoelectrochemical detection of DNA methyltransferase activity. J Mater Chem B 2019; 7:6789-6795. [DOI: 10.1039/c9tb01541h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An Sb2Se3/graphene oxide composite was applied as both the photoelectrochemical probe and substrate for biomolecule conjugation for the construction of a “signal-off” sandwich-type biosensor for DNA methyltransferase activity detection.
Collapse
Affiliation(s)
- Huaijia Xue
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Kaiyang Chen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Qing Zhou
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Deng Pan
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Yuanjian Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| |
Collapse
|
26
|
|
27
|
Wang H, Zhang B, Zhao F, Zeng B. One-Pot Synthesis of N-Graphene Quantum Dot-Functionalized I-BiOCl Z-Scheme Cathodic Materials for "Signal-Off" Photoelectrochemical Sensing of Chlorpyrifos. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35281-35288. [PMID: 30239195 DOI: 10.1021/acsami.8b12979] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A Z-scheme I-BiOCl/N-GQD (i.e., nitrogen-doped graphene quantum dot) heterojunction was prepared by a one-pot precipitation method at room temperature. The doped iodine decreased the band gap of BiOCl, the introduced N-GQDs enhanced light harvesting and prolonged the photogenerated electron lifetime, and the resultant Z-scheme heterojunction promoted the spatial separation of interfacial charges. Thus, the composite showed high photoelectrochemical activity and a big cathodic photocurrent signal. On the basis of the coordination of chlorpyrifos with surface Bi(III) of the composite, a cathodic photoelectrochemical sensor was constructed for the selective detection of chlorpyrifos. In this case, chlorpyrifos decreased the lifetime of photogenerated electrons, so the photocurrent became small. Furthermore, the photocurrent changed and the logarithm of chlorpyrifos concentration presented a linear relationship. The linear range was 0.3-80 ng mL-1, and the limit of detection was estimated to be 0.01 ng mL-1 (defined as S/N = 3). The present strategy can also be used for the design and fabrication of other PEC sensors suitable for different analytes.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Bihong Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Faqiong Zhao
- Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Baizhao Zeng
- Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
28
|
Wang Z, Liu J, Liu X, Shi X, Dai Z. Photoelectrochemical Approach to Apoptosis Evaluation via Multi-Functional Peptide- and Electrostatic Attraction-Guided Excitonic Response. Anal Chem 2018; 91:830-835. [DOI: 10.1021/acs.analchem.8b03195] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhaoyin Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jia Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xin Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xiaoyu Shi
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhihui Dai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
- Nanjing Normal University Center for Analysis and Testing, Nanjing, 210023, P. R. China
| |
Collapse
|
29
|
Photoelectrochemical determination of the activity of M.SssI methyltransferase, and a method for inhibitor screening. Mikrochim Acta 2018; 185:498. [DOI: 10.1007/s00604-018-3033-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/28/2018] [Indexed: 02/07/2023]
|
30
|
Enhanced photoelectrochemical DNA sensor based on TiO2/Au hybrid structure. Biosens Bioelectron 2018; 116:23-29. [DOI: 10.1016/j.bios.2018.05.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/07/2018] [Accepted: 05/22/2018] [Indexed: 12/20/2022]
|
31
|
Oligonucleotide-modulated photocurrent enhancement of a tetracationic porphyrin for label-free homogeneous photoelectrochemical biosensing. Biosens Bioelectron 2018; 121:90-95. [PMID: 30199713 DOI: 10.1016/j.bios.2018.08.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/29/2018] [Indexed: 11/22/2022]
Abstract
This work reports the first demonstration of an oligonucleotide-modulated label-free homogeneous photoelectrochemical (PEC) biosensing platform based on the adsorption of tetracationic porphyrin (denoted as TMPyP here) onto 1-naphthalenesulfonate anion (NS-)-grafted indium tin oxide electrode (denoted as TMPyP-NS--ITO), which generates a stable and rapid photocurrent response. We found that when NS--ITO electrode was subjected to single-stranded oligonucleotide (ssON) before TMPyP adsorption, a remarkable enhancement of photocurrent intensity was observed from the resulted TMPyP-ssON-NS--ITO electrode with high specificity towards oligonucleotide. A series of investigations were carried out to understand the mechanism of this oligonucleotide-modulated photocurrent enhancement phenomenon. Moreover, the studies of this robust photocurrent enhancement mechanism was successfully extended to develop a signal-on homogeneous PEC biosensing platform for, as a proof-of-concept, label-free M.SssI methyltransferase activity analysis through a judiciously and compatibly engineered signal transduction strategy consisted of hairpin-shaped oligonucleotide probe, restriction endonuclease HpaII, and Exonuclease I. The rationally designed homogeneous PEC biosensor exhibit sensitive PEC response toward M.SssI methyltransferase with a low detection limit of 3.5 mU/mL and a wide linear range from 0.01 to 120 U/mL. Additionally, we show that our homogeneous PEC biosensing platform can be also utilized to screen methyltransferase inhibitors. Therefore, this work will provide a distinctive paradigm for versatile homogeneous PEC biosensing platform that can be used as potential powerful tool toward innovative label-free bioanalytical purposes.
Collapse
|
32
|
Zang Y, Fan J, Ju Y, Xue H, Pang H. Current Advances in Semiconductor Nanomaterial‐Based Photoelectrochemical Biosensing. Chemistry 2018; 24:14010-14027. [DOI: 10.1002/chem.201801358] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Yang Zang
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Jing Fan
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Yun Ju
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Huaiguo Xue
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| |
Collapse
|
33
|
Qileng A, Wei J, Lu N, Liu W, Cai Y, Chen M, Lei H, Liu Y. Broad-specificity photoelectrochemical immunoassay for the simultaneous detection of ochratoxin A, ochratoxin B and ochratoxin C. Biosens Bioelectron 2018; 106:219-226. [DOI: 10.1016/j.bios.2018.02.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/26/2017] [Accepted: 02/01/2018] [Indexed: 12/21/2022]
|
34
|
A simple and universal electrochemical assay for sensitive detection of DNA methylation, methyltransferase activity and screening of inhibitors. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Shi XM, Mei LP, Wang Q, Zhao WW, Xu JJ, Chen HY. Energy Transfer between Semiconducting Polymer Dots and Gold Nanoparticles in a Photoelectrochemical System: A Case Application for Cathodic Bioanalysis. Anal Chem 2018. [DOI: 10.1021/acs.analchem.8b00839] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiao-Mei Shi
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Li-Ping Mei
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qian Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
36
|
Li M, Zheng Y, Liang W, Yuan Y, Chai Y, Yuan R. An ultrasensitive "on-off-on" photoelectrochemical aptasensor based on signal amplification of a fullerene/CdTe quantum dots sensitized structure and efficient quenching by manganese porphyrin. Chem Commun (Camb) 2018; 52:8138-41. [PMID: 27272457 DOI: 10.1039/c6cc02791a] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, an ultrasensitive "on-off-on" photoelectrochemical (PEC) aptasensor was proposed based on the signal amplification of a fullerene/CdTe quantum dot (nano-C60/CdTe QDs) sensitized structure and efficient signal quenching of nano-C60/CdTe QDs by a manganese porphyrin (MnPP).
Collapse
Affiliation(s)
- Mengjie Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yingning Zheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Wenbin Liang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yali Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
37
|
Yang Y, Yang G, Chen H, Zhang H, Feng JJ, Cai C. Electrochemical signal-amplified detection of 5-methylcytosine and 5-hydroxymethylcytosine in DNA using glucose modification coupled with restriction endonucleases. Analyst 2018; 143:2051-2056. [DOI: 10.1039/c7an02049j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sensitive electrochemical assay based on glucose modification coupled with restriction endonucleases was fabricated for the detection of 5-methylcytosine and 5-hydroxymethylcytosine in DNA.
Collapse
Affiliation(s)
- Yin Yang
- Jiangsu Key Laboratory of Biomedical Materials
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of New Power Batteries
- College of Chemistry and Materials Science
| | - Guoqing Yang
- Jiangsu Key Laboratory of Biomedical Materials
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of New Power Batteries
- College of Chemistry and Materials Science
| | - Hongfei Chen
- Jiangsu Key Laboratory of Biomedical Materials
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of New Power Batteries
- College of Chemistry and Materials Science
| | - Hui Zhang
- Jiangsu Key Laboratory of Biomedical Materials
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of New Power Batteries
- College of Chemistry and Materials Science
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Chenxin Cai
- Jiangsu Key Laboratory of Biomedical Materials
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of New Power Batteries
- College of Chemistry and Materials Science
| |
Collapse
|
38
|
Zang Y, Lei J, Ju H. Principles and applications of photoelectrochemical sensing strategies based on biofunctionalized nanostructures. Biosens Bioelectron 2017; 96:8-16. [DOI: 10.1016/j.bios.2017.04.030] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/05/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022]
|
39
|
Zhao WW, Xu JJ, Chen HY. Photoelectrochemical enzymatic biosensors. Biosens Bioelectron 2017; 92:294-304. [DOI: 10.1016/j.bios.2016.11.009] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/27/2016] [Accepted: 11/02/2016] [Indexed: 11/29/2022]
|
40
|
A novel immunosensing platform for highly sensitive prostate specific antigen detection based on dual-quenching of photocurrent from CdSe sensitized TiO2 electrode by gold nanoparticles decorated polydopamine nanospheres. Biosens Bioelectron 2017; 91:246-252. [DOI: 10.1016/j.bios.2016.12.043] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/03/2016] [Accepted: 12/16/2016] [Indexed: 01/03/2023]
|
41
|
Zhang N, Zhang L, Ruan YF, Zhao WW, Xu JJ, Chen HY. Quantum-dots-based photoelectrochemical bioanalysis highlighted with recent examples. Biosens Bioelectron 2017; 94:207-218. [PMID: 28285198 DOI: 10.1016/j.bios.2017.03.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/25/2017] [Accepted: 03/06/2017] [Indexed: 02/07/2023]
Abstract
Photoelectrochemical (PEC) bioanalysis is a newly developed methodology that provides an exquisite route for innovative biomolecular detection. Quantum dots (QDs) are semiconductor nanocrystals with unique photophysical properties that have attracted tremendous attentions among the analytical community. QDs-based PEC bioanalysis comprises an important research hotspot in the field of PEC bioanalysis due to its combined advantages and potentials. Currently, it has ignited increasing interests as demonstrated by increased research papers. This review aims to cover the most recent advances in this field. With the discussion of recent examples of QDs-PEC bioanalysis from the literatures, special emphasis will be placed on work reporting on fundamental advances in the signaling strategies of QDs-based PEC bioanalysis from 2013 to now. Future prospects in this field are also discussed.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ling Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yi-Fan Ruan
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
42
|
Dudová Z, Bartošík M, Fojta M. Magnetic bead-based electrochemical assay for determination of DNA methyltransferase activity. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.02.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
43
|
Photoelectrochemical determination of Hg(II) via dual signal amplification involving SPR enhancement and a folding-based DNA probe. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2141-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
44
|
Chen J, Fan GC, Shi XM, Zhu JJ. Signal-On Photoelectrochemical Aptasensor Amplified by Exciton Energy Transfer and Exonuclease-Aided Target Recycling. ChemElectroChem 2017. [DOI: 10.1002/celc.201600741] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jingjia Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering; Nanjing University; Nanjing 210093 P. R. China
- Kuang Yaming Honors School; Nanjing University; Nanjing 210093 P. R. China
| | - Gao-Chao Fan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering; Nanjing University; Nanjing 210093 P. R. China
| | - Xiao-Mei Shi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering; Nanjing University; Nanjing 210093 P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering; Nanjing University; Nanjing 210093 P. R. China
| |
Collapse
|
45
|
Zhang H, Guo Z, Dong H, Chen H, Cai C. An electrochemiluminescence assay for sensitive detection of methyltransferase activity in different cancer cells by hybridization chain reaction coupled with a G-quadruplex/hemin DNAzyme biosensing strategy. Analyst 2017; 142:2013-2019. [DOI: 10.1039/c7an00486a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A sensitive electrochemiluminescence assay coupled HCR with a G-quadruplex/hemin DNAzyme was fabricated for the detection of DNMT1 activity in cancer cells.
Collapse
Affiliation(s)
- Hui Zhang
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biomedical Materials
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
| | - Zhihui Guo
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biomedical Materials
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
| | - Huilei Dong
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biomedical Materials
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
| | - Hongfei Chen
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biomedical Materials
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biomedical Materials
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
| |
Collapse
|
46
|
Zhang H, Yang Y, Dong H, Cai C. A superstructure-based electrochemical assay for signal-amplified detection of DNA methyltransferase activity. Biosens Bioelectron 2016; 86:927-932. [DOI: 10.1016/j.bios.2016.07.103] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/11/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022]
|
47
|
Xu Y, Gao X, Zhang L, Chen D, Dai Z, Zou X. Simultaneous detection of double gene-specific methylation loci based on hairpin probes tagged with electrochemical quantum dots barcodes. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.06.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Zhao WW, Yu XD, Xu JJ, Chen HY. Recent advances in the use of quantum dots for photoelectrochemical bioanalysis. NANOSCALE 2016; 8:17407-17414. [PMID: 27738694 DOI: 10.1039/c6nr05011e] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photoelectrochemical (PEC) bioanalysis is a newly developed technique for innovative biomolecular detection. Quantum dots (QDs) with unique photophysical properties are key components in realization of various exquisite PEC bioanalyses. Particularly, significant progress has been made in the QD-based PEC bioanalysis. In this work, we briefly summarize the most recent and important developments in the use of traditional and newly emerging QDs for novel PEC bioanalytical applications. The future prospects in this dynamic field are also highlighted.
Collapse
Affiliation(s)
- Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P.R. China.
| | - Xiao-Dong Yu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P.R. China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P.R. China.
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P.R. China.
| |
Collapse
|
49
|
Abstract
In the field of genetics, epigenetics is the study of changes in gene expression without any change in DNA sequences. Chemical base modification in DNA by DNA methyltransferase, and specifically methylation, has been well studied as the main mechanism of epigenetics. Therefore, the determination of DNA methylation of, for example, 5'-methylcytosine in the CpG sequence in mammals has attracted attention because it should prove valuable in a wide range of research fields including diagnosis, drug discovery, and therapy. Methylated DNA bases and DNA methyltransferase activity are analyzed using conventional methods; however, these methods are time-consuming and require complex multiple operations. Therefore, new methods and devices for DNA methylation analysis are now being actively developed. Furthermore, microfluidic technology has also been applied to DNA methylation analysis because the microfluidic platform offers the promising advantage of making it possible to perform thousands of DNA methylation reactions in small reaction volumes, resulting in a high-throughput analysis with high sensitivity. This review discusses epigenetics and the microfluidic platforms developed for DNA methylation analysis.
Collapse
Affiliation(s)
- Ryoji Kurita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) and DAILAB, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566 Japan.
| | | |
Collapse
|
50
|
Zhang L, Liu Y, Li Y, Zhao Y, Wei W, Liu S. Sensitive electrochemical assaying of DNA methyltransferase activity based on mimic-hybridization chain reaction amplified strategy. Anal Chim Acta 2016; 933:75-81. [DOI: 10.1016/j.aca.2016.05.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/16/2016] [Accepted: 05/23/2016] [Indexed: 11/29/2022]
|