1
|
Munusamy S, Zheng H, Jahani R, Zhou S, Chen J, Kong J, Guan X. Enzyme-free immunoassay for rapid, sensitive, and selective detection of C-reactive protein. Anal Bioanal Chem 2024; 416:6985-6994. [PMID: 39419834 PMCID: PMC12007592 DOI: 10.1007/s00216-024-05598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
C-reactive protein (CRP) is a protein made by the liver, which is released into the bloodstream in response to inflammation. Furthermore, CRP is a potential risk factor for heart disease. Hence, it is of great importance to develop a rapid, sensitive, accurate, and cost-effective method for CRP detection. Herein, we report an enzyme-free fluorescent assay for the rapid and ultra-sensitive detection of CRP with a limit of detection (LOD) reaching as low as 3.08 pg/mL (i.e., ~ 27 fM). The high sensitivity of our method was simply achieved via dual-functionalized gold nanoparticles (AuNPs). By regulating the molar ratio of DNA to CRP antibody immobilized on the AuNP surface, hundreds to thousands-fold amplification in the analyte signal could be instantly accomplished. Furthermore, our sensor was selective: non-target proteins such as interleukin-6, interleukin-1β, procalcitonin, bovine serum albumin, and human serum albumin did not interfere with the target CRP detection. Moreover, simulated serum samples were successfully analyzed. Given the excellent sensitivity, selectivity, and high resistance to complicated matrices, the enzyme-free CRP detection strategy developed in this work can be used as a generic platform to construct sensors for a wide variety of protein biomarkers and hence offers potential as a tool for rapid, accurate, and low-cost medical diagnosis.
Collapse
Affiliation(s)
| | - Haiyan Zheng
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Rana Jahani
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Shuo Zhou
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Jun Chen
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Juanhua Kong
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Xiyun Guan
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
2
|
Naghdi T, Ardalan S, Asghari Adib Z, Sharifi AR, Golmohammadi H. Moving toward smart biomedical sensing. Biosens Bioelectron 2023; 223:115009. [PMID: 36565545 DOI: 10.1016/j.bios.2022.115009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The development of novel biomedical sensors as highly promising devices/tools in early diagnosis and therapy monitoring of many diseases and disorders has recently witnessed unprecedented growth; more and faster than ever. Nonetheless, on the eve of Industry 5.0 and by learning from defects of current sensors in smart diagnostics of pandemics, there is still a long way to go to achieve the ideal biomedical sensors capable of meeting the growing needs and expectations for smart biomedical/diagnostic sensing through eHealth systems. Herein, an overview is provided to highlight the importance and necessity of an inevitable transition in the era of digital health/Healthcare 4.0 towards smart biomedical/diagnostic sensing and how to approach it via new digital technologies including Internet of Things (IoT), artificial intelligence, IoT gateways (smartphones, readers), etc. This review will bring together the different types of smartphone/reader-based biomedical sensors, which have been employing for a wide variety of optical/electrical/electrochemical biosensing applications and paving the way for future eHealth diagnostic devices by moving towards smart biomedical sensing. Here, alongside highlighting the characteristics/criteria that should be met by the developed sensors towards smart biomedical sensing, the challenging issues ahead are delineated along with a comprehensive outlook on this extremely necessary field.
Collapse
Affiliation(s)
- Tina Naghdi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Sina Ardalan
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Zeinab Asghari Adib
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Amir Reza Sharifi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Hamed Golmohammadi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran.
| |
Collapse
|
3
|
Graphene-Based Biosensors for Molecular Chronic Inflammatory Disease Biomarker Detection. BIOSENSORS 2022; 12:bios12040244. [PMID: 35448304 PMCID: PMC9030187 DOI: 10.3390/bios12040244] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Chronic inflammatory diseases, such as cancer, diabetes mellitus, stroke, ischemic heart diseases, neurodegenerative conditions, and COVID-19 have had a high number of deaths worldwide in recent years. The accurate detection of the biomarkers for chronic inflammatory diseases can significantly improve diagnosis, as well as therapy and clinical care in patients. Graphene derivative materials (GDMs), such as pristine graphene (G), graphene oxide (GO), and reduced graphene oxide (rGO), have shown tremendous benefits for biosensing and in the development of novel biosensor devices. GDMs exhibit excellent chemical, electrical and mechanical properties, good biocompatibility, and the facility of surface modification for biomolecular recognition, opening new opportunities for simple, accurate, and sensitive detection of biomarkers. This review shows the recent advances, properties, and potentialities of GDMs for developing robust biosensors. We show the main electrochemical and optical-sensing methods based on GDMs, as well as their design and manufacture in order to integrate them into robust, wearable, remote, and smart biosensors devices. We also describe the current application of such methods and technologies for the biosensing of chronic disease biomarkers. We also describe the current application of such methods and technologies for the biosensing of chronic disease biomarkers with improved sensitivity, reaching limits of detection from the nano to atto range concentration.
Collapse
|
4
|
Jin C, Wu Z, Molinski JH, Zhou J, Ren Y, Zhang JX. Plasmonic nanosensors for point-of-care biomarker detection. Mater Today Bio 2022; 14:100263. [PMID: 35514435 PMCID: PMC9062760 DOI: 10.1016/j.mtbio.2022.100263] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 01/17/2023] Open
Abstract
Advancement of materials along with their fascinating properties play increasingly important role in facilitating the rapid progress in medicine. An excellent example is the recent development of biosensors based on nanomaterials that induce surface plasmon effect for screening biomarkers of various diseases ranging from cancer to Covid-19. The recent global pandemic re-confirmed the trend of real-time diagnosis in public health to be in point-of-care (POC) settings that can screen interested biomarkers at home, or literally anywhere else, at any time. Plasmonic biosensors, thanks to its versatile designs and extraordinary sensitivities, can be scaled into small and portable devices for POC diagnostic tools. In the meantime, efforts are being made to speed up, simplify and lower the cost of the signal readout process including converting the conventional heavy laboratory instruments into lightweight handheld devices. This article reviews the recent progress on the design of plasmonic nanomaterial-based biosensors for biomarker detection with a perspective of POC applications. After briefly introducing the plasmonic detection working mechanisms and devices, the selected highlights in the field focusing on the technology's design including nanomaterials development, structure assembly, and target applications are presented and analyzed. In parallel, discussions on the sensor's current or potential applicability in POC diagnosis are provided. Finally, challenges and opportunities in plasmonic biosensor for biomarker detection, such as the current Covid-19 pandemic and its testing using plasmonic biosensor and incorporation of machine learning algorithms are discussed.
Collapse
Affiliation(s)
| | | | | | - Junhu Zhou
- Thayer School of Engineering, Dartmouth College, NH, USA
| | - Yundong Ren
- Thayer School of Engineering, Dartmouth College, NH, USA
| | | |
Collapse
|
5
|
Shin J, Kasama T, Miyake R. Development of cellulosic material-based microchannel device capable of fluorescence immunoassay of microsamples. Anal Bioanal Chem 2022; 414:3419-3428. [PMID: 35169907 DOI: 10.1007/s00216-022-03963-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022]
Abstract
Microfluidic immunoassay devices are a promising technology that can quickly detect biomarkers with high sensitivity. Recently, many studies implementing this technology on paper substrates have been proposed for improving cost and user-friendliness. However, these studies have identified problems with the large volume of sample required, low sensitivity, and a lack of quantitative accuracy and precision. In this paper, we report a novel structure implemented as a cellulosic material-based microchannel device capable of quantitative immunoassay using small sample volumes. We fabricated microfluidic channels between a transparent cellophane film and water-resistant paper to facilitate loading of small-volume samples and reagents, with a 40-μm-wide immunoreaction matrix constructed in the center of the microchannel using highly precise photolithography. A fluorescence sandwich immunoassay for C-reactive protein (CRP) was successfully implemented that required only a 1-μL sample volume and a 20-min reaction time. We confirmed that the limit of detection of the device was 10-20 ng/mL with a coefficient of variation under 5.6%, which is a performance level comparable to conventional plastic-based human CRP enzyme-linked immunosorbent assay (ELISA) kits. We expect that such devices will lead to the elimination of large amounts of medical waste from the use of ubiquitous diagnostics, a result that is consistent with environmental sustainability goals.
Collapse
Affiliation(s)
- Jungchan Shin
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Toshihiro Kasama
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Ryo Miyake
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8654, Japan.
| |
Collapse
|
6
|
Sharma A, Tok AIY, Alagappan P, Liedberg B. Point of care testing of sports biomarkers: Potential applications, recent advances and future outlook. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116327] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Zhu D, Liu B, Wei G. Two-Dimensional Material-Based Colorimetric Biosensors: A Review. BIOSENSORS 2021; 11:bios11080259. [PMID: 34436061 PMCID: PMC8392748 DOI: 10.3390/bios11080259] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 05/09/2023]
Abstract
Two-dimensional (2D) materials such as graphene, graphene oxide, transition metal oxide, MXene and others have shown high potential for the design and fabrication of various sensors and biosensors due to their 2D layered structure and unique properties. Compared to traditional fluorescent, electrochemical, and electrical biosensors, colorimetric biosensors exhibit several advantages including naked-eye determination, low cost, quick response, and easy fabrication. In this review, we present recent advances in the design, fabrication, and applications of 2D material-based high-performance colorimetric biosensors. Potential colorimetric sensing mechanisms and optimal material selection as well as sensor fabrication are introduced in brief. In addition, colorimetric biosensors based on different 2D materials such as graphene, transition metal dichalcogenide/oxide, MXenes, metal-organic frameworks, and metal nanoplates for the sensitive detection of DNA, proteins, viruses, small molecules, metallic ions, and others are presented and discussed in detail. This work will be helpful for readers to understand the knowledge of 2D material modification, nanozymes, and the synthesis of hybrid materials; meanwhile, it could be valuable to promote the design, fabrication, and applications of 2D material-based sensors and biosensors in quick bioanalysis and disease diagnostics.
Collapse
Affiliation(s)
| | | | - Gang Wei
- Correspondence: ; Tel.: +86-150-6624-2101
| |
Collapse
|
8
|
Kawai Y, Shirai A, Kakuta M, Idegami K, Sueyoshi K, Endo T, Hisamoto H. Inkjet Printing-Based Immobilization Method for a Single-Step and Homogeneous Competitive Immunoassay in Microchannel Arrays. Front Chem 2021; 8:612132. [PMID: 33409267 PMCID: PMC7779625 DOI: 10.3389/fchem.2020.612132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 11/29/2022] Open
Abstract
In this study, we report an inkjet printing-based method for the immobilization of different reactive analytical reagents on a single microchannel for a single-step and homogeneous solution-based competitive immunoassay. The immunoassay microdevice is composed of a poly(dimethylsiloxane) microchannel that is patterned using inkjet printing by two types of reactive reagents as dissolvable spots, namely, antibody-immobilized graphene oxide and a fluorescently labeled antigen. Since nanoliter-sized droplets of the reagents could be accurately and position-selectively spotted on the microchannel, different reactive reagents were simultaneously immobilized onto the same microchannel, which was difficult to achieve in previously reported capillary-based single-step bioassay devices. In the present study, the positions of the reagent spots and amount of reagent matrix were investigated to demonstrate the stable and reproducible immobilization and a uniform dissolution. Finally, a preliminary application to a single-step immunoassay of C-reactive protein was demonstrated as a proof of concept.
Collapse
Affiliation(s)
- Yuko Kawai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Akihiro Shirai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| | | | | | - Kenji Sueyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Tatsuro Endo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Hideaki Hisamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
9
|
Chen W, Yao Y, Chen T, Shen W, Tang S, Lee HK. Application of smartphone-based spectroscopy to biosample analysis: A review. Biosens Bioelectron 2020; 172:112788. [PMID: 33157407 DOI: 10.1016/j.bios.2020.112788] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/05/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022]
Abstract
The emergence of the smartphones has brought extensive changes to our lifestyles, from communicating with one another, to shopping and enjoyment of entertainment, and from studying to functioning at the workplace (and in the field). At the same time, this portable device has also provided new possibilities in scientific research and applications. Based on the growing awareness of good health management, researchers have coupled health monitoring to smartphone sensing technologies. Along the way, there have been developed a variety of smartphone-based optical detection platforms for analyzing biological samples, including standalone smartphone units and integrated smartphone sensing systems. In this review, we outline the applications of smartphone-based optical sensors for biosamples. These applications focus mainly on three aspects: Microscopic imaging sensing, colorimetric sensing and luminescence sensing. We also discuss briefly some limitations of the current state of smartphone-based spectroscopy and present prospects of the future applicability of smartphone sensors.
Collapse
Affiliation(s)
- Wenhui Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Yao Yao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Tianyu Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China.
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore; National University of Singapore Environmental Research Institute, T-Lab Building #02-01, 5A Engineering Drive 1, Singapore, 117411, Singapore; Tropical Marine Science Institute, National University of Singapore, S2S Building, 18 Kent Ridge Road, Singapore, 119227, Singapore.
| |
Collapse
|
10
|
Aydindogan E, Ceylan AE, Timur S. Paper-based colorimetric spot test utilizing smartphone sensing for detection of biomarkers. Talanta 2020; 208:120446. [DOI: 10.1016/j.talanta.2019.120446] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 01/27/2023]
|
11
|
Qureshi A, Niazi JH. Biosensors for detecting viral and bacterial infections using host biomarkers: a review. Analyst 2020; 145:7825-7848. [DOI: 10.1039/d0an00896f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A schematic diagram showing multiple modes of biosensing platforms for the diagnosis of bacterial or viral infections.
Collapse
Affiliation(s)
- Anjum Qureshi
- Sabanci University
- SUNUM Nanotechnology Research and Application Center
- Tuzla 34956
- Turkey
| | - Javed H. Niazi
- Sabanci University
- SUNUM Nanotechnology Research and Application Center
- Tuzla 34956
- Turkey
| |
Collapse
|
12
|
Ma Y, Yang J, Yang T, Deng Y, Gu M, Wang M, Hu R, Yang Y. Electrochemical detection of C-reactive protein using functionalized iridium nanoparticles/graphene oxide as a tag. RSC Adv 2020; 10:9723-9729. [PMID: 35497247 PMCID: PMC9050126 DOI: 10.1039/c9ra10386d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/20/2020] [Indexed: 11/21/2022] Open
Abstract
C-reactive protein (CRP) has become a recognized indicator of inflammation. CRP concentration in serum is an important indicator for monitoring early heart damage, and it is also a newly discovered coronary heart disease-associated inflammatory factor. A conductive nano-hybrid material composed of Au NPs and ionic liquid functionalized molybdenum disulfide (Au NPs/IL-MoS2) was prepared and utilized to immobilize primary CRP antibodies. Subsequently, 1,5-diaminonaphthalene (DN) was adsorbed onto graphene oxide (GO) through π–π stacking, which was used to load iridium nanoparticles (Ir NPs) as a tag to label secondary CRP antibodies. The large surface area of Au NPs/IL-MoS2 and the excellent electrocatalytic properties of Ir NPs/GO-DN toward the reduction of H2O2 resulted in a highly sensitive assay for CRP antigens. This immunosensor exhibited wide linear ranges from 0.01 to 100 ng mL−1 and a lower detection of limit of 3.3 pg mL−1 (S/N = 3). This CRP immunosensor can be applied in real serum sample analysis with satisfactory results, indicating that the immunosensor has potential applications in biomedical detection. Ir NPs@GO-DN was used as a tag to label CRP antibody to construct a sandwich CRP immunosensor.![]()
Collapse
Affiliation(s)
- Yuchan Ma
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming
- P. R. China
| | - Jiao Yang
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming
- P. R. China
| | - Tong Yang
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming
- P. R. China
| | - Yan Deng
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming
- P. R. China
| | - Mengqiao Gu
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming
- P. R. China
| | - Min Wang
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming
- P. R. China
| | - Rong Hu
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming
- P. R. China
| | - Yunhui Yang
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming
- P. R. China
| |
Collapse
|
13
|
Chinnadayyala SR, Park J, Kim YH, Choi SH, Lee SM, Cho WW, Lee GY, Pyun JC, Cho S. Electrochemical Detection of C-Reactive Protein in Human Serum Based on Self-Assembled Monolayer-Modified Interdigitated Wave-Shaped Electrode. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5560. [PMID: 31888286 PMCID: PMC6960938 DOI: 10.3390/s19245560] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022]
Abstract
An electrochemical capacitance immunosensor based on an interdigitated wave-shaped micro electrode array (IDWµE) for direct and label-free detection of C-reactive protein (CRP) was reported. A self-assembled monolayer (SAM) of dithiobis (succinimidyl propionate) (DTSP) was used to modify the electrode array for antibody immobilization. The SAM functionalized electrode array was characterized morphologically by atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy (EDX). The nature of gold-sulfur interactions on SAM-treated electrode array was probed by X-ray photoelectron spectroscopy (XPS). The covalent linking of anti-CRP-antibodies onto the SAM modified electrode array was characterized morphologically through AFM, and electrochemically through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The application of phosphate-buffered saline (PBS) and human serum (HS) samples containing different concentrations of CRP in the electrode array caused changes in the electrode interfacial capacitance upon CRP binding. CRP concentrations in PBS and HS were determined quantitatively by measuring the change in capacitance (ΔC) through EIS. The electrode immobilized with anti-CRP-antibodies showed an increase in ΔC with the addition of CRP concentrations over a range of 0.01-10,000 ng mL-1. The electrode showed detection limits of 0.025 ng mL-1 and 0.23 ng mL-1 (S/N = 3) in PBS and HS, respectively. The biosensor showed a good reproducibility (relative standard deviation (RSD), 1.70%), repeatability (RSD, 1.95%), and adequate selectivity in presence of interferents towards CRP detection. The sensor also exhibited a significant storage stability of 2 weeks at 4 °C in 1× PBS.
Collapse
Affiliation(s)
| | - Jinsoo Park
- Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Korea;
| | - Young Hyo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Inha University, Incheon 22332, Korea;
| | - Seong Hye Choi
- Department of Neurology, School of Medicine, Inha University, Incheon 22332, Korea;
| | - Sang-Myung Lee
- Department of Chemical Engineering, Kangwon National University, Chuncheon 25341, Korea;
| | - Won Woo Cho
- Cantis Inc., Ansan-si, Gyeonggi-do 15588, Korea;
| | - Ga-Yeon Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03772, Korea; (G.-Y.L.); (J.-C.P.)
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, Seoul 03772, Korea; (G.-Y.L.); (J.-C.P.)
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Incheon 13120, Korea;
- Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Korea;
| |
Collapse
|
14
|
Hosu O, Lettieri M, Papara N, Ravalli A, Sandulescu R, Cristea C, Marrazza G. Colorimetric multienzymatic smart sensors for hydrogen peroxide, glucose and catechol screening analysis. Talanta 2019; 204:525-532. [DOI: 10.1016/j.talanta.2019.06.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/27/2022]
|
15
|
Nazari M, Gargari SLM, Sahebghadam Lotfi A, Rassaee MJ, Taheri RA. Aptamer-Based Sandwich Assay for Measurement of Thymidine Kinase 1 in Serum of Cancerous Patients. Biochemistry 2019; 58:2373-2383. [PMID: 30900869 DOI: 10.1021/acs.biochem.8b01284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Thymidine kinase 1 (TK1) is traditionally a serum biomarker that is elevated in the early stages of malignancies. The diagnostic and prognostic role of TK1 for screening and monitoring human malignancies has recently been investigated. Anti-human TK1 aptamers were selected through 12 iterative rounds of systematic evolution of ligands by exponential enrichment from a DNA library. The aptamer pool of round 12 was amplified, and the polymerase chain reaction product was cloned on the TA vector. Of the 85 colonies obtained, 52 were identified as positive clones. These aptamers were screened for TK1 with surface plasmon resonance, where apta37 and apta69 showed the highest affinity for TK1. The TK1_apta37 and TK1_apta69 aptamers were used in a sandwich assay platform and successfully detected TK1 in the concentration range of 54-3500 pg mL-1. Clinical samples from 60 cancerous patients were also tested with this assay system and compared using the conventional antibody-based enzyme-linked immunosorbent assay kit. The aptamer sandwich assay demonstrated a dynamic range for TK1 at clinically relevant serum levels, covering subpicogram per milliliter concentrations. The new approach offers a simple and robust method for detecting serum biomarkers that have low and moderate abundance. The results of this study demonstrate the screening capability of the aptamer sandwich assay platform and its potential applicability to the point-of-care testing system.
Collapse
Affiliation(s)
- Mahmood Nazari
- Department of Clinical Biochemistry, Faculty of Medicine , Tarbiat Modares University , Tehran , Iran
| | | | - Abbas Sahebghadam Lotfi
- Department of Clinical Biochemistry, Faculty of Medicine , Tarbiat Modares University , Tehran , Iran
| | - Mohammad Javad Rassaee
- Department of Clinical Biochemistry, Faculty of Medicine , Tarbiat Modares University , Tehran , Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
16
|
Natesan M, Wu SW, Chen CI, Jensen SMR, Karlovac N, Dyas BK, Mudanyali O, Ulrich RG. A Smartphone-Based Rapid Telemonitoring System for Ebola and Marburg Disease Surveillance. ACS Sens 2019; 4:61-68. [PMID: 30525467 PMCID: PMC6350200 DOI: 10.1021/acssensors.8b00842] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have developed a digital and multiplexed platform for the rapid detection and telemonitoring of infections caused by Ebola and Marburg filoviruses. The system includes a flow cell assay cartridge that captures specific antibodies with microarrayed recombinant antigens from all six species of filovirus, and a smartphone fluorescent reader for high-performance interpretation of test results. Multiplexed viral proteins, which are expandable to include greater numbers of probes, were incorporated to obtain highest confidence results by cross-correlation, and a custom smartphone application was developed for data analysis, interpretation, and communication. The smartphone reader utilizes an opto-electro-mechanical hardware attachment that snaps at the back of a Motorola smartphone and provides a user interface to manage the operation, acquire test results, and communicate with cloud service. The application controls the hardware attachment to turn on LEDs and digitally record the optically enhanced images. Assay processing time is approximately 20 min for microliter amounts of blood, and test results are digitally processed and displayed within 15 s. Furthermore, a secure cloud service was developed for the telemonitoring of test results generated by the smartphone readers in the field. Assay system results were tested with sera from nonhuman primates that received a live attenuated EBOV vaccine. This integrated system will provide a rapid, reliable, and digital solution to prevent the rapid overwhelming of medical systems and resources during EVD or MVD outbreaks. Further, this disease-monitoring system will be useful in resource-limited countries where there is a need for dispersed laboratory analysis of recent or active infections.
Collapse
Affiliation(s)
- Mohan Natesan
- Division of Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Sz-Wei Wu
- NOWDiagnostics Inc., Inglewood, California 90301, United States
| | - Chieh-I Chen
- NOWDiagnostics Inc., Inglewood, California 90301, United States
| | - Stig M. R. Jensen
- Division of Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Neven Karlovac
- NOWDiagnostics Inc., Inglewood, California 90301, United States
| | - Beverly K. Dyas
- Division of Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Onur Mudanyali
- NOWDiagnostics Inc., Inglewood, California 90301, United States
| | - Robert G. Ulrich
- Division of Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| |
Collapse
|
17
|
Evans D, Papadimitriou KI, Vasilakis N, Pantelidis P, Kelleher P, Morgan H, Prodromakis T. A Novel Microfluidic Point-of-Care Biosensor System on Printed Circuit Board for Cytokine Detection. SENSORS (BASEL, SWITZERLAND) 2018; 18:E4011. [PMID: 30453609 PMCID: PMC6264023 DOI: 10.3390/s18114011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/06/2018] [Accepted: 11/12/2018] [Indexed: 01/17/2023]
Abstract
Point of Care (PoC) diagnostics have been the subject of considerable research over the last few decades driven by the pressure to detect diseases quickly and effectively and reduce healthcare costs. Herein, we demonstrate a novel, fully integrated, microfluidic amperometric enzyme-linked immunosorbent assay (ELISA) prototype using a commercial interferon gamma release assay (IGRA) as a model antibody binding system. Microfluidic assay chemistry was engineered to take place on Au-plated electrodes within an assay cell on a printed circuit board (PCB)-based biosensor system. The assay cell is linked to an electrochemical reporter cell comprising microfluidic architecture, Au working and counter electrodes and a Ag/AgCl reference electrode, all manufactured exclusively via standard commercial PCB fabrication processes. Assay chemistry has been optimised for microfluidic diffusion kinetics to function under continual flow. We characterised the electrode integrity of the developed platforms with reference to biological sampling and buffer composition and subsequently we demonstrated concentration-dependent measurements of H₂O₂ depletion as resolved by existing FDA-validated ELISA kits. Finally, we validated the assay technology in both buffer and serum and demonstrate limits of detection comparable to high-end commercial systems with the addition of full microfluidic assay architecture capable of returning diagnostic analyses in approximately eight minutes.
Collapse
Affiliation(s)
- Daniel Evans
- Nanoelectronics & Nanotechnology Research Group, Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK.
| | - Konstantinos I Papadimitriou
- Nanoelectronics & Nanotechnology Research Group, Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK.
| | - Nikolaos Vasilakis
- Nanoelectronics & Nanotechnology Research Group, Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK.
| | - Panagiotis Pantelidis
- Centre for Immunology and Vaccinology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London SW10 9NH, UK.
- Infection and Immunity, North West London Pathology, Imperial College NHS Trust, Charing Cross Hospital, London W6 8RF, UK.
| | - Peter Kelleher
- Centre for Immunology and Vaccinology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London SW10 9NH, UK.
- Infection and Immunity, North West London Pathology, Imperial College NHS Trust, Charing Cross Hospital, London W6 8RF, UK.
| | - Hywel Morgan
- Nanoelectronics & Nanotechnology Research Group, Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK.
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| | - Themistoklis Prodromakis
- Zepler Institute for Photonics and Nanoelectronics, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
18
|
Barbosa AI, Reis NM. A critical insight into the development pipeline of microfluidic immunoassay devices for the sensitive quantitation of protein biomarkers at the point of care. Analyst 2018; 142:858-882. [PMID: 28217778 DOI: 10.1039/c6an02445a] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The latest clinical procedures for the timely and cost-effective diagnosis of chronic and acute clinical conditions, such as cardiovascular diseases, cancer, chronic respiratory diseases, diabetes or sepsis (i.e. the biggest causes of death worldwide), involve the quantitation of specific protein biomarkers released into the blood stream or other physiological fluids (e.g. urine or saliva). The clinical thresholds are usually in the femtomolar to picolomar range, and consequently the measurement of these protein biomarkers heavily relies on highly sophisticated, bulky and automated equipment in centralised pathology laboratories. The first microfluidic devices capable of measuring protein biomarkers in miniaturised immunoassays were presented nearly two decades ago and promised to revolutionise point-of-care (POC) testing by offering unmatched sensitivity and automation in a compact POC format; however, the development and adoption of microfluidic protein biomarker tests has fallen behind expectations. This review presents a detailed critical overview into the pipeline of microfluidic devices developed in the period 2005-2016 capable of measuring protein biomarkers from the pM to fM range in formats compatible with POC testing, with a particular focus on the use of affordable microfluidic materials and compact low-cost signal interrogation. The integration of these two important features (essential unique selling points for the successful microfluidic diagnostic products) has been missed in previous review articles and explain the poor adoption of microfluidic technologies in this field. Most current miniaturised devices compromise either on the affordability, compactness and/or performance of the test, making current tests unsuitable for the POC measurement of protein biomarkers. Seven core technical areas, including (i) the selected strategy for antibody immobilisation, (ii) the surface area and surface-area-to-volume ratio, (iii) surface passivation, (iv) the biological matrix interference, (v) fluid control, (vi) the signal detection modes and (vii) the affordability of the manufacturing process and detection system, were identified as the key to the effective development of a sensitive and affordable microfluidic protein biomarker POC test.
Collapse
Affiliation(s)
- Ana I Barbosa
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | - Nuno M Reis
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK and Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
19
|
Alizadeh Zeinabad H, Ghourchian H, Falahati M, Fathipour M, Azizi M, Boutorabi SM. Ultrasensitive interdigitated capacitance immunosensor using gold nanoparticles. NANOTECHNOLOGY 2018; 29:265102. [PMID: 29629877 DOI: 10.1088/1361-6528/aabca3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Immunosensors based on interdigitated electrodes (IDEs), have recently demonstrated significant improvements in the sensitivity of capacitance detection. Herein, a novel type of highly sensitive, compact and portable immunosensor based on a gold interdigital capacitor has been designed and developed for the rapid detection of hepatitis B surface antigen (HBsAg). To improve the efficiency of antibody immobilization and time-saving, a self-assembled monolayer (SAM) of 2-mercaptoethylamine film was coated on IDEs. Afterwards, carboxyl groups on primary antibodies were activated through 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and were immobilized on amino-terminated SAM for better control of the oriented immobilization of antibodies on gold IDEs. In addition, gold nanoparticles conjugated with a secondary antibody were used to enhance the sensitivity. Under optimal conditions, the immunosensor exhibited the sensitivity of 0.22 nF.pg ml-1, the linear range from 5 pg ml-1 to 1 ng ml-1 and the detection limit of 1.34 pg ml-1, at a signal-to-noise ratio of 3.
Collapse
Affiliation(s)
- Hojjat Alizadeh Zeinabad
- Laboratory of Bioanalysis, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran. MEMS & NEMS Lab, Department of Electrical and Computer Engineering, University of Tehran, Tehran, Iran. Department of Nanotechnology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
20
|
Smartphone based bioanalytical and diagnosis applications: A review. Biosens Bioelectron 2018; 102:136-149. [DOI: 10.1016/j.bios.2017.11.021] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 01/16/2023]
|
21
|
A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating. Biosens Bioelectron 2018; 100:155-160. [DOI: 10.1016/j.bios.2017.08.061] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/18/2017] [Accepted: 08/30/2017] [Indexed: 11/20/2022]
|
22
|
Wu R, Zhou S, Chen T, Li J, Shen H, Chai Y, Li LS. Quantitative and rapid detection of C-reactive protein using quantum dot-based lateral flow test strip. Anal Chim Acta 2018; 1008:1-7. [PMID: 29420938 DOI: 10.1016/j.aca.2017.12.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 01/01/2023]
Abstract
A novel QD-based immunoassay on a paper-based lateral flow system has been developed to quantitatively detect C-reactive protein (CRP). Different standard CRP antigens from 1 to 200 μg mL-1 were diluted 200-fold and only 60 μL diluted sample were needed to load onto the sample pad. The QD fluorescence signals on the test line and the control line were able to be observed within 3 min after the initiation of assay, and the limit of detection was as sensitive as 0.30 ng mL-1 by measuring the fluorescence intensity immediately afterwards with fluorescence immunoassay analyzer. The linearity on the detection of QD fluorescence signals has been established well in the range of 0.5 ng mL-1 and 1 μg mL-1 for CRP. The precision of the assay has been confirmed for low coefficient of variation (CV), satisfying less than 15% (intra-assay and inter-assay), and the accuracy of assay meets the requirements with the mean recovery of the control was 102.63%. These results indicated that such newly developed platform was reliable with high sensitivity, rapidness, and could cover a broad range of target concentrations. Furthermore, a total of 135 human serum clinical samples with inflammation or infection with the concentration of CRP from 0.2 to 200 μg mL-1 has been used to check the performance of this QD-based LFIA, it correlated very well with Roche Tina-quant CRP (Latex) (r = 0.966, n = 135).
Collapse
Affiliation(s)
- Ruili Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Henan, 475004, China
| | - Shuai Zhou
- NepQD Biotech Corp, Taizhou, 225300, China
| | - Ting Chen
- NepQD Biotech Corp, Taizhou, 225300, China
| | - Jinjie Li
- Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Henan, 475004, China
| | - Huaibin Shen
- Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Henan, 475004, China.
| | | | - Lin Song Li
- Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Henan, 475004, China.
| |
Collapse
|
23
|
Wang Y, Zeinhom MMA, Yang M, Sun R, Wang S, Smith JN, Timchalk C, Li L, Lin Y, Du D. A 3D-Printed, Portable, Optical-Sensing Platform for Smartphones Capable of Detecting the Herbicide 2,4-Dichlorophenoxyacetic Acid. Anal Chem 2017; 89:9339-9346. [DOI: 10.1021/acs.analchem.7b02139] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yijia Wang
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
- College
of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Mohamed M. A. Zeinhom
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
- Food
Hygiene Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62512, Egypt
| | - Mingming Yang
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Rongrong Sun
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Shengfu Wang
- College
of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Jordan N. Smith
- Health Impacts & Exposure Science, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Charles Timchalk
- Health Impacts & Exposure Science, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Lei Li
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yuehe Lin
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Dan Du
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
24
|
Smartphone coupled handheld array reader for real-time toxic gas detection. Anal Chim Acta 2017; 984:168-176. [PMID: 28843560 DOI: 10.1016/j.aca.2017.06.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/20/2017] [Accepted: 06/26/2017] [Indexed: 01/05/2023]
Abstract
Smartphones and related accessories are rapidly expanding their applications in various fields. Herein we developed a smartphone coupled handheld array reader with the integration of complementary metal oxide (CMOS) image sensor for detecting various toxic gases by colorimetric monitoring approach. In this study, toxic gases such as hydrogen fluoride (HF), chlorine (Cl2), ammonia (NH3), and formaldehyde (CH2O) were detected using titanium nanoparticles (TiO2 NPs) blended poly (vinyl alcohol) (PVA) hydrogel test strips, which were patterned with chemically responsive dyes. The dye colors changed based on acid-base reactions, and the colorimetric reader monitored the array strips and mapped them in the form of chrominance data. The observed signals transferred to a smartphone that displays the detected toxic gases and their exposure levels with the aid of the smartphone app "Toxic Gas Detection". The colorimetric array reader was precisely constructed with an auto-calibration system to minimize potential errors. Various concentration of toxic gases (0.5-10 ppm) were analyzed and achieved the detection limit of 1 ppm for each gas. Also, various analytical performance including sensitivity, stability, selectivity, and reproducibility analysis proved the reliability and accuracy of the detection system. Additionally, the smartphone app can be installed on any type of tablet, laptop, or other portable device. This study proved that smartphone coupled colorimetric array reader is a suitable system for detecting various toxic gases, chemicals and biochemical analysis with real-time monitoring approach.
Collapse
|
25
|
Psarouli A, Botsialas A, Salapatas A, Stefanitsis G, Nikita D, Jobst G, Chaniotakis N, Goustouridis D, Makarona E, Petrou PS, Raptis I, Misiakos K, Kakabakos SE. Fast label-free detection of C-reactive protein using broad-band Mach-Zehnder interferometers integrated on silicon chips. Talanta 2017; 165:458-465. [DOI: 10.1016/j.talanta.2017.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/30/2016] [Accepted: 01/02/2017] [Indexed: 11/28/2022]
|
26
|
Wynn D, Deo S, Daunert S. Engineering Rugged Field Assays to Detect Hazardous Chemicals Using Spore-Based Bacterial Biosensors. Methods Enzymol 2017; 589:51-85. [PMID: 28336074 DOI: 10.1016/bs.mie.2017.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacterial whole cell-based biosensors have been genetically engineered to achieve selective and reliable detection of a wide range of hazardous chemicals. Although whole-cell biosensors demonstrate many advantages for field-based detection of target analytes, there are still some challenges that need to be addressed. Most notably, their often modest shelf life and need for special handling and storage make them challenging to use in situations where access to reagents, instrumentation, and expertise are limited. These problems can be circumvented by developing biosensors in Bacillus spores, which can be engineered to address all of these concerns. In its sporulated state, a whole cell-based biosensor has a remarkably long life span and is exceptionally resistant to environmental insult. When these spores are germinated for use in analytical techniques, they show no loss in performance, even after long periods of storage under harsh conditions. In this chapter, we will discuss the development and use of whole cell-based sensors, their adaptation to spore-based biosensors, their current applications, and future directions in the field.
Collapse
Affiliation(s)
- Daniel Wynn
- Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sapna Deo
- Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sylvia Daunert
- Miller School of Medicine, University of Miami, Miami, FL, United States.
| |
Collapse
|
27
|
Zhang T, Liu J, Wang C, Leng X, Xiao Y, Fu L. Synthesis of graphene and related two-dimensional materials for bioelectronics devices. Biosens Bioelectron 2017; 89:28-42. [DOI: 10.1016/j.bios.2016.06.072] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 12/30/2022]
|
28
|
Hasanzadeh M, Shadjou N. Advanced nanomaterials for use in electrochemical and optical immunoassays of carcinoembryonic antigen. A review. Mikrochim Acta 2017. [DOI: 10.1007/s00604-016-2066-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Venkatesh AG, van Oordt T, Schneider EM, Zengerle R, von Stetten F, Luong JHT, Vashist SK. A Smartphone-Based Colorimetric Reader for Human C-Reactive Protein Immunoassay. Methods Mol Biol 2017; 1571:343-356. [PMID: 28281266 DOI: 10.1007/978-1-4939-6848-0_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A smartphone-based colorimetric reader (SBCR), comprising a Samsung Galaxy SIII mini, a gadget (iPAD mini, iPAD4, or iPhone 5s) and a custom-made dark hood and base holder assembly, is used for human C-reactive protein (CRP) immunoassay. A 96-well microtiter plate (MTP) is positioned on the gadget's screensaver to provide white light-based bottom illumination only in the specific regions corresponding to the well's bottom. The images captured by the smartphone's back camera are analyzed by a novel image processing algorithm. Based on one-step kinetics-based human C-reactive protein immunoassay (IA), SBCR is evaluated and compared with a commercial MTP reader (MTPR). For analysis of CRP spiked in diluted human whole blood and plasma as well as CRP in clinical plasma samples, SBCR exhibits the same precision, dynamic range, detection limit, and sensitivity as MTPR for the developed IA (DIA). Considering its compactness, low cost, advanced features and a remarkable computing power, SBCR is an ideal point-of-care (POC) colorimetric detection device for the next-generation of cost-effective POC testing (POCT).
Collapse
Affiliation(s)
- A G Venkatesh
- Department of Electrical and Computer Engineering, Jacobs School of Engineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Thomas van Oordt
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110, Freiburg, Germany
| | - E Marion Schneider
- Sektion Experimentelle Anaesthesiologie, University Hospital Ulm, Albert Einstein Allee 23, 89081, Ulm, Germany
| | - Roland Zengerle
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110, Freiburg, Germany
- Laboratory for MEMS Applications, Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110, Freiburg, Germany
| | - Felix von Stetten
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110, Freiburg, Germany
- Laboratory for MEMS Applications, Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110, Freiburg, Germany
| | - John H T Luong
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Department of Chemistry and Analytical, Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland
| | - Sandeep Kumar Vashist
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110, Freiburg, Germany.
- Laboratory for MEMS Applications, Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110, Freiburg, Germany.
- Immunodiagnostics Systems, Rue Ernst Solvay 101, Liege, 4000, Belgium.
| |
Collapse
|
30
|
Feng S, Tseng D, Di Carlo D, Garner OB, Ozcan A. High-throughput and automated diagnosis of antimicrobial resistance using a cost-effective cellphone-based micro-plate reader. Sci Rep 2016; 6:39203. [PMID: 27976700 PMCID: PMC5156953 DOI: 10.1038/srep39203] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/16/2016] [Indexed: 11/18/2022] Open
Abstract
Routine antimicrobial susceptibility testing (AST) can prevent deaths due to bacteria and reduce the spread of multi-drug-resistance, but cannot be regularly performed in resource-limited-settings due to technological challenges, high-costs, and lack of trained professionals. We demonstrate an automated and cost-effective cellphone-based 96-well microtiter-plate (MTP) reader, capable of performing AST without the need for trained diagnosticians. Our system includes a 3D-printed smartphone attachment that holds and illuminates the MTP using a light-emitting-diode array. An inexpensive optical fiber-array enables the capture of the transmitted light of each well through the smartphone camera. A custom-designed application sends the captured image to a server to automatically determine well-turbidity, with results returned to the smartphone in ~1 minute. We tested this mobile-reader using MTPs prepared with 17 antibiotics targeting Gram-negative bacteria on clinical isolates of Klebsiella pneumoniae, containing highly-resistant antimicrobial profiles. Using 78 patient isolate test-plates, we demonstrated that our mobile-reader meets the FDA-defined AST criteria, with a well-turbidity detection accuracy of 98.21%, minimum-inhibitory-concentration accuracy of 95.12%, and a drug-susceptibility interpretation accuracy of 99.23%, with no very major errors. This mobile-reader could eliminate the need for trained diagnosticians to perform AST, reduce the cost-barrier for routine testing, and assist in spatio-temporal tracking of bacterial resistance.
Collapse
Affiliation(s)
- Steve Feng
- Electrical Engineering Department, University of California, Los Angeles, California 90095, United States.,Bioengineering Department, University of California, Los Angeles, California 90095, United States
| | - Derek Tseng
- Electrical Engineering Department, University of California, Los Angeles, California 90095, United States.,Bioengineering Department, University of California, Los Angeles, California 90095, United States
| | - Dino Di Carlo
- Bioengineering Department, University of California, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California, Los Angeles, California 90095, United States.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, United States
| | - Omai B Garner
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
| | - Aydogan Ozcan
- Electrical Engineering Department, University of California, Los Angeles, California 90095, United States.,Bioengineering Department, University of California, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California, Los Angeles, California 90095, United States.,Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California 90095 United States
| |
Collapse
|
31
|
Fu Q, Wu Z, Xu F, Li X, Yao C, Xu M, Sheng L, Yu S, Tang Y. A portable smart phone-based plasmonic nanosensor readout platform that measures transmitted light intensities of nanosubstrates using an ambient light sensor. LAB ON A CHIP 2016; 16:1927-33. [PMID: 27137512 DOI: 10.1039/c6lc00083e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plasmonic nanosensors may be used as tools for diagnostic testing in the field of medicine. However, quantification of plasmonic nanosensors often requires complex and bulky readout instruments. Here, we report the development of a portable smart phone-based plasmonic nanosensor readout platform (PNRP) for accurate quantification of plasmonic nanosensors. This device operates by transmitting excitation light from a LED through a nanosubstrate and measuring the intensity of the transmitted light using the ambient light sensor of a smart phone. The device is a cylinder with a diameter of 14 mm, a length of 38 mm, and a gross weight of 3.5 g. We demonstrated the utility of this smart phone-based PNRP by measuring two well-established plasmonic nanosensors with this system. In the first experiment, the device measured the morphology changes of triangular silver nanoprisms (AgNPRs) in an immunoassay for the detection of carcinoembryonic antigen (CEA). In the second experiment, the device measured the aggregation of gold nanoparticles (AuNPs) in an aptamer-based assay for the detection of adenosine triphosphate (ATP). The results from the smart phone-based PNRP were consistent with those from commercial spectrophotometers, demonstrating that the smart phone-based PNRP enables accurate quantification of plasmonic nanosensors.
Collapse
Affiliation(s)
- Qiangqiang Fu
- Department of Bioengineering, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bioanalytical advances in assays for C-reactive protein. Biotechnol Adv 2016; 34:272-90. [DOI: 10.1016/j.biotechadv.2015.12.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 01/08/2023]
|
33
|
Roda A, Michelini E, Zangheri M, Di Fusco M, Calabria D, Simoni P. Smartphone-based biosensors: A critical review and perspectives. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.10.019] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Hutchison JR, Erikson RL, Sheen AM, Ozanich RM, Kelly RT. Reagent-free and portable detection of Bacillus anthracis spores using a microfluidic incubator and smartphone microscope. Analyst 2016; 140:6269-76. [PMID: 26266749 DOI: 10.1039/c5an01304f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bacillus anthracis is the causative agent of anthrax and can be contracted by humans and herbivorous mammals by inhalation, ingestion, or cutaneous exposure to bacterial spores. Due to its stability and disease potential, B. anthracis is a recognized biothreat agent and robust detection and viability methods are needed to identify spores from unknown samples. Here we report the use of smartphone-based microscopy (SPM) in combination with a simple microfluidic incubation device (MID) to detect 50 to 5000 B. anthracis Sterne spores in 3 to 5 hours. This technique relies on optical monitoring of the conversion of the ∼1 μm spores to the filamentous vegetative cells that range from tens to hundreds of micrometers in length. This distinguishing filament formation is unique to B. anthracis as compared to other members of the Bacillus cereus group. A unique feature of this approach is that the sample integrity is maintained, and the vegetative biomass can be removed from the chip for secondary molecular analysis such as PCR. Compared with existing chip-based and rapid viability PCR methods, this new approach reduces assay time by almost half, and is highly sensitive, specific, and cost effective.
Collapse
Affiliation(s)
- Janine R Hutchison
- Chemical Biological Signatures Science, National Security Directorate, Pacific Northwest National Laboratory, P. O. Box 999, Richland, Washington 99352, USA.
| | | | | | | | | |
Collapse
|
35
|
Fu Q, Wu Z, Li X, Yao C, Yu S, Xiao W, Tang Y. Novel versatile smart phone based Microplate readers for on-site diagnoses. Biosens Bioelectron 2016; 81:524-531. [PMID: 27019031 DOI: 10.1016/j.bios.2016.03.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 12/31/2022]
Abstract
Microplate readers are important diagnostic instruments, used intensively for various readout test kits (biochemical analysis kits and ELISA kits). However, due to their expensive and non-portability, commercial microplate readers are unavailable for home testing, community and rural hospitals, especially in developing countries. In this study, to provide a field-portable, cost-effective and versatile diagnostic tool, we reported a novel smart phone based microplate reader. The basic principle of this devise relies on a smart phone's optical sensor that measures transmitted light intensities of liquid samples. To prove the validity of these devises, developed smart phone based microplate readers were applied to readout results of various analytical targets. These targets included analanine aminotransferase (ALT; limit of detection (LOD) was 17.54 U/L), alkaline phosphatase (AKP; LOD was 15.56 U/L), creatinine (LOD was 1.35μM), bovine serum albumin (BSA; LOD was 0.0041mg/mL), prostate specific antigen (PSA; LOD was 0.76pg/mL), and ractopamine (Rac; LOD was 0.31ng/mL). The developed smart phone based microplate readers are versatile, portable, and inexpensive; they are unique because of their ability to perform under circumstances where resources and expertize are limited.
Collapse
Affiliation(s)
- Qiangqiang Fu
- Department of Bioengineering, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, PR China
| | - Ze Wu
- Department of Bioengineering, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, PR China
| | - Xiuqing Li
- Department of Bioengineering, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, PR China
| | - Cuize Yao
- Department of Bioengineering, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, PR China
| | - Shiting Yu
- Department of Bioengineering, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, PR China
| | - Wei Xiao
- Department of Bioengineering, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, PR China
| | - Yong Tang
- Department of Bioengineering, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, PR China; Institute of Biotranslational Medicine, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
36
|
Butwong N, Srijaranai S, Luong JHT. Fluorometric determination of hydrogen sulfide via silver-doped CdS quantum dots in solution and in a test strip. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1755-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Chang CC, Chen CP, Chen CY, Lin CW. DNA base-stacking assay utilizing catalytic hairpin assembly-induced gold nanoparticle aggregation for colorimetric protein sensing. Chem Commun (Camb) 2016; 52:4167-70. [PMID: 26906691 DOI: 10.1039/c6cc01238h] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A label-free and enzyme-free colorimetric sensing platform for the amplified detection of fibronectin was developed based on an ingenious combination of catalytic hairpin assembly and a base stacking hybridization-based gold nanoparticle aggregation strategy.
Collapse
Affiliation(s)
- Chia-Chen Chang
- Institute of Biomedical Engineering
- National Taiwan University
- Taipei 106
- Republic of China
| | - Chie-Pein Chen
- Department of Obstetrics and Gynecology
- Mackay Memorial Hospital
- Taipei 104
- Republic of China
| | - Chen-Yu Chen
- Department of Obstetrics and Gynecology
- Mackay Memorial Hospital
- Taipei 104
- Republic of China
- Department of Medicine
| | - Chii-Wann Lin
- Institute of Biomedical Engineering
- National Taiwan University
- Taipei 106
- Republic of China
- Institute of Biomedical Electronic and Bioinformatics
| |
Collapse
|
38
|
Peng J, Guan J, Yao H, Jin X. Magnetic colorimetric immunoassay for human interleukin-6 based on the oxidase activity of ceria spheres. Anal Biochem 2016; 492:63-8. [DOI: 10.1016/j.ab.2015.09.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
|
39
|
Immunosensing procedures for carcinoembryonic antigen using graphene and nanocomposites. Biosens Bioelectron 2015; 89:293-304. [PMID: 26620098 DOI: 10.1016/j.bios.2015.11.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/29/2015] [Accepted: 11/17/2015] [Indexed: 01/06/2023]
Abstract
Two-dimensional (2D) graphene, sp2-hybridized carbon, and its two major derivatives, graphene oxide (GO) and reduced graphene oxide (rGO) have played an important role in immunoassays (IAs) and immunosensing (IMS) platforms for the detection of carcinoembryonic antigen (CEA), an implicated tumor biomarker found in several types of cancer. The graphene family with high surface area is functionalized to form stable nanocomposites with gold nanoparticles (AuNPs) and electron mediators. The capture anti-CEA antibody (Ab) with high density can be anchored on AuNPs of such composites to provide remarkable detection sensitivity, significantly below the level found in normal subjects and cancer patients. Electrochemical and fluorescence/chemiluminescence-quenching properties of graphene-based nanocomposites are exploited in various detection schemes. Future endeavors are envisioned for the development of an array platform with high-throughput for CEA together with other tumor biomarkers and C-reactive protein, a universal biomarker for infection and inflammation. The ongoing efforts dedicated to the replacement of a lab-based detector by a cellphone with smart applications will further enable cost-effective and frequent monitoring of CEA in order to establish its clinical relevance and provide tools for real-time monitoring of patients during chemotherapy.
Collapse
|
40
|
Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JH. Emerging Technologies for Next-Generation Point-of-Care Testing. Trends Biotechnol 2015; 33:692-705. [DOI: 10.1016/j.tibtech.2015.09.001] [Citation(s) in RCA: 435] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/27/2015] [Accepted: 09/08/2015] [Indexed: 12/21/2022]
|
41
|
Yuan G, Yu C, Xia C, Gao L, Xu W, Li W, He J. A simultaneous electrochemical multianalyte immunoassay of high sensitivity C-reactive protein and soluble CD40 ligand based on reduced graphene oxide-tetraethylene pentamine that directly adsorb metal ions as labels. Biosens Bioelectron 2015; 72:237-46. [DOI: 10.1016/j.bios.2015.04.088] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/09/2015] [Accepted: 04/27/2015] [Indexed: 11/28/2022]
|
42
|
Pávai M, Orosz E, Paszternák A. Smartphone-Based Extension of the Curcumin/Cellophane pH Sensing Method. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0277-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Wang X, Jiang A, Hou T, Li H, Li F. Enzyme-free and label-free fluorescence aptasensing strategy for highly sensitive detection of protein based on target-triggered hybridization chain reaction amplification. Biosens Bioelectron 2015; 70:324-9. [PMID: 25840018 DOI: 10.1016/j.bios.2015.03.053] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 11/24/2022]
Abstract
Proteins are of great importance in medical and biological fields. In this paper, a novel fluorescent aptasensing strategy for protein assay has been developed based on target-triggered hybridization chain reaction (HCR) and graphene oxide (GO)-based selective fluorescence quenching. Three DNA probes, a helper DNA probe (HP), hairpin probe 1 (H1) and hairpin probe 2 (H2) are ingeniously designed. In the presence of the target, the aptamer sequences in HP recognize the target to form a target-aptamer complex, which causes the HP conformation change, and then triggers the chain-like assembly of H1 and H2 through the hybridization chain reaction, generating a long chain of HP leading complex of H1 and H2. At last the fluorescence indicator SYBR Green I (SG) binds with the long double strands of the HCR product through both intercalation and minor groove binding. When GO was added into the solutions after HCR, the free H1, H2 and SG would be closely adsorbed onto GO surface via π-π stacking. However, the HCR product cannot be adsorbed on GO surface, thereby the SG bound to HCR product gives a strong fluorescence signal dependent on the concentration of the target. With the use of platelet-derived growth factor BB (PDGF-BB) as the model analyte, this newly designed protocol provides a highly sensitive fluorescence detection of PDGF-BB with a limit of detection down to 1.25 pM, and also exhibit good selectivity and applicability in complex matrixes. Therefore, the proposed aptasensing strategy based on target-triggered hybridization chain reaction amplification should have wide applications in the diagnosis of genetic diseases due to its simplicity, low cost, and high sensitivity at extremely low target concentrations.
Collapse
Affiliation(s)
- Xiuzhong Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Aiwen Jiang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
44
|
Venkatesh AG, Sun A, Brickner H, Looney D, Hall DA, Aronoff-Spencer E. Yeast dual-affinity biobricks: Progress towards renewable whole-cell biosensors. Biosens Bioelectron 2015; 70:462-8. [PMID: 25863344 DOI: 10.1016/j.bios.2015.03.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 12/13/2022]
Abstract
Point-of-care (POC) diagnostic biosensors offer a promising solution to improve healthcare, not only in developed parts of the world, but also in resource limited areas that lack adequate medical infrastructure and trained technicians. However, in remote and resource limited settings, cost and storage of traditional POC immunoassays often limit actual deployment. Synthetically engineered biological components ("BioBricks") provide an avenue to reduce costs and simplify assay procedures. In this article, the design and development of an ultra-low cost, whole-cell "renewable" capture reagent for use in POC diagnostic applications is described. Yeast cells were genetically modified to display both single chain variable fragment (scFv) antibodies and gold-binding peptide (GBP) on their surfaces for simple one step enrichment and surface functionalization. Electrochemical impedance spectroscopy (EIS) and fluorescent imaging were used to verify and characterize the binding of cells to gold electrodes. A complete electrochemical detection assay was then performed on screen-printed electrodes fixed with yeast displaying scFv directed to Salmonella outer membrane protein D (OmpD). Electrochemical assays were optimized and cross-validated with established fluorescence techniques. Nanomolar detection limits were observed for both formats.
Collapse
Affiliation(s)
- A G Venkatesh
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexander Sun
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Howard Brickner
- School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - David Looney
- VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA; School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Drew A Hall
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
45
|
Lebiga E, Edwin Fernandez R, Beskok A. Confined chemiluminescence detection of nanomolar levels of H2O2 in a paper–plastic disposable microfluidic device using a smartphone. Analyst 2015; 140:5006-11. [DOI: 10.1039/c5an00720h] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the design and characterization of a disposable light shielded paper–plastic microfluidic device that can detect nanomolar levels of H2O2 using a smartphone camera and a light sealed accessory.
Collapse
Affiliation(s)
- Elise Lebiga
- Department of Mechanical Engineering
- Lyle School of Engineering
- Southern Methodist University
- Dallas
- USA
| | - Renny Edwin Fernandez
- Department of Mechanical Engineering
- Lyle School of Engineering
- Southern Methodist University
- Dallas
- USA
| | - Ali Beskok
- Department of Mechanical Engineering
- Lyle School of Engineering
- Southern Methodist University
- Dallas
- USA
| |
Collapse
|
46
|
Vashist SK, Schneider EM, Luong JHT. Surface plasmon resonance-based immunoassay for human C-reactive protein. Analyst 2015; 140:4445-52. [DOI: 10.1039/c5an00690b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A rapid and highly-sensitive surface plasmon resonance (SPR)-based immunoassay (IA) has been developed and validated for detecting human C-reactive protein (CRP), a specific biomarker for inflammatory and metabolic disorders, and infections.
Collapse
Affiliation(s)
- S. K. Vashist
- HSG-IMIT – Institut für Mikro- und Informationstechnik
- 79110 Freiburg
- Germany
- Laboratory for MEMS Applications
- Department of Microsystems Engineering – IMTEK
| | - E. M. Schneider
- Sektion Experimentelle Anaesthesiologie
- University Hospital Ulm
- 89081 Ulm
- Germany
| | - J. H. T. Luong
- Innovative Chromatography Group
- Irish Separation Science Cluster (ISSC)
- Department of Chemistry and Analytical
- Biological Chemistry Research Facility (ABCRF)
- University College Cork
| |
Collapse
|
47
|
Czilwik G, Vashist SK, Klein V, Buderer A, Roth G, von Stetten F, Zengerle R, Mark D. Magnetic chemiluminescent immunoassay for human C-reactive protein on the centrifugal microfluidics platform. RSC Adv 2015. [DOI: 10.1039/c5ra12527h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic of the LabDisk-based hCRP MCIA. The antibody-coated dynabeads are sequentially transported through the immunoassay buffers by magnetic actuation. Finally the chemiluminescence signal is acquired from a detection cavity.
Collapse
Affiliation(s)
| | - S. K. Vashist
- Hahn-Schickard
- 79110 Freiburg
- Germany
- Laboratory for MEMS Applications
- IMTEK – Department of Microsystems Engineering
| | - V. Klein
- Hahn-Schickard
- 79110 Freiburg
- Germany
| | | | - G. Roth
- BIOSS – Center for Biological Signalling Studies
- University of Freiburg
- 79110 Freiburg
- Germany
- Laboratory for Microarray Copying
| | - F. von Stetten
- Hahn-Schickard
- 79110 Freiburg
- Germany
- Laboratory for MEMS Applications
- IMTEK – Department of Microsystems Engineering
| | - R. Zengerle
- Hahn-Schickard
- 79110 Freiburg
- Germany
- Laboratory for MEMS Applications
- IMTEK – Department of Microsystems Engineering
| | - D. Mark
- Hahn-Schickard
- 79110 Freiburg
- Germany
| |
Collapse
|