1
|
He Y, Gong F, Yi K, Feng Y, Tang Z, Zhou F, Ji X, He Z. Freezing-assisted and affinity-mediated conjugation strategy: Boosting protein loading on gold nanoparticles for enhanced immunoassay performance. Talanta 2025; 288:127737. [PMID: 39955907 DOI: 10.1016/j.talanta.2025.127737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/04/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Protein-conjugated gold nanoparticles (protein-Au NPs) have been extensively applied in the field of biochemistry due to their unique properties. It is of great significance to regulate the protein loading, reduce the loss of protein activity, and enhance the stability and accessibility of protein-Au NPs for their biochemical application. Herein, we investigated the freezing-assisted strategy for binding proteins to Au NPs, which was effective for various proteins and Au NPs with different sizes. The protein-Au NPs prepared by this freezing strategy exhibited better stability and higher protein loading compared to those prepared by typical direct adsorption (shaking) strategy. Based on this, we proposed a freezing-assisted and affinity-mediated strategy to conjugate proteins to Au NPs. In this strategy, biotinylated BSA (BSA-Bio) was employed as a mediator to bind protein to Au NPs through bioaffinity interaction. By attaching streptavidin-conjugated HRP (SA-HRP) onto Au NPs in this way, a nanoparticle denoted as Au NPs@BSA-Bio@SA-HRP was obtained. And we discovered that the protein loading of this nanoparticle prepared with 68 nm Au NPs was astonishingly 253 times higher than that of shaking strategy under the same conditions. In view of the advantages of this freezing-assisted and affinity-mediated strategy, we prepared antibody- and BSA-Bio-conjugated Au NPs for the immunoassay of interleukin-6 (IL-6). A limit of detection of 3.39 pg/mL was achieved, which was 7.4 times more sensitive than the conventional method. This study offered a new insight for protein conjugation and demonstrated a great potential for practical applications.
Collapse
Affiliation(s)
- Yimiao He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Feng Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Kebing Yi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Feng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ziwen Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
| | - Xinghu Ji
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Zhike He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China; Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
2
|
Melchor-Moncada JJ, Vasquez-Giraldo S, Zuluaga-Vélez A, Orozco LM, Veloza LA, Sepúlveda-Arias JC. Bioconjugation of Serratiopeptidase with Titanium Oxide Nanoparticles: Improving Stability and Antibacterial Properties. J Funct Biomater 2024; 15:300. [PMID: 39452598 PMCID: PMC11508812 DOI: 10.3390/jfb15100300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant global health threat, necessitating the development of novel antibacterial strategies. Serratiopeptidase (SP), a metalloprotease produced by bacteria such as Serratia marcescens, has gained attention not only for its anti-inflammatory properties but also for its potential antibacterial activity. However, its protein nature makes it susceptible to pH changes and self-proteolysis, limiting its effectiveness. This study aimed to increase both the enzymatic stability and antibacterial activity of serratiopeptidase through immobilization on titanium oxide nanoparticles (TiO2-NPs), leveraging the biocompatibility and stability of these nanomaterials. Commercial TiO2-NPs were characterized using TGA/DTG, FT-IR, UV-Vis, and XRD analyses, and their biocompatibility was assessed through cytotoxicity studies. Serratiopeptidase was produced via fermentation using the C8 isolate of Serratia marcescens obtained from the intestine of Bombyx mori L., purified chromatographically, and immobilized on carboxylated nanoparticles via EDC/NHS coupling at various pH conditions. The optimal enzymatic activity was achieved by using pH 5.1 for nanoparticle activation and pH 5.5 for enzyme coupling. The resulting bioconjugate demonstrated stable proteolytic activity at 25 °C for 48 h. Immobilization was confirmed by FT-IR spectroscopy, and the Michaelis-Menten kinetics were determined. Notably, the bioconjugate exhibited two-fold greater antibacterial activity against E. coli than the free enzyme or TiO2-NPs at 1000 µg/mL. This study successfully developed a serratiopeptidase-TiO2 bioconjugate with enhanced enzymatic stability and antibacterial properties. The improved antibacterial activity of the immobilized enzyme presents a promising approach for developing new tools to combat antimicrobial resistance, with potential applications in healthcare, food safety, and environmental protection.
Collapse
Affiliation(s)
- Jhon Jairo Melchor-Moncada
- Grupo Infección e Inmunidad, Departamento de Ciencias Básicas, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; (J.J.M.-M.); (S.V.-G.); (A.Z.-V.)
| | - Santiago Vasquez-Giraldo
- Grupo Infección e Inmunidad, Departamento de Ciencias Básicas, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; (J.J.M.-M.); (S.V.-G.); (A.Z.-V.)
| | - Augusto Zuluaga-Vélez
- Grupo Infección e Inmunidad, Departamento de Ciencias Básicas, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; (J.J.M.-M.); (S.V.-G.); (A.Z.-V.)
| | - Lina Marcela Orozco
- Grupo Polifenoles, Facultad de Tecnología, Escuela de Tecnología Química, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; (L.M.O.); (L.A.V.)
| | - Luz Angela Veloza
- Grupo Polifenoles, Facultad de Tecnología, Escuela de Tecnología Química, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; (L.M.O.); (L.A.V.)
| | - Juan Carlos Sepúlveda-Arias
- Grupo Infección e Inmunidad, Departamento de Ciencias Básicas, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; (J.J.M.-M.); (S.V.-G.); (A.Z.-V.)
| |
Collapse
|
3
|
Soleimani S, Bruce-Tagoe TA, Ullah N, Rippy MG, Spratt HG, Danquah MK. Development and characterization of a portable electrochemical aptasensor for IsdA protein and Staphylococcus aureus detection. Anal Bioanal Chem 2024; 416:4619-4634. [PMID: 38916796 DOI: 10.1007/s00216-024-05410-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
Staphylococcus aureus (S. aureus) is recognized as one of the most common causes of gastroenteritis worldwide. This pathogen is a major foodborne pathogen that can cause many different types of various infections, from minor skin infections to lethal blood infectious diseases. Iron-regulated surface determinant protein A (IsdA) is an important protein on the S. aureus surface. It is responsible for iron scavenging via interaction with hemoglobin, haptoglobin, and hemoglobin-haptoglobin complexes. This study develops a portable aptasensor for IsdA and S. aureus detection using aptamer-modified gold nanoparticles (AuNPs) integrated into screen-printed carbon electrodes (SPCEs). The electrode system was made of three parts, including a carbon counter electrode, an AuNPs/carbon working electrode, and a silver reference electrode. The aptamer by Au-S bonding was conjugated on the electrode surface to create the aptasensor platform. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were utilized to investigate the binding interactions between the aptasensor and the IsdA protein. CV studies showed a linear correlation between varying S. aureus concentrations within the range of 101 to 106 CFU/mL, resulting in a limit of detection (LOD) of 0.2 CFU/mL. The results demonstrated strong reproducibility, selectivity, and sensitivity of the aptasensor for enhanced detection of IsdA, along with about 93% performance stability after 30 days. The capability of the aptasensor to directly detect S. aureus via the IsdA surface protein binding was further investigated in a food matrix. Overall, the aptasensor device showed the potential for rapid detection of S. aureus, serving as a robust approach to developing real-time aptasensors to identify an extensive range of targets of foodborne pathogens and beyond.
Collapse
Affiliation(s)
- Shokoufeh Soleimani
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tracy Ann Bruce-Tagoe
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Najeeb Ullah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Meredith G Rippy
- Department of Biology, Geology, and Environmental Science, University of Tennessee, Chattanooga, TN, 37403, USA
| | - Henry G Spratt
- Department of Biology, Geology, and Environmental Science, University of Tennessee, Chattanooga, TN, 37403, USA
| | - Michael K Danquah
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
4
|
Zheng R, Wu A, Li J, Tang Z, Zhang J, Zhang M, Wei Z. Progress and Outlook on Electrochemical Sensing of Lung Cancer Biomarkers. Molecules 2024; 29:3156. [PMID: 38999110 PMCID: PMC11243195 DOI: 10.3390/molecules29133156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/08/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Electrochemical biosensors have emerged as powerful tools for the ultrasensitive detection of lung cancer biomarkers like carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), and alpha fetoprotein (AFP). This review comprehensively discusses the progress and potential of nanocomposite-based electrochemical biosensors for early lung cancer diagnosis and prognosis. By integrating nanomaterials like graphene, metal nanoparticles, and conducting polymers, these sensors have achieved clinically relevant detection limits in the fg/mL to pg/mL range. We highlight the key role of nanomaterial functionalization in enhancing sensitivity, specificity, and antifouling properties. This review also examines challenges related to reproducibility and clinical translation, emphasizing the need for standardization of fabrication protocols and robust validation studies. With the rapid growth in understanding lung cancer biomarkers and innovations in sensor design, nanocomposite electrochemical biosensors hold immense potential for point-of-care lung cancer screening and personalized therapy guidance. Realizing this goal will require strategic collaboration among material scientists, engineers, and clinicians to address technical and practical hurdles. Overall, this work provides valuable insight for developing next-generation smart diagnostic devices to combat the high mortality of lung cancer.
Collapse
Affiliation(s)
- Rui Zheng
- The Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450053, China; (R.Z.); (A.W.)
- Cancer Research Institute, Henan Integrative Medicine Hospital, Zhengzhou 450003, China; (M.Z.); (Z.W.)
| | - Aochun Wu
- The Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450053, China; (R.Z.); (A.W.)
- Cancer Research Institute, Henan Integrative Medicine Hospital, Zhengzhou 450003, China; (M.Z.); (Z.W.)
| | - Jiyue Li
- The First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450099, China; (J.L.); (Z.T.)
| | - Zhengfang Tang
- The First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450099, China; (J.L.); (Z.T.)
| | - Junping Zhang
- Cancer Research Institute, Henan Integrative Medicine Hospital, Zhengzhou 450003, China; (M.Z.); (Z.W.)
| | - Mingli Zhang
- Cancer Research Institute, Henan Integrative Medicine Hospital, Zhengzhou 450003, China; (M.Z.); (Z.W.)
| | - Zheng Wei
- Cancer Research Institute, Henan Integrative Medicine Hospital, Zhengzhou 450003, China; (M.Z.); (Z.W.)
| |
Collapse
|
5
|
Vazquez-Gutierrez I, Reyes-López MA, Ochoa SA, Cruz-Córdova A, Hernández-Castro R, Orduña-Díaz A, Xicohtencatl-Cortes J. Specific Detection of Uropathogenic Escherichia coli via Fourier Transform Infrared Spectroscopy Using an Optical Biosensor. ACS OMEGA 2024; 9:27528-27536. [PMID: 38947791 PMCID: PMC11209919 DOI: 10.1021/acsomega.4c02794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 07/02/2024]
Abstract
Urinary tract infections (UTIs) are caused mainly by uropathogenic Escherichia coli (UPEC), accounting for both uncomplicated (75%) and complicated (65%) UTIs. Detecting UPEC in a specific, rapid, and timely manner is essential for eradication, and optical biosensors may be useful tools for detecting UPEC. Recently, biosensors have been developed for the selective detection of antigen-antibody-specific interactions. In this study, a methodology based on the principle of an optical biosensor was developed to identify specific biomolecules, such as the PapG protein, which is located at the tip of P fimbriae and promotes the interaction of UPEC with the uroepithelium of the human kidney during a UTI. For biosensor construction, recombinant PapG protein was generated and polyclonal anti-PapG antibodies were obtained. The biosensor was fabricated in silicon supports because its surface and anchor biomolecules can be modified through its various properties. The fabrication process was carried out using self-assembled monolayers (SAMs) and an immobilized bioreceptor (anti-PapG) to detect the PapG protein. Each stage of biosensor development was evaluated by Fourier transform infrared (FTIR) spectroscopy. The infrared spectra showed bands corresponding to the C-H, C=O, and amide II bonds, revealing the presence of the PapG protein. Then, the spectra of the second derivative were obtained from 1600 to 1700 cm-1 to specifically determine the interactions that occur in the secondary structures between the biological recognition element (anti-PapG antibodies) and the analyte (PapG protein) complex. The analyzed secondary structure showed β-sheets and β-turns during the detection of the PapG protein. Our data suggest that the PapG protein can be detected through an optical biosensor and that the biosensor exhibited high specificity for the detection of UPEC strains. Furthermore, these studies provide initial support for the development of more specific biosensors that can be applied in the future for the detection of clinical UPEC samples associated with ITUs.
Collapse
Affiliation(s)
- Isabel
G. Vazquez-Gutierrez
- Centro
de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Mexico 90700, Tlaxcala, México
- Centro
de Biotecnología Genómica, Instituto Politécnico Nacional, Mexico 88710, Tamaulipas, México
- Laboratorio
de Investigación en Bacteriología Intestinal, Unidad
de Enfermedades Infecciosas, Hospital Infantil
de México “Federico Gómez”, Mexico 06720, CDMX, México
| | - Miguel A. Reyes-López
- Centro
de Biotecnología Genómica, Instituto Politécnico Nacional, Mexico 88710, Tamaulipas, México
| | - Sara A. Ochoa
- Laboratorio
de Investigación en Bacteriología Intestinal, Unidad
de Enfermedades Infecciosas, Hospital Infantil
de México “Federico Gómez”, Mexico 06720, CDMX, México
| | - Ariadnna Cruz-Córdova
- Laboratorio
de Investigación en Bacteriología Intestinal, Unidad
de Enfermedades Infecciosas, Hospital Infantil
de México “Federico Gómez”, Mexico 06720, CDMX, México
| | - Rigoberto Hernández-Castro
- Departamento
de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel
Gea González”, Mexico 14000, CDMX, México
| | - Abdú Orduña-Díaz
- Centro
de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Mexico 90700, Tlaxcala, México
| | - Juan Xicohtencatl-Cortes
- Laboratorio
de Investigación en Bacteriología Intestinal, Unidad
de Enfermedades Infecciosas, Hospital Infantil
de México “Federico Gómez”, Mexico 06720, CDMX, México
| |
Collapse
|
6
|
Yarjoo S, Siampour H, Khalilipour M, Sajedi RH, Bagheri H, Moshaii A. Gold nanostructure-enhanced immunosensing: ultra-sensitive detection of VEGF tumor marker for early disease diagnosis. Sci Rep 2024; 14:10450. [PMID: 38714678 PMCID: PMC11608251 DOI: 10.1038/s41598-024-60447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/23/2024] [Indexed: 05/10/2024] Open
Abstract
We present an advanced electrochemical immunosensor designed to detect the vascular endothelial growth factor (VEGF) precisely. The sensor is constructed on a modified porous gold electrode through a fabrication process involving the deposition of silver and gold on an FTO substrate. Employing thermal annealing and a de-alloying process, the silver is eliminated from the electrode, producing a reproducible porous gold substrate. Utilizing a well-defined protocol, we immobilize the heavy-chain (VHH) antibody against VEGF on the gold substrate, facilitating VEGF detection through various electrochemical methods. Remarkably, this immunosensor performs well, featuring an impressive detection limit of 0.05 pg/mL and an extensive linear range from 0.1 pg/mL to 0.1 µg/mL. This emphasizes it's to measure biomarkers across a wide concentration spectrum precisely. The robust fabrication methodology in this research underscores its potential for widespread application, offering enhanced precision, reproducibility, and remarkable detection capabilities for the developed immunosensor.
Collapse
Affiliation(s)
- Sadaf Yarjoo
- Department of Physics, Tarbiat Modares University, P.O Box 14115-175, Tehran, Iran
| | - Hossein Siampour
- Department of Physics, Tarbiat Modares University, P.O Box 14115-175, Tehran, Iran
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences, P. O. Box 81746-73461, Isfahan, Iran
| | - Mehrsa Khalilipour
- Department of Physics, Tarbiat Modares University, P.O Box 14115-175, Tehran, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran, 14115-154, Iran
| | - Hassan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ahmad Moshaii
- Department of Physics, Tarbiat Modares University, P.O Box 14115-175, Tehran, Iran.
- Department of Sensor and Biosensor, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, P. O. Box 14115-336, Tehran, Iran.
| |
Collapse
|
7
|
Yang S, Ding Z, Chu L, Su M, Liu H. Quantified instant conjugation of peptides on a nanogold surface for tunable ice recrystallization inhibition. NANOSCALE 2023; 15:19746-19756. [PMID: 38047706 DOI: 10.1039/d3nr05019j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The adverse effects of recrystallization limit the application of cryopreservation in many fields. Peptide-based materials play an essential role in the antifreezing area because of their excellent biocompatibility and abundant ice-binding sites. Peptide-gold nanoparticle conjugates can effectively reduce time and material costs through metal-thiol interactions, but controlled modification remains an outstanding issue, which makes it difficult to elucidate the antifreezing effects of antifreeze peptides at different densities and lengths. In this study, we developed an instant peptide capping on gold nanoparticles with butanol-assisted dehydration and provided a controllable quantitative coupling within a certain range. This chemical dehydration makes it possible to fabricate peptide-gold nanoparticle conjugates in large batches at minute levels. Based on this, the influence of the peptide density and sequence length on the antifreezing behaviors of the conjugates was investigated. The results evidenced that the antifreezing property of the flexible peptide conjugated on a rigid core is related to both the density and length of the peptide. In a certain range, the density is proportional to the antifreeze, while the length is negatively correlated with it. We proposed a rapidly controllable method for synthesizing peptide-gold nanoparticle conjugates, which may provide a universal approach for the development of subsequent recrystallization-inhibiting materials.
Collapse
Affiliation(s)
- Shixuan Yang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Zhongxiang Ding
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Leiming Chu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Mengke Su
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Honglin Liu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
8
|
du Plooy J, Kock B, Jahed N, Iwuoha E, Pokpas K. Carbon Nanostructured Immunosensing of Anti-SARS-CoV-2 S-Protein Antibodies. Molecules 2023; 28:8022. [PMID: 38138513 PMCID: PMC10745885 DOI: 10.3390/molecules28248022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The rampant spread and death rate of the recent coronavirus pandemic related to the SARS-CoV-2 respiratory virus have underscored the critical need for affordable, portable virus diagnostics, particularly in resource-limited settings. Moreover, efficient and timely monitoring of vaccine efficacy is needed to prevent future widespread infections. Electrochemical immunosensing poses an effective alternative to conventional molecular spectroscopic approaches, offering rapid, cost-effective, sensitive, and portable electroanalysis of disease biomarkers and antibodies; however, efforts to improve binding efficiency and sensitivity are still being investigated. Graphene quantum dots (GQDs) in particular have shown promise in improving device sensitivity. This study reports the development of a GQD-functionalized point-of-contamination device leveraging the selective interactions between SARS-CoV-2-specific Spike (S) Protein receptor binding domain (RBD) antigens and IgG anti-SARS-CoV-2-specific S-protein antibodies at screen-printed carbon electrode (SPCE) surfaces. The immunocomplexes formed at the GQD surfaces result in the interruption of the redox reactions that take place in the presence of a redox probe, decreasing the current response. Increased active surface area, conductivity, and binding via EDC/NHS chemistry were achieved due to the nanomaterial inclusion, with 5 nm, blue luminescent GQDs offering the best results. GQD concentration, EDC/NHS ratio, and RBD S-protein incubation time and concentration were optimized for the biosensor, and inter- and intra-screen-printed carbon electrode detection was investigated by calibration studies on multiple and single electrodes. The single electrode used for the entire calibration provided the best results. The label-free immunosensor was able to selectively detect anti-SARS-CoV-2 IgG antibodies between 0.5 and 100 ng/mL in the presence of IgM and other coronavirus antibodies with an excellent regression of 0.9599. A LOD of 2.028 ng/mL was found, offering comparable findings to the literature-reported values. The detection sensitivity of the sensor is further compared to non-specific IgM antibodies. The developed GQD immunosensor was compared to other low-oxygen content carbon nanomaterials, namely (i) carbon quantum dot (CQD), (ii) electrochemically reduced graphene oxide, and (iii) carbon black-functionalized devices. The findings suggest that improved electron transfer kinetics and increased active surface area of the CNs, along with surface oxygen content, aid in the detection of anti-SARS-CoV-2 IgG antibodies. The novel immunosensor suggests a possible application toward monitoring of IgG antibody production in SARS-CoV-2-vaccinated patients to study immune responses, vaccine efficacy, and lifetime to meet the demands for POC analysis in resource-limited settings.
Collapse
Affiliation(s)
| | | | | | | | - Keagan Pokpas
- SensorLab, Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| |
Collapse
|
9
|
Rotake DR, Ghosh TN, Singh SG. Electrochemical nano-biosensor based on electrospun indium zinc oxide nanofibers for the determination of complement component 3 protein. Mikrochim Acta 2023; 190:320. [PMID: 37490230 DOI: 10.1007/s00604-023-05865-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/06/2023] [Indexed: 07/26/2023]
Abstract
Age-related macular degeneration (AMD) is a progressive chronic neurodegenerative retinal disease leading to vision loss, irreversible blindness, and visual impairment in older adults worldwide. Complement component 3 (C3) protein has been identified as the most predominant biomarker towards early diagnosis of AMD; therefore, there is an utmost requirement for non-invasive detection of C3 protein in the tear fluids of AMD patients. Considering this, we report an insightful electrochemical sensor capable of detecting clinically relevant concentrations ranging from 10 fg/mL to 1 μg/mL using electrospun indium-doped zinc oxide (InZnO) nanofibers as the transducing layer. The InZnO nanofibers have facilitated high anti-C3 antibody loading of 3.42 × 10-9 mol/cm2 and enhanced the overall charge transport mechanism at the sensor interface. The biofunctionalization process of the biosensor was investigated thoroughly using X-ray photoelectron spectroscopy (XPS) as well as different electrochemical techniques. The target C3 proteins were captured on the fabricated biosensor surface and determined through changes in charge transfer resistance (RCT) while executing electrochemical impedance spectroscopy (EIS) and peak current (Ip) in the case of cyclic voltammetry (CV) and differential pulse voltammetry (DPV), respectively. The InZnO nanofiber-based nano-biosensor demonstrated a very low limit of detections (LODs) of 5.214 fg/mL and 0.241 fg/mL with an excellent sensitivity of 4.6709 (ΔR/R) (g/mL)-1 cm-2 and 54.4939 (ΔIp/Ip)% (g/mL)-1 cm-2 for EIS and DPV techniques, respectively. By virtue of high antibody loading, ultrasensitive and ultra-selective capability, the indium-doped ZnO nanofibers show huge potential to be used as a high-performance diagnostic platform for AMD diagnosis.
Collapse
Affiliation(s)
- Dinesh Ramkrushna Rotake
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, Telangana, 502285, India
| | - Tanmoya Nemai Ghosh
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, Telangana, 502285, India
| | - Shiv Govind Singh
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, Telangana, 502285, India.
| |
Collapse
|
10
|
Solin K, Vuoriluoto M, Khakalo A, Tammelin T. Cannabis detection with solid sensors and paper-based immunoassays by conjugating antibodies to nanocellulose. Carbohydr Polym 2023; 304:120517. [PMID: 36641163 DOI: 10.1016/j.carbpol.2022.120517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Highly sensitive and specific diagnostics for cannabis usage are essential for rapid on-site screening for illicit drug usage. To improve the sensitivity of THC immunoassays, a proper immobilization of the sensing elements on the sensor substrate is critical. In this work, we demonstrated the utilization of EDC/NHS coupling chemistry with nanocellulose to obtain efficient anchor layers for the immobilization of anti-immune complex antibodies on surfaces. In our approach, the high surface-to-volume ratio, OH-group-rich surface, and high hygroscopicity of TOCNF enable efficient surface functionalization and enhance water permeation inside the nanocellulose network structure, offering a hydrophilic spacer for the sensing antibodies. THC detection was shown in both SPR (surface plasmon resonance technique) and paper-based sensing systems. In SPR, antibody immobilization and the related interactions with the target molecule complex with 1-10 μg/mL THC were followed in-situ in aqueous environment, revealing robust attachment of the antibody to the nanocellulose layer and preserved bioactivity. Additionally, quantitative THC detection was enabled on paper substrate by colorimetric means by employing labeled anti-THC Fab antibody fragments as detection antibodies. THC detection efficiency of covalently linked biointerface was superior compared to the performance of physically linked biointerface. The chemical conjugation of anti-IC to nanocellulose allowed efficient binding, whereas supramolecular conjugation led to insufficient binding, highlighting the relevance of the developed nanocellulose-based anchor layer.
Collapse
Affiliation(s)
- Katariina Solin
- VTT Technical Research Centre of Finland Ltd., Tietotie 4E, FI-02044 Espoo, Finland
| | - Maija Vuoriluoto
- VTT Technical Research Centre of Finland Ltd., Tietotie 4E, FI-02044 Espoo, Finland
| | - Alexey Khakalo
- VTT Technical Research Centre of Finland Ltd., Tietotie 4E, FI-02044 Espoo, Finland.
| | - Tekla Tammelin
- VTT Technical Research Centre of Finland Ltd., Tietotie 4E, FI-02044 Espoo, Finland
| |
Collapse
|
11
|
Nasrollahpour H, Khalilzadeh B, Hasanzadeh M, Rahbarghazi R, Estrela P, Naseri A, Tasoglu S, Sillanpää M. Nanotechnology‐based electrochemical biosensors for monitoring breast cancer biomarkers. Med Res Rev 2022; 43:464-569. [PMID: 36464910 DOI: 10.1002/med.21931] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/01/2022] [Accepted: 11/04/2022] [Indexed: 12/07/2022]
Abstract
Breast cancer is categorized as the most widespread cancer type among women globally. On-time diagnosis can decrease the mortality rate by making the right decision in the therapy procedure. These features lead to a reduction in medication time and socioeconomic burden. The current review article provides a comprehensive assessment for breast cancer diagnosis using nanomaterials and related technologies. Growing use of the nano/biotechnology domain in terms of electrochemical nanobiosensor designing was discussed in detail. In this regard, recent advances in nanomaterial applied for amplified biosensing methodologies were assessed for breast cancer diagnosis by focusing on the advantages and disadvantages of these approaches. We also monitored designing methods, advantages, and the necessity of suitable (nano) materials from a statistical standpoint. The main objective of this review is to classify the applicable biosensors based on breast cancer biomarkers. With numerous nano-sized platforms published for breast cancer diagnosis, this review tried to collect the most suitable methodologies for detecting biomarkers and certain breast cancer cell types.
Collapse
Affiliation(s)
- Hassan Nasrollahpour
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic and Electrical Engineering University of Bath Bath UK
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Savas Tasoglu
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer Istanbul Turkey
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Environment and Labour Safety Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
12
|
pH-Regulated Strategy and Mechanism of Antibody Orientation on Magnetic Beads for Improving Capture Performance of Staphylococcus Species. Foods 2022; 11:foods11223599. [PMID: 36429188 PMCID: PMC9689862 DOI: 10.3390/foods11223599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Immunomagnetic beads (IMBs) have been widely used to capture and isolate target pathogens from complex food samples. The orientation of the antibody immobilized on the surface of magnetic beads (MBs) is closely related to the effective recognition with an antigen. We put forward an available strategy to orient the antibody on the surface of MBs by changing the charged amino group ratio of the reactive amino groups at optimal pH value. Quantum dots labeling antigen assay, antigen-binding fragment (Fab) accessibility assay and lysine mimicking were used for the first time to skillfully illustrate the antibody orientation mechanism. This revealed that the positively charged ε-NH2 group of lysine on the Fc relative to the uncharged amino terminus on Fab was preferentially adsorbed on the surface of MBs with a negatively charged group at pH 8.0, resulting in antigen binding sites of antibody fully exposed. This study contributes to the understanding of the antibody orientation on the surface of MBs and the potential application of IMBs in the separation and detection of pathogenic bacteria in food samples.
Collapse
|
13
|
Square wave voltammetric approach to leptin immunosensing and optimization of driving parameters with chemometrics. Biosens Bioelectron 2022; 216:114592. [PMID: 35969964 DOI: 10.1016/j.bios.2022.114592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 12/28/2022]
Abstract
Square wave voltammetry serves as an effective analytical means to evaluate antigen-antibody coupling at the solid-liquid interface. Herein, we describe 3-aminopropyltrimethoxysilane (APTMS) induced irreversible immobilization of anti-leptin to micellar gold nanoparticles (AuNPs). Antibodies (Abs) were orthogonally loaded on micellized AuNP assemblies via amino residual groups. The ratio of bound Ab molecules was determined by the Bradford assay. The AuNP/Ab layer modified electrodes with variable antibody surface coverage (∼400 ± 55-200 ± 30 Ab/NP) were analyzed in terms of change in backward, net current (Ip) components. The rate of antigen coupling was found to be consistent with the variation in antibody density as well as the binding affinity. The lowest detection limit was observed at the femtomolar level (0.25 fM/mL) over a wide range of antigen concentration (6.2 ng/mL to 0.12 fg/mL). The variables affecting the epitope-paratope interaction were further optimized using a chemometric approach and a response surface methodology (RSM).
Collapse
|
14
|
Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Antibody-based cancer therapy, one of the most significant therapeutic strategies, has achieved considerable success and progress over the past decades. Nevertheless, obstacles including limited tumor penetration, short circulation half-lives, undesired immunogenicity, and off-target side effects remain to be overcome for the antibody-based cancer treatment. Owing to the rapid development of nanotechnology, antibody-containing nanomedicines that have been extensively explored to overcome these obstacles have already demonstrated enhanced anticancer efficacy and clinical translation potential. This review intends to offer an overview of the advancements of antibody-incorporated nanoparticulate systems in cancer treatment, together with the nontrivial challenges faced by these next-generation nanomedicines. Diverse strategies of antibody immobilization, formats of antibodies, types of cancer-associated antigens, and anticancer mechanisms of antibody-containing nanomedicines are provided and discussed in this review, with an emphasis on the latest applications. The current limitations and future research directions on antibody-containing nanomedicines are also discussed from different perspectives to provide new insights into the construction of anticancer nanomedicines.
Collapse
Affiliation(s)
- Shun-Yu Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
15
|
Yang S, Feng W, Xue L, Yin M, Li B, Lu L, Dai F, Jiao J, Chen Q. Multifunctional amino acids empowering bifunctional biosensing platform for depression study. Biosens Bioelectron 2022; 201:113972. [PMID: 35030465 DOI: 10.1016/j.bios.2022.113972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/18/2021] [Accepted: 01/04/2022] [Indexed: 12/23/2022]
Abstract
Poor availability of objective approaches hinders effective diagnosis and treatment for depression. Biosensors provide a promising platform for the development of quantitative and practical methods for disease detection, as well as for drug discovery. Here, we developed an electrochemical biosensor has been established with the ability to simply and accurately detect the trace glucocorticoid receptor alpha (GRα), as a key biomarker of depression, in both hippocampus and blood cells. The integration of amino-ion graphene oxide (IL-rGO) and amino acid-coated gold nanoparticles (AA-AuNPs) via green synthesis remarkably magnifies the electrochemical signals, where amino acids play multiple roles as reducing agents, stabilizers, and bridging agents. After the optimization among AA-AuNPs@IL-rGO nanocomposites based on five typical amino acids, a biosensing surface has been constructed to implement analysis in real samples as a bifunctional platform. The obtained biosensor exhibited a remarkably low limit of detection (0.283 pg mL-1) and could thus sensitively identify the GRα differences in healthy and depressive rats with and without fluoxetine. The electrochemical biosensor developed herein was not only outstandingly sensitive but also simple to use and labor-saving, making it a promising all-in-one platform for depression diagnosis and drug discovery.
Collapse
Affiliation(s)
- Shengnan Yang
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China
| | - Wei Feng
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China
| | - Lan Xue
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China
| | - Mengai Yin
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China
| | - Binshuai Li
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China
| | - Lina Lu
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China
| | - Fuju Dai
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China
| | - Jun Jiao
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China.
| | - Qiang Chen
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, PR China.
| |
Collapse
|
16
|
Gao S, Guisán JM, Rocha-Martin J. Oriented immobilization of antibodies onto sensing platforms - A critical review. Anal Chim Acta 2022; 1189:338907. [PMID: 34815045 DOI: 10.1016/j.aca.2021.338907] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/08/2021] [Accepted: 07/31/2021] [Indexed: 12/26/2022]
Abstract
The immunosensor has been proven a versatile tool to detect various analytes, such as food contaminants, pathogenic bacteria, antibiotics and biomarkers related to cancer. To fabricate robust and reproducible immunosensors with high sensitivity, the covalent immobilization of immunoglobulins (IgGs) in a site-specific manner contributes to better performance. Instead of the random IgG orientations result from the direct yet non-selective immobilization techniques, this review for the first time introduces the advances of stepwise yet site-selective conjugation strategies to give better biosensing efficiency. Noncovalently adsorbing IgGs is the first but decisive step to interact specifically with the Fc fragment, then following covalent conjugate can fix this uniform and antigens-favorable orientation irreversibly. In this review, we first categorized this stepwise strategy into two parts based on the different noncovalent interactions, namely adhesive layer-mediated interaction onto homofunctional support and layer-free interaction onto heterofunctional support (which displays several different functionalities on its surface that are capable to interact with IgGs). Further, the influence of ligands characteristics (synthesis strategies, spacer requirements and matrices selection) on the heterofunctional support has also been discussed. Finally, conclusions and future perspectives for the real-world application of stepwise covalent conjugation are discussed. This review provides more insights into the fabrication of high-efficiency immunosensor, and special attention has been devoted to the well-orientation of full-length IgGs onto the sensing platform.
Collapse
Affiliation(s)
- Shipeng Gao
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - José M Guisán
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain.
| | - Javier Rocha-Martin
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
17
|
Hu B, Liu R, Liu Q, Lin Z, Shi Y, Li J, Wang L, Li L, Xiao X, Wu Y. Engineering surface patterns on nanoparticles: New insights on nano-bio interactions. J Mater Chem B 2022; 10:2357-2383. [DOI: 10.1039/d1tb02549j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The surface properties of nanoparticles affect their fates in biological systems. Based on nanotechnology and methodology, pioneering works have explored the effects of chemical surface patterns on the behavior of...
Collapse
|
18
|
Nasrin F, Tsuruga K, Utomo DIS, Chowdhury AD, Park EY. Design and Analysis of a Single System of Impedimetric Biosensors for the Detection of Mosquito-Borne Viruses. BIOSENSORS 2021; 11:376. [PMID: 34677332 PMCID: PMC8533959 DOI: 10.3390/bios11100376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022]
Abstract
The treatment for mosquito-borne viral diseases such as dengue virus (DENV), zika virus (ZIKV), and chikungunya virus (CHIKV) has become difficult due to delayed diagnosis processes. In addition, sharing the same transmission media and similar symptoms at the early stage of infection of these diseases has become more critical for early diagnosis. To overcome this, a common platform that can identify the virus with high sensitivity and selectivity, even for the different serotypes, is in high demand. In this study, we have attempted an electrochemical impedimetric method to detect the ZIKV, DENV, and CHIKV using their corresponding antibody-conjugated sensor electrodes. The significance of this method is emphasized on the fabrication of a common matrix of gold-polyaniline and sulfur, nitrogen-doped graphene quantum dot nanocomposites (Au-PAni-N,S-GQDs), which have a strong impedimetric response based only on the conjugated antibody, resulting in minimum cross-reactivity for the detection of various mosquito-borne viruses, separately. As a result, four serotypes of DENV and ZIKV, and CHIKV have been detected successfully with an LOD of femtogram mL-1.
Collapse
Affiliation(s)
- Fahmida Nasrin
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (F.N.); (A.D.C.)
| | - Kenta Tsuruga
- Laboratory of Biotechnology, Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan;
| | - Doddy Irawan Setyo Utomo
- Laboratory of Biotechnology, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan;
| | - Ankan Dutta Chowdhury
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (F.N.); (A.D.C.)
| | - Enoch Y. Park
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (F.N.); (A.D.C.)
- Laboratory of Biotechnology, Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan;
- Laboratory of Biotechnology, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan;
| |
Collapse
|
19
|
Okyem S, Awotunde O, Ogunlusi T, Riley MB, Driskell JD. High-Affinity Points of Interaction on Antibody Allow Synthesis of Stable and Highly Functional Antibody-Gold Nanoparticle Conjugates. Bioconjug Chem 2021; 32:1753-1762. [PMID: 34228917 DOI: 10.1021/acs.bioconjchem.1c00261] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many emerging nanobiotechnologies rely on the proper function of proteins immobilized on gold nanoparticles. Often, the surface chemistry of the AuNP is engineered to control the orientation, surface coverage, and structure of the adsorbed protein to maximize conjugate function. Here, we chemically modified antibody to investigate the effect of protein surface chemistries on adsorption to AuNPs. A monoclonal anti-horseradish peroxidase IgG antibody (anti-HRP) was reacted with N-succinimidyl acrylate (NSA) or reduced dithiobissuccinimidyl propionate (DSP) to modify lysine residues. Zeta potential measurements confirmed that both chemical modifications reduced the localized regions of positive charge on the protein surface, while the DSP modification incorporated additional free thiols. Dynamic light scattering confirmed that native and chemically modified antibodies adsorbed onto AuNPs to form bioconjugates; however, adsorption kinetics revealed that the NSA-modified antibody required significantly more time to allow for the formation of a hard corona. Moreover, conjugates formed with the NSA-modified antibody lost antigen-binding function, whereas unmodified and DSP-modified antibodies adsorbed onto AuNPs to form functional conjugates. These results indicate that high-affinity functional groups are required to prevent protein unfolding and loss of function when adsorbed on the AuNP surface. The reduced protein charge and high-affinity thiol groups on the DSP-modified antibody enabled pH-dependent control of protein orientation and the formation of highly active conjugates at solution pHs (<7.5) that are inaccessible with unmodified antibody due to conjugate aggregation. This study establishes parameters for protein modification to facilitate the formation of highly functional and stable protein-AuNP conjugates.
Collapse
Affiliation(s)
- Samuel Okyem
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Olatunde Awotunde
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Tosin Ogunlusi
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - McKenzie B Riley
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Jeremy D Driskell
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| |
Collapse
|
20
|
Shehu IA, Auwal NM, Musa MK, Mukhtar A, Yusuf MS, Yau AA, Muhammad M, Baba Dala Y, Sani SA, Ahmad MS, Islam M. Innovative Nanotechnology a Boon for Fight Against Pandemic COVID–19. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.651308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
COVID – 19 is a contagious disease caused by severe acute respiratory syndrome (SARS-CoV2). The rate at which COVID – 19-virus spread from epidemic to pandemic within a short period is quite alarming. As of July 2020, the Dashboard of the World Health Organization (WHO) recorded over 15 million COVID – 19 cases across 213 countries, with mortality of over 620,000. The governments and healthcare agencies responsible for mitigating the virus's spread have adopted several strategies to end the pandemic. However, all hands were on deck to establish the standard treatment modalities of SARS-CoV-2 through inventing new drugs, vaccine candidates, or repurposing the existing medicines and robust diagnostic tools, in addition to other technological innovations. Therefore, nanotechnology’s employment would play a vital role in bringing multidisciplinary ways of developing affordable, reliable, and powerful tools for diagnosis, in addition to personal protection and effective medicines. Additionally, nanosensors' application would significantly aid the diagnoses of the COVID–19 even on asymptomatic patients, and thus would be an essential means for determining its prevalence. Likewise, nanoscale fibers can optimize personal equipment protection and allow their reusability for medical and economic benefits. Accordingly, the literature was intensively reviewed by searching for the combinations of the research keywords in the official scientific databases such as Science Direct, PubMed, and Google Scholar. Hence, this research highlighted the perspective contributions of nanotechnology in the war against the COVID-19 pandemic.
Collapse
|
21
|
Hu J, Zhou S, Zeng L, Chen Q, Duan H, Chen X, Li X, Xiong Y. Hydrazide mediated oriented coupling of antibodies on quantum dot beads for enhancing detection performance of immunochromatographic assay. Talanta 2021; 223:121723. [DOI: 10.1016/j.talanta.2020.121723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
|
22
|
Rezki M, Septiani NLW, Iqbal M, Harimurti S, Sambegoro P, Adhika DR, Yuliarto B. Amine-functionalized Cu-MOF nanospheres towards label-free hepatitis B surface antigen electrochemical immunosensors. J Mater Chem B 2021; 9:5711-5721. [PMID: 34223862 DOI: 10.1039/d1tb00222h] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Metal-organic framework (MOF) nanomaterials offer a wide range of promising applications due to their unique properties, including open micro- and mesopores and richness of functionalization. Herein, a facile synthesis via a solvothermal method was successfully employed to prepare amine-functionalized Cu-MOF nanospheres. Moreover, the growth and the morphology of the nanospheres were optimized by the addition of PVP and TEA. By functionalization with an amine group, the immobilization of a bioreceptor towards the detection of hepatitis B infection biomarker, i.e., hepatitis B surface antigen (HBsAg), could be realized. The immobilization of the bioreceptor/antibody to Cu-MOF nanospheres was achieved through a covalent interaction between the carboxyl group of the antibodies and the amino-functional ligand in Cu-MOF via EDC/NHS coupling. The amine-functionalized Cu-MOF nanospheres act not only as a nanocarrier for antibody immobilization, but also as an electroactive material to generate the electrochemical signal. The electrochemical sensing performance was characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The results showed that the current response proportionally decreased with the increase of HBsAg concentration. More importantly, the sensing performance of the amine-functionalized Cu-MOF nanospheres towards HBsAg detection was found to be consistent in real human serum media. This strategy successfully resulted in wide linear range detection of HBsAg from 1 ng mL-1 to 500 ng mL-1 with a limit of detection (LOD) of 730 pg mL-1. Thus, our approach provides a facile and low-cost synthesis process of an electrochemical immunosensor and paves the way to potentially utilize MOF-based nanomaterials for clinical use.
Collapse
Affiliation(s)
- Muhammad Rezki
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia.
| | - Ni Luh Wulan Septiani
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia.
| | - Muhammad Iqbal
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia.
| | - Suksmandhira Harimurti
- Lab-On-a-Chip Research Group, Department of Biomedical Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Poetro Sambegoro
- Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Damar Rastri Adhika
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia. and Research Center of Nanosciences and Nanotechnology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Brian Yuliarto
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia. and Research Center of Nanosciences and Nanotechnology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| |
Collapse
|
23
|
Highly improved chlorine resistance of polyamide reverse membrane by grafting layers of graphene oxide. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Yang Q, Gao Y, Xu L, Hong W, She Y, Yang G. Enzyme-driven micro/nanomotors: Recent advances and biomedical applications. Int J Biol Macromol 2020; 167:457-469. [PMID: 33278445 DOI: 10.1016/j.ijbiomac.2020.11.215] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/17/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
Micro/nanomotors (MNMs), both self-propelled actuators and external fields-promoted machines, have joined forces in the past decade to accomplish versatile tasks such as precise detection and targeted cargo delivery with adequate propulsion and desirable locomotion. Amongst, enzyme-driven MNMs have been able to differentiate themselves from others owing to their distinct characteristics, such as absence of chemical fuel, enhanced cellular uptake and the possibility to be easily conjugated with many therapeutics, including both small molecules and biologics, displaying superior efficacy, enhanced specificity and diminished side effects. In the present review, we aim to highlight and summarize recent advances in enzyme-driven MNMs, particularly to provide an in-depth discussion focusing on the enzyme linking approaches onto those MNMs and motion control strategies of such MNMs with advantages and limitations thereof. Conclusions and future perspectives are also provided in brief.
Collapse
Affiliation(s)
- Qingliang Yang
- Research Institute of Pharmaceutical Particle Technology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying Gao
- Research Institute of Pharmaceutical Particle Technology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lei Xu
- Research Institute of Pharmaceutical Particle Technology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weiyong Hong
- Research Institute of Pharmaceutical Particle Technology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Taizhou Municipal Hospital of Zhejiang Province, Taizhou 318000, China
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gensheng Yang
- Research Institute of Pharmaceutical Particle Technology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
25
|
Takemura K, Satoh J, Boonyakida J, Park S, Chowdhury AD, Park EY. Electrochemical detection of white spot syndrome virus with a silicone rubber disposable electrode composed of graphene quantum dots and gold nanoparticle-embedded polyaniline nanowires. J Nanobiotechnology 2020; 18:152. [PMID: 33109213 PMCID: PMC7590724 DOI: 10.1186/s12951-020-00712-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/17/2020] [Indexed: 01/21/2023] Open
Abstract
Background With the enormous increment of globalization and global warming, it is expected that the number of newly evolved infectious diseases will continue to increase. To prevent damage due to these infections, the development of a diagnostic method for detecting a virus with high sensitivity in a short time is highly desired. In this study, we have developed a disposable electrode with high-sensitivity and accuracy to evaluate its performances for several target viruses. Results Conductive silicon rubber (CSR) was used to fabricate a disposable sensing matrix composed of nitrogen and sulfur-co-doped graphene quantum dots (N,S-GQDs) and a gold-polyaniline nanocomposite (AuNP-PAni). A specific anti-white spot syndrome virus (WSSV) antibody was conjugated to the surface of this nanocomposite, which was successfully applied for the detection of WSSV over a wide linear range of concentration from 1.45 × 102 to 1.45 × 105 DNA copies/ml, with a detection limit as low as 48.4 DNA copies/ml. Conclusion The engineered sensor electrode can retain the detection activity up to 5 weeks, to confirm its long-term stability, required for disposable sensing applications. This is the first demonstration of the detection of WSSV by a nanofabricated sensing electrode with high sensitivity, selectivity, and stability, providing as a potential diagnostic tool to monitor WSSV in the aquaculture industry. ![]()
Collapse
Affiliation(s)
- Kenshin Takemura
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Jun Satoh
- Division of Pathology, Department of Aquaculture Research, Fisheries Technology Institute of Japan Fisheries Research and Education Agency, National Research and Development Agency, Tamaki Field Station, 224-1 Hiruta, Tamaki, Watarai, Mie, 519-0423, Japan
| | - Jirayu Boonyakida
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Sungjo Park
- Division of Cardiovascular Diseases, Mayo Clinic College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ankan Dutta Chowdhury
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Enoch Y Park
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan. .,Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
26
|
Rafat N, Satoh P, Calabrese Barton S, Worden RM. Integrated Experimental and Theoretical Studies on an Electrochemical Immunosensor. BIOSENSORS 2020; 10:bios10100144. [PMID: 33080847 PMCID: PMC7603011 DOI: 10.3390/bios10100144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 05/31/2023]
Abstract
Electrochemical immunosensors (EIs) integrate biorecognition molecules (e.g., antibodies) with redox enzymes (e.g., horseradish peroxidase) to combine the advantages of immunoassays (high sensitivity and selectivity) with those of electrochemical biosensors (quantitative electrical signal). However, the complex network of mass-transfer, catalysis, and electrochemical reaction steps that produce the electrical signal makes the design and optimization of EI systems challenging. This paper presents an integrated experimental and modeling framework to address this challenge. The framework includes (1) a mechanistic mathematical model that describes the rate of key mass-transfer and reaction steps; (2) a statistical-design-of-experiments study to optimize operating conditions and validate the mechanistic model; and (3) a novel dimensional analysis to assess the degree to which individual mass-transfer and reaction steps limit the EI's signal amplitude and sensitivity. The validated mechanistic model was able to predict the effect of four independent variables (working electrode overpotential, pH, and concentrations of catechol and hydrogen peroxide) on the EI's signal magnitude. The model was then used to calculate dimensionless groups, including Damkohler numbers, novel current-control coefficients, and sensitivity-control coefficients that indicated the extent to which the individual mass-transfer or reaction steps limited the EI's signal amplitude and sensitivity.
Collapse
Affiliation(s)
- Neda Rafat
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw Lane, East Lansing, MI 48824, USA; (N.R.); (P.S.); (S.C.B.)
- The Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr, East Lansing, MI 48824, USA
| | - Paul Satoh
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw Lane, East Lansing, MI 48824, USA; (N.R.); (P.S.); (S.C.B.)
| | - Scott Calabrese Barton
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw Lane, East Lansing, MI 48824, USA; (N.R.); (P.S.); (S.C.B.)
| | - Robert Mark Worden
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw Lane, East Lansing, MI 48824, USA; (N.R.); (P.S.); (S.C.B.)
- The Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, 775 Woodlot Dr, East Lansing, MI 48824, USA
| |
Collapse
|
27
|
Martínez-Rojas F, Diculescu VC, Armijo F. Electrochemical Immunosensing Platform for the Determination of the 20S Proteasome Using an Aminophenylboronic/Poly-indole-6-carboxylic Acid-Modified Electrode. ACS APPLIED BIO MATERIALS 2020; 3:4941-4948. [PMID: 35021738 DOI: 10.1021/acsabm.0c00478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The first electrochemical immunosensor for the determination of the 20S proteasome (P20S) was developed, entailing the immobilization of an antibody on an aminophenylboronic/poly-indole-6-carboxylic acid-modified electrode. The proposed electrochemical bioplatform is a simple and feasible analytical tool applicable for the determination of P20S in human plasma, considering its high clinical and biological relevance. Cyclic voltammetry, electrochemical impedance spectroscopy, and square wave voltammetry (SWV) were used to determine the optimal step-by-step process to obtain the electrochemical immunosensor. The interaction of P20S with the recognition layer of the immobilized antibody on the nanostructured surface took place by incubating the electrode in a P20S solution at 20 °C for 2 h. Using SWV as an electro-analytical technique, this immunosensor can quantify P20S. The current was linear with the P20S concentration within two dynamic concentration ranges from 20.0 to 80.0 and 80.0 to 200.0 ng·mL-1 (r2 = 0.992 and 0.98, respectively) with a limit of detection and quantification of 6 and 18 ng·mL-1, respectively. Moreover, the immunosensor showed considerable repeatability and reproducibility, when the determination was done in human serum, which confirms that it is a promising alternative for direct detection of P20S in biological fluids with minimal interference.
Collapse
Affiliation(s)
- Francisco Martínez-Rojas
- Facultad de Quimica y de Farmacia, Departamento de Química Inorgánica, Laboratorio de Bioelectroquimica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago, Chile
| | - Victor C Diculescu
- National Institute of Materials Physics, Atomistilor, No. 405A, Măgurele, 077125 Ilfov, Romania
| | - Francisco Armijo
- Facultad de Quimica y de Farmacia, Departamento de Química Inorgánica, Laboratorio de Bioelectroquimica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago, Chile
| |
Collapse
|
28
|
Laribi A, Allegra S, Souiri M, Mzoughi R, Othmane A, Girardot F. Legionella pneumophila sg1-sensing signal enhancement using a novel electrochemical immunosensor in dynamic detection mode. Talanta 2020; 215:120904. [PMID: 32312449 DOI: 10.1016/j.talanta.2020.120904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/20/2023]
Abstract
This work presents a comparison between static and dynamic modes of biosensing using a novel microfluidic assay for continuous and quantitative detection of Legionella pneumophila sg1 in artificial water samples. A self-assembled monolayer of 16-amino-1-hexadecanethiol (16-AHT) was covalently linked to a gold substrate, and the resulting modified surface was used to immobilize an anti-Legionella pneumophila monoclonal antibody (mAb). The modified surfaces formed during the biosensor functionalization steps were characterized using electrochemical measurements and microscopic imaging techniques. Under static conditions, the biosensor exhibited a wide linear response range from 10 to 108 CFU/mL and a detection limit of 10 CFU/mL. Using a microfluidic system, the biosensor responses exhibited a linear relationship for low bacterial concentrations ranging from 10 to 103 CFU/mL under dynamic conditions and an enhancement of sensing signals by a factor of 4.5 compared to the sensing signals obtained under static conditions with the same biosensor for the detection of Legionella cells in artificially contaminated samples.
Collapse
Affiliation(s)
- Ahlem Laribi
- Environments, Territories, Societies (EVS) Lab, Mixed Research Unit (Jean Monnet University - French National Centre for Scientific Research) 5600, University of Lyon, F42023, France; Laboratory of Advanced Materials and Interfaces, Faculty of Medicine, University of Monastir, 5019, Monastir, Tunisia.
| | - Séverine Allegra
- Environments, Territories, Societies (EVS) Lab, Mixed Research Unit (Jean Monnet University - French National Centre for Scientific Research) 5600, University of Lyon, F42023, France
| | - Mina Souiri
- Laboratory of Advanced Materials and Interfaces, Faculty of Medicine, University of Monastir, 5019, Monastir, Tunisia
| | - Ridha Mzoughi
- Regional Laboratory of Hygiene, University Hospital Farhat Hached, 4000 Sousse, Tunisia and Laboratory of Analysis Treatment and Valorization of Pollutants and Products, Faculty of Pharmacy, 5000, Monastir, Tunisia
| | - Ali Othmane
- Laboratory of Advanced Materials and Interfaces, Faculty of Medicine, University of Monastir, 5019, Monastir, Tunisia
| | - Françoise Girardot
- Environments, Territories, Societies (EVS) Lab, Mixed Research Unit (Jean Monnet University - French National Centre for Scientific Research) 5600, University of Lyon, F42023, France
| |
Collapse
|
29
|
Cao YP, Xia YP, Gu XF, Han L, Chen Q, Zhi GY, Zhang DH. PEI-crosslinked lipase on the surface of magnetic microspheres and its characteristics. Colloids Surf B Biointerfaces 2020; 189:110874. [DOI: 10.1016/j.colsurfb.2020.110874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/19/2020] [Accepted: 02/12/2020] [Indexed: 12/23/2022]
|
30
|
Zhang L, Ying Y, Li Y, Fu Y. Integration and synergy in protein-nanomaterial hybrids for biosensing: Strategies and in-field detection applications. Biosens Bioelectron 2020; 154:112036. [DOI: 10.1016/j.bios.2020.112036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
|
31
|
Zhou F, Luo J, Song S, Wan Y. Nanostructured Polyphenol-Mediated Coating: a Versatile Platform for Enzyme Immobilization and Micropollutant Removal. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05708] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Fangfang Zhou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Siqing Song
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
32
|
Saad SM, Abdullah J, Rashid SA, Fen YW, Salam F, Yih LH. A fluorescence quenching based gene assay for Escherichia coli O157:H7 using graphene quantum dots and gold nanoparticles. Mikrochim Acta 2019; 186:804. [DOI: 10.1007/s00604-019-3913-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023]
|
33
|
Allosteric inhibition and kinetic characterization of Klebsiella pneumoniae CysE: An emerging drug target. Int J Biol Macromol 2019; 151:1240-1249. [PMID: 31751684 DOI: 10.1016/j.ijbiomac.2019.10.170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 12/31/2022]
Abstract
The emergence and spread of multidrug-resistant strains of Klebsiella pneumoniae is a major concern that necessitates the development of unique therapeutics. The essential requirement of serine acetyltransferase (SAT/CysE) for survival of several human pathogens makes it a very promising target for inhibitor designing and drug discovery. In this study, as an initial step to structure-based drug discovery, CysE from K. pneumonia was structurally and biochemically characterized. Subsequently, blind docking of selected natural products into the X-ray crystallography determined 3D structure of the target was carried out. Experimental validation of the inhibitory potential of the top-scorers established quercetin as an uncompetitive inhibitor of Kpn CysE. Molecular dynamics simulations carried out to elucidate the binding mode of quercetin reveal that this small molecule binds at the trimer-trimer interface of hexameric CysE, a site physically distinct from the active site of the enzyme. Detailed analysis of conformational differences incurred in Kpn CysE structure on binding to quercetin provides mechanistic understanding of allosteric modulation. Binding of quercetin to CysE leads to conformation changes in the active site loops and proximal loops that affect its internal dynamics and consequently its affinity for substrate/co-factor binding, justifying the reduced enzyme activity.
Collapse
|
34
|
Zhou X, Shi J, Zhang J, Zhao K, Deng A, Li J. Multiple signal amplification chemiluminescence immunoassay for chloramphenicol using functionalized SiO 2 nanoparticles as probes and resin beads as carriers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117177. [PMID: 31176150 DOI: 10.1016/j.saa.2019.117177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/20/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
A novel, rapid and convenient competitive immunoassay for ultrasensitive detection of chloramphenicol residues in shrimp and honey was established combined with flow injection chemiluminescence. The carboxylic resin beads were used as solid phase carriers to load with more coating antigen due to their larger specific surface area and good biocompatibility. The surface of the silica dioxide nanoparticles was modified with aldehyde group to combine with more horseradish peroxidase and the chloramphenicol antibody. There was a competitive process between the chloramphenicol in solution and the immobilized coating antigen to combine with the limited binding site of antibody to form the immunocomplex. Silica dioxide nanoparticles played an important role in enhancing chemiluminescence signal, because the horseradish peroxidase on SiO2 effectively catalyzed the system of luminol-PIP-H2O2. Under optimal conditions, the chemiluminescence intensity decreased linearly with the logarithm of the chloramphenicol concentration in the range of 0.0001 to 100 ng mL-1 and the detection limit (3σ) was 0.033 pg mL-1. This immunosensor demonstrated acceptable stability, high specificity and reproducibility. The horseradish peroxidase-silica dioxide nanoparticle-chloramphenicol antibody complex successfully prepared in this article was firstly applied to the detection of chloramphenicol, and had extremely important meanings for the application of nanoparticles and enzymatic catalysis in the field of chemiluminescence.
Collapse
Affiliation(s)
- Xinchun Zhou
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| | - Jing Shi
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| | - Jing Zhang
- Shanghai Animal Disease Control Center, Shanghai 201103, China
| | - Kang Zhao
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
35
|
Akkapinyo C, Khownarumit P, Waraho-Zhmayev D, Poo-Arporn RP. Development of a multiplex immunochromatographic strip test and ultrasensitive electrochemical immunosensor for hepatitis B virus screening. Anal Chim Acta 2019; 1095:162-171. [PMID: 31864618 DOI: 10.1016/j.aca.2019.10.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022]
Abstract
This research proposes two methods for hepatitis B diagnosis including rapid testing and electrochemical assay. For the first method, a multiplex hepatitis B test strip was fabricated to serve as a rapid test for hepatitis B screening. It was developed to simultaneously test three essential serological markers of hepatitis B virus infection including hepatitis B surface antigen (HBsAg), hepatitis B surface antibody (Anti-HBs) and hepatitis B core antibody (Anti-HBc). Gold nanoparticles (GNPs) were used as the signal generator on the test strip. Furthermore, a part of a paper network was incorporated on the strip for the gold-silver enhancement process. This paper network helped in decreasing the analysis time of enhancement and makes the enhancement process easier for rapid testing. The developed test strip was specific for each serological marker. The detection limits of HBsAg, Anti-HBs and Anti-HBc were obtained at 0.5, 0.3 and 0.1 μg mL-1, respectively. For the second method, electrochemical impedance spectroscopy (EIS) was applied for HBsAg detection. This method was proposed for quantitative hepatitis B detection. Anti-HBs antibodies were immobilized on a carbon screen printed electrode (SPCE) via the N-ethyl-N'-(3-(dimethylamino)propyl)carbo-diimide/N-hydroxy succinimide (EDC/NHS) couple reaction which reacted with the carboxyl group of the BSA cross-linked film on the electrode. The electrode modification process was characterized by EIS. A linear relationship between delta charge transfer resistance (ΔRct) and HBsAg concentration was obtained in the range of 5-3000 ng mL-1 with a detection limit of 2.1 ng mL-1. This work is appropriate for quantitative analysis because it is a simple and low-cost method to implement as the SPCE is disposable. Therefore, we hope that this research will be useful to improve hepatitis B detection in the future.
Collapse
Affiliation(s)
- Chutimon Akkapinyo
- Biological Engineering Program, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Porntip Khownarumit
- Sensor Technology, PDTI, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Dujduan Waraho-Zhmayev
- Biological Engineering Program, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Rungtiva P Poo-Arporn
- Biological Engineering Program, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
| |
Collapse
|
36
|
Ruiz G, Ryan N, Rutschke K, Awotunde O, Driskell JD. Antibodies Irreversibly Adsorb to Gold Nanoparticles and Resist Displacement by Common Blood Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10601-10609. [PMID: 31335148 DOI: 10.1021/acs.langmuir.9b01900] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Gold nanoparticles (AuNPs) functionalized with proteins to impart desirable surface properties have been developed for many nanobiotechnology applications. A strong interaction between the protein and nanoparticle is critical to the formation of a stable conjugate to realize the potential of these emerging technologies. In this work, we examine the robustness of a protein layer adsorbed onto gold nanoparticles while under the stress of a physiological environment that could potentially lead to protein exchange on the nanoparticle surface. The adsorption interaction of common blood plasma proteins (transferrin, human serum albumin, and fibrinogen) and anti-horseradish peroxidase antibody onto AuNPs is investigated by nanoparticle tracking analysis. Our data show that a monolayer of protein is formed at saturation for each protein, and the maximum size increase for the conjugate, relative to the AuNP core, correlates with the protein size. The binding affinity of each protein to the AuNP is extracted from a best fit of the adsorption isotherm to the Hill equation. The antibody displays the greatest affinity (Kd = 15.2 ± 0.8 nM) that is ∼20-65 times stronger than the affinity of the other plasma proteins. Antibody-AuNP conjugates were prepared, purified, and suspended in solutions of blood plasma proteins to evaluate the stability of the antibody layer. An enzyme-mediated assay confirms that the antibody-AuNP interaction is irreversible, and the adsorbed antibody resists displacement by the plasma proteins. This work provides insight into the capabilities and potential limitations of antibody-AuNP-enabled technologies in biological systems.
Collapse
Affiliation(s)
- Guadalupe Ruiz
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| | - Nicki Ryan
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| | - Kylie Rutschke
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| | - Olatunde Awotunde
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| | - Jeremy D Driskell
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| |
Collapse
|
37
|
Azandaryani AH, Kashanian S, Jamshidnejad-Tosaramandani T. Recent Insights into Effective Nanomaterials and Biomacromolecules Conjugation in Advanced Drug Targeting. Curr Pharm Biotechnol 2019; 20:526-541. [DOI: 10.2174/1389201020666190417125101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/18/2019] [Accepted: 04/01/2019] [Indexed: 12/11/2022]
Abstract
Targeted drug delivery, also known as smart drug delivery or active drug delivery, is a subcategory of nanomedicine. Using this strategy, the medication is delivered into the infected organs in the patient’s body or to the targeted sites inside the cells. In order to improve therapeutic efficiency and pharmacokinetic characteristics of the active pharmaceutical agents, conjugation of biomacromolecules such as proteins, nucleic acids, monoclonal antibodies, aptamers, and nanoparticulate drug carriers, has been mostly recommended by scientists in the last decades. Several covalent conjugation pathways are used for biomacromolecules coupling with nanomaterials in nanomedicine including carbodiimides and “click” mediated reactions, thiol-mediated conjugation, and biotin-avidin interactions. However, choosing one or a combination of these methods with suitable coupling for application to advanced drug delivery is essential. This review focuses on new and high impacted published articles in the field of nanoparticles and biomacromolecules coupling studies, as well as their advantages and applications.
Collapse
Affiliation(s)
- Abbas H. Azandaryani
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soheila Kashanian
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | |
Collapse
|
38
|
Jampasa S, Lae-Ngee P, Patarakul K, Ngamrojanavanich N, Chailapakul O, Rodthongkum N. Electrochemical immunosensor based on gold-labeled monoclonal anti-LipL32 for leptospirosis diagnosis. Biosens Bioelectron 2019; 142:111539. [PMID: 31376713 DOI: 10.1016/j.bios.2019.111539] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 01/20/2023]
Abstract
Leptospirosis is a critical human health problem in the tropical area, thus, a precise technique that can be used for point-of-care analysis is greatly required. This is the first report on electrochemical immunosensor based on gold-labeled monoclonal anti-LipL32 for rapid, simple and sensitive determination of LipL32. The sensor consisted of two LipL32-specific antibodies: an unlabeled capture primary antibody (Anti-1°Ab) and an electrochemically detectable gold-conjugated secondary antibody (Au-2°Ab). The Anti-1°Ab was immobilized onto the modified screen-printed graphene electrode (SPGE) to form the anti-LipL32 surface. The electrochemical signal response was determined by differential pulse voltammetry (DPV). In the presence of LipL32, the sensor displayed a significant increase in current response in a concentration-dependent manner, but no observable signal was detected in the absence of LipL32. The linearity between LipL32 concentration and the measured current was found in a range of 1-100 ng/mL, and the limit of detection (LOD) (3SDblank/Slope) and limit of quantitation (LOQ) (10SDblank/Slope) were found to be 0.28 and 0.93 ng/mL, respectively. This sensor was successfully applied to detect pathogenic Leptospira whole cell lysates samples with the satisfactory results. The promissing results suggested that this immunosensor might be an alternative tool for diagnosis of leptospirosis.
Collapse
Affiliation(s)
- Sakda Jampasa
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Prayoon Lae-Ngee
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Kanitha Patarakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Nattaya Ngamrojanavanich
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Research Unit, Department of Chemistry, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand; National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| | - Nadnudda Rodthongkum
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
39
|
Ruiz G, Tripathi K, Okyem S, Driskell JD. pH Impacts the Orientation of Antibody Adsorbed onto Gold Nanoparticles. Bioconjug Chem 2019; 30:1182-1191. [DOI: 10.1021/acs.bioconjchem.9b00123] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guadalupe Ruiz
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Kiran Tripathi
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Samuel Okyem
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Jeremy D. Driskell
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| |
Collapse
|
40
|
A Sensitive and One-Step Quantification of Thyroid Stimulating Hormone Using Nanobiosensor. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.matpr.2019.06.600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
41
|
Alizadeh Zeinabad H, Ghourchian H, Falahati M, Fathipour M, Azizi M, Boutorabi SM. Ultrasensitive interdigitated capacitance immunosensor using gold nanoparticles. NANOTECHNOLOGY 2018; 29:265102. [PMID: 29629877 DOI: 10.1088/1361-6528/aabca3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Immunosensors based on interdigitated electrodes (IDEs), have recently demonstrated significant improvements in the sensitivity of capacitance detection. Herein, a novel type of highly sensitive, compact and portable immunosensor based on a gold interdigital capacitor has been designed and developed for the rapid detection of hepatitis B surface antigen (HBsAg). To improve the efficiency of antibody immobilization and time-saving, a self-assembled monolayer (SAM) of 2-mercaptoethylamine film was coated on IDEs. Afterwards, carboxyl groups on primary antibodies were activated through 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and were immobilized on amino-terminated SAM for better control of the oriented immobilization of antibodies on gold IDEs. In addition, gold nanoparticles conjugated with a secondary antibody were used to enhance the sensitivity. Under optimal conditions, the immunosensor exhibited the sensitivity of 0.22 nF.pg ml-1, the linear range from 5 pg ml-1 to 1 ng ml-1 and the detection limit of 1.34 pg ml-1, at a signal-to-noise ratio of 3.
Collapse
Affiliation(s)
- Hojjat Alizadeh Zeinabad
- Laboratory of Bioanalysis, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran. MEMS & NEMS Lab, Department of Electrical and Computer Engineering, University of Tehran, Tehran, Iran. Department of Nanotechnology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
42
|
Sharma S, Zapatero-Rodríguez J, Saxena R, O’Kennedy R, Srivastava S. Ultrasensitive direct impedimetric immunosensor for detection of serum HER2. Biosens Bioelectron 2018; 106:78-85. [DOI: 10.1016/j.bios.2018.01.056] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 01/12/2023]
|
43
|
Svalova TS, Malysheva NN, Kozitsina AN. Structure of the receptor layer in electrochemical immunosensors. Modern trends and prospects of development. Russ Chem Bull 2018. [DOI: 10.1007/s11172-017-1951-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Idris AO, Mabuba N, Arotiba OA. Towards cancer diagnostics – an α-feto protein electrochemical immunosensor on a manganese(iv) oxide/gold nanocomposite immobilisation layer. RSC Adv 2018; 8:30683-30691. [PMID: 35548739 PMCID: PMC9085503 DOI: 10.1039/c8ra06135a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/24/2018] [Indexed: 11/25/2022] Open
Abstract
A novel electrochemical immunosensor for the quantification of α-feto protein (AFP) using a nanocomposite of manganese(iv) oxide nanorods (MnO2NRs) and gold nanoparticles (AuNPs) as the immobilisation layer is presented. The MnO2NRs was synthesised using a hydrothermal method and AuNPs were electrodeposited on a glassy carbon electrode surface. The MnO2NRs were characterised with scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and X-ray powder diffraction (XRD). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterise the immunosensor at each stage of the biosensor preparation. The MnO2 nanorods and AuNPs were applied as the immobilisation layer to efficiently capture the antibodies and amplify the electrochemical signal. Under optimised conditions, the fabricated immunosensor was utilised for the quantification of AFP with a wide dynamic range of 0.005 to 500 ng mL−1 and detection limits of 0.00276 ng mL−1 and 0.00172 ng mL−1 (S/N = 3) were obtained from square wave anodic stripping voltammetry and EIS respectively. The nanocomposite modifier enhanced the immunosensor performance. More so, this label-free immunosensor possesses good stability over a period of two weeks when stored at 4 °C and was selective in the presence of some interfering species. A novel electrochemical immunosensor for the quantification of α-feto protein (AFP) using a nanocomposite of manganese(iv) oxide nanorods (MnO2NRs) and gold nanoparticles (AuNPs) as the immobilisation layer is presented.![]()
Collapse
Affiliation(s)
- Azeez O. Idris
- Department of Applied Chemistry
- University of Johannesburg
- South Africa
| | - Nonhlangabezo Mabuba
- Department of Applied Chemistry
- University of Johannesburg
- South Africa
- Centre for Nanomaterials Science Research
- University of Johannesburg
| | - Omotayo A. Arotiba
- Department of Applied Chemistry
- University of Johannesburg
- South Africa
- Centre for Nanomaterials Science Research
- University of Johannesburg
| |
Collapse
|
45
|
Khashayar P, Amoabediny G, Larijani B, Hosseini M, Vanfleteren J. Fabrication and Verification of Conjugated AuNP-Antibody Nanoprobe for Sensitivity Improvement in Electrochemical Biosensors. Sci Rep 2017; 7:16070. [PMID: 29167431 PMCID: PMC5700097 DOI: 10.1038/s41598-017-12677-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/18/2017] [Indexed: 11/21/2022] Open
Abstract
This study was designed to obtain covalently coupled conjugates as means for achieving higher stability and better coverage of the AuNPs by antibodies on the particle surface suitable for sensor performance enhancement. Starting by using a modified protocol, colloid gold solution, with mean AuNP core size of ~6 nm was synthesized. The protocol used for conjugation of AuNPs to osteocalcin antibody in this study relies on covalent and electrostatic attractions between constituents. Varieties of conjugates with varying combinations of crosslinkers and different concentrations were successfully synthesized. The obtained products were characterized and their properties were studied to determine the best candidate in sense of antibody - antigen reactivity. Using AuNP-GSH-NHS-Ab combination (1:1:1), the tertiary structure of the protein was maintained and thus the antibody remained functional in the future steps. This one-pot method provided a simple method for covalently coupling antibodies on the particle surface while keeping their functionality intact. The AuNP content of the solution also accelerated electron transfer rate and thus amplifies the detection signal. With the developed and discussed technique herein, a simple solution is modeled to be used for measuring serum levels of biomarkers in single and/or multiplexed sensor systems.
Collapse
Affiliation(s)
- Patricia Khashayar
- Nanobiotechnalogy Department, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
- Center for Microsystems Technology, imec and Ghent University, Gent-Zwijnaarde, Belgium
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghassem Amoabediny
- Department of Biotechnology, Faculty of Chemical Engineering, School of Engineering, University of Tehran, Tehran, Iran.
- Nanobiotechnology Department, Research Center for New Technology in Life Sciences Engineering, University of Tehran, Tehran, Iran.
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Hosseini
- Nanobiotechnalogy Department, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Jan Vanfleteren
- Center for Microsystems Technology, imec and Ghent University, Gent-Zwijnaarde, Belgium.
| |
Collapse
|
46
|
Chakraborty A, Boer JC, Selomulya C, Plebanski M. Amino Acid Functionalized Inorganic Nanoparticles as Cutting-Edge Therapeutic and Diagnostic Agents. Bioconjug Chem 2017; 29:657-671. [DOI: 10.1021/acs.bioconjchem.7b00455] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Amlan Chakraborty
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Jennifer C. Boer
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | | | - Magdalena Plebanski
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
47
|
Li X, Cao L, Zhang Y, Yan P, Kirk DW. Fabrication and Modeling of an Ultrasensitive Label Free Impedimetric Immunosensor for Aflatoxin B1 based on Protein A Self-assembly Modified Gold 3D Nanotube Electrode ensembles. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.07.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Filbrun SL, Filbrun AB, Lovato FL, Oh SH, Driskell EA, Driskell JD. Chemical modification of antibodies enables the formation of stable antibody–gold nanoparticle conjugates for biosensing. Analyst 2017; 142:4456-4467. [DOI: 10.1039/c7an01496a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibody-modified gold nanoparticles (AuNPs) are central to many novel and emerging biosensing technologies due to the specificity provided by antibody–antigen interactions and the unique properties of nanoparticles.
Collapse
Affiliation(s)
| | | | | | - Soon H. Oh
- Department of Pathobiology
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | | | | |
Collapse
|
49
|
Sharma S, Raghav R, O’Kennedy R, Srivastava S. Advances in ovarian cancer diagnosis: A journey from immunoassays to immunosensors. Enzyme Microb Technol 2016; 89:15-30. [DOI: 10.1016/j.enzmictec.2016.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 03/01/2016] [Accepted: 03/06/2016] [Indexed: 01/12/2023]
|
50
|
Huang J, Xie Z, Xie Z, Luo S, Xie L, Huang L, Fan Q, Zhang Y, Wang S, Zeng T. Silver nanoparticles coated graphene electrochemical sensor for the ultrasensitive analysis of avian influenza virus H7. Anal Chim Acta 2016; 913:121-7. [DOI: 10.1016/j.aca.2016.01.050] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/24/2016] [Accepted: 01/26/2016] [Indexed: 10/22/2022]
|