1
|
Huang L, Wang Y, Sun X, Deng K, Li X, Xie Y, Guo H, Zhao P, Fei J. Square-shaped Cu 2MoS 4 loaded on three-dimensional flower-like AgBiS 2 to form S-scheme heterojunction as a light-driven photoelectrochemical sensor for efficient detection of serotonin in biological samples. Talanta 2025; 290:127774. [PMID: 40015067 DOI: 10.1016/j.talanta.2025.127774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/27/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
Serotonin (5-HT) is a crucial neurotransmitter in the body, with its levels being particularly significant for life safety. Here, we designed the AgBiS2/Cu2MoS4 S-scheme heterojunction by uniformly immobilizing lamellar Cu2MoS4 on the surface of three-dimensional (3D) flower-like AgBiS2 using a simple physical mixing technique. In this case, AgBiS2 and Cu2MoS4 are bonded together by electrostatic attraction to form an active surface with a large specific surface area. Subsequently, the detector 5-HT bound to AgBiS2/Cu2MoS4/GCE undergoes hole oxidation and the photocurrent signal increases significantly. Meanwhile, the reaction mechanism of AgBiS2/Cu2MoS4 composite material was investigated through density functional theory calculations. The AgBiS2/Cu2MoS4/GCE sensor demonstrates a low detection limit of 0.046 nM and a wide linear range (0.0001-8 μM). Furthermore, by comparing UV-Vis spectrophotometry and fluorescence spectroscopy for the detection of 5-HT in human serum, it was proved that the sensor has an impressive recovery rate.
Collapse
Affiliation(s)
- Linzi Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yilin Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Xiaoqian Sun
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Kunxiang Deng
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Xinyi Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yixi Xie
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Haoran Guo
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| |
Collapse
|
2
|
Ahmad I, Sead FF, Kanjariya P, Kumar A, Rajivm A, Shankhyan A, Jaidka S, Kumar H, Aminov Z. Nanomaterial sensors for enhanced detection of serotonin. Clin Chim Acta 2025; 569:120160. [PMID: 39892692 DOI: 10.1016/j.cca.2025.120160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
The detection of serotonin (5-HT), a critical neurotransmitter, has garnered significant attention in biosensor research because of its pivotal role in neurological and physiological processes. This narrative review highlights advancements in nanomaterial-based sensors designed to increase the sensitivity, specificity, and functionality of serotonin detection. Carbon-based nanomaterials, including carbon nanotubes (CNTs), graphene derivatives, and carbon nanofibers (CNFs), have demonstrated remarkable potential owing to their large surface area, superior electrical conductivity, and biocompatibility. These materials enable rapid electron transfer and selective serotonin adsorption, making them integral to electrochemical and wearable sensor technologies. Emerging technologies, including field-effect transistors (FETs), magnetoelastic biosensors, and molecularly imprinted polymers (MIPs), have demonstrated ultralow detection limits and real-time monitoring capabilities, suggesting promising applications for clinical diagnostics and personalized healthcare. Metal-based sensors, which utilize nanoparticles of gold, silver, and other metals, have also shown exceptional performance in serotonin detection through enhanced electrocatalysis and optical properties. This review underscores the transformative potential of nanomaterial-based sensors in serotonin detection, emphasizing their role in advancing neuroscience research, disease diagnostics, and therapeutic monitoring.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia; Health and Medical Research Center, King Khalid University, AlQura'a, Abha, P.O. Box 960, Saudi Arabia.
| | - Fadhel F Sead
- Department of Dentistry, College of Dentistry, the Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| | - Prakash Kanjariya
- Marwadi University Research Center, Department of Physics, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Anjan Kumar
- Department of Electronics and Communication Engineering, GLA University, Mathura 281406, India
| | - Asha Rajivm
- Department of Physics & Electronics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Aman Shankhyan
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | - Sachin Jaidka
- Department of Physics, Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali140307, Punjab, India
| | - Harish Kumar
- Department of Applied Sciences-Physics, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| |
Collapse
|
3
|
Chavan SG, Rathod PR, Koyappayil A, Hwang S, Lee MH. Recent advances of electrochemical and optical point-of-care biosensors for detecting neurotransmitter serotonin biomarkers. Biosens Bioelectron 2025; 267:116743. [PMID: 39270361 DOI: 10.1016/j.bios.2024.116743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Since its discovery in 1984, the monoamine serotonin (5-HT) has been recognized for its critical role as a neuromodulator in both the central and peripheral nervous systems. Recent research reveals that serotonin also significantly influences various neuronal activities. Historically, it was believed that peripheral serotonin, produced by tryptophan hydroxylase in intestinal cells, functioned primarily as a hormone. However, new insights have expanded its known roles, necessitating advanced detection methods. Biosensors have emerged as indispensable tools in biomedical diagnostics, enabling the rapid and minimally invasive detection of target analytes with high spatial and temporal resolution. This review summarizes the progress made in the past decade in developing optical and electrochemical biosensors for serotonin detection. We evaluate various sensing strategies that optimize performance in terms of detection limits, sensitivity, and specificity. The study also explores recent innovations in biosensing technologies utilizing surface-modified electrodes with nanomaterials, including gold, graphite, carbon nanotubes, and metal oxide particles. Applications range from in vivo studies to chemical imaging and diagnostics, highlighting future prospects in the field.
Collapse
Affiliation(s)
- Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Pooja Ramrao Rathod
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Seowoo Hwang
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea.
| |
Collapse
|
4
|
Zhan S, Zhang J, Gao C, Yin Z, Liu H. An electrochemical microbiosensor for serotonin based on surface imprinted layer coordinated bimetal functionalized acupuncture needle. Talanta 2024; 277:126334. [PMID: 38838564 DOI: 10.1016/j.talanta.2024.126334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a pivotal monoamine neurotransmitter, which is widely distributed in human brain for biological, physical and psychopathological processes. The content of 5-HT can support diagnose of various diseases. To selectively detect 5-HT is very important in clinical medicine. Here, a novel microbiosensor for 5-HT is studied on acupuncture needle. Molecularly imprinted film enwrapped 5-HT was electropolymerized onto bimetallic gold/platinum (Au/Pt) nanoparticles on acupuncture needle microelectrode (ANME). Au/Pt nanostructure exhibited active sites to catalyze the oxidation of 5-HT and bind the generated polymer. 5-HT can be enwrapped by the functional monomer of pyrrole (Py) in the process of electropolymerization with suitably electroactive conformation. Comparing with interfaces of single metal or molecularly imprinted layer, synergistic microbiosensor exhibit better performance for 5-HT. 5-HT can be adsorbed and catalytically oxidized by the imprinted cavities. Under optimized conditions, the peak current linearly increases with the concentration of 5-HT from 0.03 to 500 μM, and a detection limit of 0.0106 μM is obtained. The performance of this microbiosensor is competitive with previous studies. Furthermore, the prepared microbiosensor showed effective application to analyze 5-HT in human serum and urine. Interestingly, the microbiosensor expressed the real-time monitoring ability to 5-HT from stimulated PC12 cells by K+. The microbiosensor also exhibited high selectivity, stability and reproducibility, which is promising in view of the low price, fast response and simple operation.
Collapse
Affiliation(s)
- Shanshan Zhan
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200000, China
| | - Jiayi Zhang
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | | | - Zhengzhi Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Hongying Liu
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China.
| |
Collapse
|
5
|
Wang L, Hu Y, Jiang N, Yetisen AK. Biosensors for psychiatric biomarkers in mental health monitoring. Biosens Bioelectron 2024; 256:116242. [PMID: 38631133 DOI: 10.1016/j.bios.2024.116242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/10/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024]
Abstract
Psychiatric disorders are associated with serve disturbances in cognition, emotional control, and/or behavior regulation, yet few routine clinical tools are available for the real-time evaluation and early-stage diagnosis of mental health. Abnormal levels of relevant biomarkers may imply biological, neurological, and developmental dysfunctions of psychiatric patients. Exploring biosensors that can provide rapid, in-situ, and real-time monitoring of psychiatric biomarkers is therefore vital for prevention, diagnosis, treatment, and prognosis of mental disorders. Recently, psychiatric biosensors with high sensitivity, selectivity, and reproducibility have been widely developed, which are mainly based on electrochemical and optical sensing technologies. This review presented psychiatric disorders with high morbidity, disability, and mortality, followed by describing pathophysiology in a biomarker-implying manner. The latest biosensors developed for the detection of representative psychiatric biomarkers (e.g., cortisol, dopamine, and serotonin) were comprehensively summarized and compared in their sensitivities, sensing technologies, applicable biological platforms, and integrative readouts. These well-developed biosensors are promising for facilitating the clinical utility and commercialization of point-of-care diagnostics. It is anticipated that mental healthcare could be gradually improved in multiple perspectives, ranging from innovations in psychiatric biosensors in terms of biometric elements, transducing principles, and flexible readouts, to the construction of 'Big-Data' networks utilized for sharing intractable psychiatric indicators and cases.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China; Jinfeng Laboratory, Chongqing, 401329, China.
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| |
Collapse
|
6
|
Li M, Liu X, Sun C, Cao X, Zhang Y, Hou L, Yang H, Xu C. Ultra-Sensitive Simultaneous Detection of Dopamine and Acetaminophen over Hollow Porous AuAg Alloy Nanospheres. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1131. [PMID: 38998736 PMCID: PMC11243617 DOI: 10.3390/nano14131131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
Hollow porous AuAg nanospheres (AuAg HPNSs) were obtained through a simple solvothermal synthesis, complemented by a dealloying strategy. The hollow interior, open pore voids, and integral interconnected skeleton shell in AuAg HPNSs are beneficial for providing sufficient electrolyte diffusion and contacts, abundant active sites, and efficient electron transport. This specific structure and the favorable alloy synergism contribute to the superior electrocatalytic activity toward dopamine (DA) and acetaminophen (AC). AuAg HPNSs show high sensitivity, good selectivity, excellent sensing durability, and outstanding repeatability for amperometric assays of AC and DA. In particular, the AuAg-based sensors achieve effective ultrasensitive simultaneous analyses of AC and DA, exhibiting the characteristics of the wide linear range and low detection limit. With their prominent electrocatalytic activity and simple preparation methods, AuAg HPNSs present broad application prospects for constructing a highly responsive electrochemical sensing system.
Collapse
Affiliation(s)
- Menghua Li
- Department of Chemistry, Qilu Normal University, Jinan 250011, China
| | - Xinzheng Liu
- Department of Chemistry, Qilu Normal University, Jinan 250011, China
| | - Changhui Sun
- Department of Chemistry, Qilu Normal University, Jinan 250011, China
| | - Xiaorong Cao
- Department of Chemistry, Qilu Normal University, Jinan 250011, China
| | - Yuanyuan Zhang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Linrui Hou
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Hongxiao Yang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Caixia Xu
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
7
|
Coyle V, Brothers MC, McDonald S, Kim SS. Superlative and Selective Sensing of Serotonin in Undiluted Human Serum Using Novel Polystyrene Sulfonate Conductive Polymer. ACS OMEGA 2024; 9:16800-16809. [PMID: 38617682 PMCID: PMC11008228 DOI: 10.1021/acsomega.4c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
In the past 5 years, real-time health monitoring has become ubiquitous with the development of watches and rings that can measure and report on the physiological state. As an extension, real-time biomarker sensors, such as the continuous glucose monitor, are becoming popular for both health and performance monitoring. However, few real-time sensors for biomarkers have been made commercially available; this is primarily due to problems with cost, stability, sensitivity, selectivity, and reproducibility of biosensors. Therefore, simple, robust sensors are needed to expand the number of analytes that can be detected in emerging and existing wearable platforms. To address this need, we present a simple but novel sensing material. In short, we have modified the already popular PEDOT/PSS conductive polymer by completely removing the PEDOT component and thus have fabricated a polystyrene sulfonate (PSS) sensor electrodeposited on a glassy carbon (GC) base (GC-PSS). We demonstrate that coupling the GC-PSS sensor with differential pulse voltammetry creates a sensor capable of the selective and sensitive detection of serotonin. Notably, the GC-PSS sensor has a sensitivity of 179 μA μM-1 cm-2 which is 36x that of unmodified GC and an interferent-free detection limit of 10 nM, which is below the concentrations typically found in saliva, urine, and plasma. Notably, the redox potential of serotonin interfacing with the GC-PSS sensor is at -0.188 V versus Ag/AgCl, which is significantly distanced from peaks produced by common interferants found in biofluids, including serum. Therefore, this paper reports a novel, simple sensor and polymeric interface that is compatible with emerging wearable sensor platforms.
Collapse
Affiliation(s)
- Victoria
E. Coyle
- Human
Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- UES
Inc., Dayton, Ohio 45432, United States
| | - Michael C. Brothers
- Human
Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- UES
Inc., Dayton, Ohio 45432, United States
| | - Sarah McDonald
- Human
Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- UES
Inc., Dayton, Ohio 45432, United States
| | - Steve S. Kim
- Human
Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| |
Collapse
|
8
|
Zeng C, Li Y, Zhu M, Du Z, Liang H, Chen Q, Ye H, Li R, Liu W. Simultaneous detection of norepinephrine and 5-hydroxytryptophan using poly-alizarin/multi-walled carbon nanotubes-graphene modified carbon fiber microelectrode array sensor. Talanta 2024; 270:125565. [PMID: 38154355 DOI: 10.1016/j.talanta.2023.125565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
Multi-walled carbon nanotubes, graphene and alizarin polymer composites coated carbon fiber microelectrode array sensor (p-AZ/MWCNT-GR/CFMEA) was constructed and used for the simultaneous detection of norepinephrine (NE) and 5-hydroxytryptophan (5-HT). The morphology and structural characteristics of sensor are characterized using scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Its electrochemical behavior has been studied with cyclic voltammetry and electrochemical impedance spectroscopy. The sensor exhibits excellent electrochemical activity for the oxidation of NE and 5-HT, two well separated oxidation peaks with the peak potential difference of 220 mV are observed on the cyclic voltammogram. NE and 5-HT both show two electrons and two protons electrochemical reaction on the p-AZ/MWCNT-GR/CFMEA. Under the optimized experiment conditions, the linear ranges of the sensor for NE and 5-HT are 0. 08- 8 μM and 0. 1-20 μM with detection limits of 4. 22 nM and 14. 2 nM (S/N = 3), respectively. In addition, the microsensor array show good reproducibility, stability and selectivity for the determination of NE and 5-HT. Finally, the p-AZ/MWCNT-GR/CFMEA is applied to the simultaneous detection of NE and 5-HT in human serum samples and macrophages.
Collapse
Affiliation(s)
- Chaoying Zeng
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Yulan Li
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Mingfang Zhu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Zengcheng Du
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Huanru Liang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Qiqing Chen
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Hongqing Ye
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Rui Li
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Wenhao Liu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| |
Collapse
|
9
|
Yin S, Yang H, Wu Y, Wang Z, Yu C, Tang Y, Wang G. Recent advances in biological molecule detection based on a three-dimensional graphene structure. Analyst 2024; 149:1364-1380. [PMID: 38314837 DOI: 10.1039/d3an01932b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Graphene has become an attractive material in the field of electrochemical detection owing to its unique electrical properties. Although the simple stacking structures of two-dimensional (2D) graphene sheets can provide excellent detection properties, a macroscopic three-dimensional (3D) structure needs to be constructed to enhance its functional properties. Graphene with a 3D structure has elegant functions, unlike graphene with a 2D structure. These properties include a large specific surface area, easy loading of nanomaterials with electrocatalytic and redox functions, and so on. Herein, we outline the preparation methods (self-assembly, chemical vapor deposition, templates, and 3D printing) for 3D graphene structures for obtaining excellent detection performance and applications in detecting biological molecules, bacteria, and cells. Furthermore, this review focuses on the improvement of the detection performance and enhancement of the applicability of graphene-based electrochemical sensors. We hope that this article will provide a reference for the future development of electrochemical sensors based on 3D graphene composites.
Collapse
Affiliation(s)
- Shengyan Yin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, P. R. China.
| | - Hanyu Yang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, P. R. China.
| | - Yuyang Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, P. R. China.
| | - Zhe Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, P. R. China.
| | - Chenhao Yu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, P. R. China.
| | - Ying Tang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130012, P. R. China.
| | - Guangbin Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, P. R. China.
| |
Collapse
|
10
|
Fan L, Wu R, Patel V, Huang JJ, Selvaganapathy PR. Solid-state, reagent-free and one-step laser-induced synthesis of graphene-supported metal nanocomposites from metal leaves and application to glucose sensing. Anal Chim Acta 2023; 1264:341248. [PMID: 37230727 DOI: 10.1016/j.aca.2023.341248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/05/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
The laser-induced method to prepare three-dimensional (3D) porous graphene has been widely used in many fields owing to its low-cost, easy operation, maskless patterning and ease of mass production. Metal nanoparticles are further introduced on the surface of 3D graphene to enhance its property. The existing methods, however, such as laser irradiation and electrodeposition of metal precursor solution, suffer from many shortcomings, including complicated procedure of metal precursor solution preparation, strict experimental control, and poor adhesion of metal nanoparticles. Herein, a solid-state, reagent-free, and one-step laser-induced strategy has been developed for the fabrication of metal nanoparticle modified-3D porous graphene nanocomposites. Commercial transfer metal leaves were covered on a polyimide film followed by direct laser irradiation to produce 3D graphene nanocomposites modified with metal nanoparticles. The proposed method is versatile and applicable to incorporate various metal nanoparticles including gold silver, platinum, palladium, and copper. Furthermore, the 3D graphene nanocomposites modified with AuAg alloy nanoparticles were successfully synthesized in both 21 Karat (K) and 18K gold leaves. Its electrochemical characterization demonstrated that the synthesized 3D graphene-AuAg alloy nanocomposites exhibited excellent electrocatalytic properties. Finally, we fabricated LIG-AuAg alloy nanocomposites as enzyme-free flexible sensors for glucose detection. The LIG-18K electrodes exhibited the superior glucose sensitivity of 1194 μA mM-1 cm-2 and low detection limits of 0.21 μM. The LIG-21K nanocomposite sensors showed two linear ranges from 1 μM to 1 mM and 2 mM-20 mM with good sensitivity. Furthermore, the flexible glucose sensor showed good stability, sensitivity, and ability to sense in blood plasma samples. The proposed one-step fabrication of reagent-free and metal alloy nanoparticles on LIG with excellent electrochemical performance opens up possibilities for diversifying potential applications of sensing, water treatment and electrocatalysis.
Collapse
Affiliation(s)
- Liang Fan
- College of Environmental Science and Engineering, Sino-Canada R&D Centre on Water and Environmental Safety, Nankai University, Tianjin, 300350, China; Department of Mechanical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Rong Wu
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Vinay Patel
- School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Jinhui Jeanne Huang
- College of Environmental Science and Engineering, Sino-Canada R&D Centre on Water and Environmental Safety, Nankai University, Tianjin, 300350, China.
| | - P Ravi Selvaganapathy
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada; School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
11
|
Feng H, Wang F, Li J, Wu Q, Cui Y, He L, Liu X, Liu Z, Qian D, Tong H. Tuning the Fe/Co ratio towards a bimetallic Prussian blue analogue for the ultrasensitive electrochemical sensing of 5-hydroxytryptamine. Talanta 2023; 254:124138. [PMID: 36463803 DOI: 10.1016/j.talanta.2022.124138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Lack of highly efficient, inexpensive, and easily available catalysts severely limits the practical applicability of electrochemically sensing assay towards 5-hydroxytryptamine (5-HT). Herein, four kinds of Fe-Co bimetallic Prussian blue analogues (FeCo-PBAs) with different molar ratios of Fe to Co were prepared using a simple coprecipitation method. Interestingly, Fe(III) in K3 [Fe(CN)6] can be reduced to Fe(II) by adding trisodium citrate dehydrate, which could offer a new clue to synthesize PBAs with Fe(II) core ions. With the optimizational FeCo-PBA synthesized at a 0.5/1 M ratio of Fe to Co as an electrocatalyst, the constructed sensor shows excellent comprehensive performance for the 5-HT assay with a high sensitivity of 0.856 μA μM-1 and an ultralow detection limit of 8.4 nM. Under the optimum conditions, linearity was obtained in the ranges of 0.1-10.0 μM and 10.0-200.0 μM and preferable recoveries ranged from 97.8% to 103.0% with relative standard deviation (RSD) < 4.0%. The integrated properties of FeCo-PBA can be comparable to previously reported electrocatalysts for the 5-HT assay including noble metal-based and expensive carbon (graphene and carbon nanotubes)-based electrocatalysts. The proposed sensor also exhibits outstanding selectivity, reproducibility, and practicality for real sample analyses. This work is the first report on the PBA-based sensor for the 5-HT assay, verifying the practicability of this high-performance sensor for the 5-HT assay.
Collapse
Affiliation(s)
- Hao Feng
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hunan Province Universities Key Laboratory of Functional Organometallic Materials, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, PR China
| | - Fan Wang
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hunan Province Universities Key Laboratory of Functional Organometallic Materials, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, PR China
| | - Junhua Li
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hunan Province Universities Key Laboratory of Functional Organometallic Materials, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, PR China; Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| | - Qian Wu
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hunan Province Universities Key Laboratory of Functional Organometallic Materials, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, PR China
| | - Ying Cui
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hunan Province Universities Key Laboratory of Functional Organometallic Materials, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, PR China
| | - Lingzhi He
- School of Medicine, Hunan Polytechnic of Environment and Biology, Hengyang, 421008, PR China; Institute of Chemical and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Xing Liu
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hunan Province Universities Key Laboratory of Functional Organometallic Materials, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, PR China
| | - Zeng Liu
- Cangzhou Dahua Group Co., Ltd, Cangzhou, 061000, PR China
| | - Dong Qian
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| | - Haixia Tong
- Institute of Chemical and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China.
| |
Collapse
|
12
|
Xu QQ, Luo L, Liu ZG, Guo Z, Huang XJ. Highly sensitive and selective serotonin (5-HT) electrochemical sensor based on ultrafine Fe 3O 4 nanoparticles anchored on carbon spheres. Biosens Bioelectron 2023; 222:114990. [PMID: 36495719 DOI: 10.1016/j.bios.2022.114990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/16/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Neurotransmitter serotonin (5-HT) is involved in various physiological and pathological processes. Therefore, its highly sensitive and selective detection in human serum is of great significance for early diagnosis of disease. In this work, employing iron phthalocyanine as Fe source, ultrafine Fe3O4 nanoparticles anchored on carbon spheres (Fe3O4/CSs) have been prepared, which exhibits an excellent electrochemical sensing performance toward 5-HT. With carbonecous spheres turned into conductive carbon spheres under the heat treatment in N2 atmosphere, iron phthalocyanine absorbed on their surfaces are simultaneously pyrolysised and oxidized, and finally transformed into ultrafine Fe3O4 nanoparticles. Electrochemical results demonstrate a high sensitivity (5.503 μA μM-1) and a low detection limit (4 nM) toward 5-HT for as-prepared Fe3O4/CSs. In combination with the morphology and physicochemical property of Fe3O4/CSs, the enhanced sensing mechanism toward 5-HT is disscussed. In addition, the developed electrochemical sensor also displays a good sensing stability and an anti-interferent ability. Further applied in real human serum samples, a satisfactory recovery rate is achieved. Promisingly, the developed electrochemical sensor can be employed for the determination of 5-HT in actual samples.
Collapse
Affiliation(s)
- Qian-Qian Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, PR China
| | - Lan Luo
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, PR China
| | - Zhong-Gang Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, PR China
| | - Zheng Guo
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, PR China.
| | - Xing-Jiu Huang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China; Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, PR China
| |
Collapse
|
13
|
He LB, Shangguan L, Ran YT, Zhu C, Lu ZY, Zhu JH, Yu DJ, Kan CX, Sun LT. Revealing the alloying and dealloying behaviours in AuAg nanorods by thermal stimulus. NANOSCALE ADVANCES 2023; 5:685-692. [PMID: 36756526 PMCID: PMC9890656 DOI: 10.1039/d2na00746k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
Binary metallic nanocrystals are attractive as they offer an extra degree of freedom for structure and phase modulation to generate synergistic effects and extraordinary properties. However, whether the binary structures and phases at the nanoscale still follow the rules established on the bulk counterparts remains unclear. In this work, AuAg nanorods were used as a sample to probe into this issue. An in situ heating method by combining aberration-corrected transmission electron microscopes with a chip-based heating holder was employed to perform the heating experiments. It was found that the AuAg nanorods, which initially possessed heterostructures, can be designed and engineered to be gradient phase alloys with thermal pulses over 350 °C. Atomic diffusion inside the rod structures did not alter the shape of the rods but provided a route to fine-tune their properties. At higher temperatures, the discrepant sublimation behaviours between Au and Ag lead to dealloying of the nanorods. Durative sublimation of the Ag element can continuously tailor the lengths of the nanorods while concentrating the Au composition simultaneously. Especially, nearly pure Au nanocrystals can be obtained with the depletion of Ag by sublimation. These findings give insights into the nanoscale structure and phase behaviours in binary alloys and provide an alternative way to fine-tune their structure, phase, and properties.
Collapse
Affiliation(s)
- Long-Bing He
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University Nanjing 210096 P. R. China
- Centre for Advanced Materials and Manufacture, Joint Research Institute of Southeast University and Monash University Suzhou 215123 P. R. China
| | - Lei Shangguan
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University Nanjing 210096 P. R. China
| | - Ya-Ting Ran
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University Nanjing 210096 P. R. China
| | - Chao Zhu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University Nanjing 210096 P. R. China
| | - Zi-Yu Lu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University Nanjing 210096 P. R. China
| | - Jiong-Hao Zhu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University Nanjing 210096 P. R. China
| | - Dao-Jiang Yu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University Nanjing 210096 P. R. China
| | - Cai-Xia Kan
- College of Physics, Nanjing University of Aeronautics and Astronautics No. 29 Jiangjun Road Nanjing 211106 P. R. China
| | - Li-Tao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University Nanjing 210096 P. R. China
- Centre for Advanced Materials and Manufacture, Joint Research Institute of Southeast University and Monash University Suzhou 215123 P. R. China
| |
Collapse
|
14
|
Ashraf G, Aziz A, Iftikhar T, Zhong ZT, Asif M, Chen W. The Roadmap of Graphene-Based Sensors: Electrochemical Methods for Bioanalytical Applications. BIOSENSORS 2022; 12:1183. [PMID: 36551150 PMCID: PMC9775289 DOI: 10.3390/bios12121183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Graphene (GR) has engrossed immense research attention as an emerging carbon material owing to its enthralling electrochemical (EC) and physical properties. Herein, we debate the role of GR-based nanomaterials (NMs) in refining EC sensing performance toward bioanalytes detection. Following the introduction, we briefly discuss the GR fabrication, properties, application as electrode materials, the principle of EC sensing system, and the importance of bioanalytes detection in early disease diagnosis. Along with the brief description of GR-derivatives, simulation, and doping, classification of GR-based EC sensors such as cancer biomarkers, neurotransmitters, DNA sensors, immunosensors, and various other bioanalytes detection is provided. The working mechanism of topical GR-based EC sensors, advantages, and real-time analysis of these along with details of analytical merit of figures for EC sensors are discussed. Last, we have concluded the review by providing some suggestions to overcome the existing downsides of GR-based sensors and future outlook. The advancement of electrochemistry, nanotechnology, and point-of-care (POC) devices could offer the next generation of precise, sensitive, and reliable EC sensors.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ayesha Aziz
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tayyaba Iftikhar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
15
|
Li D, Fang C, Li H, Tu Y. Fluorescence/electrochemiluminescence approach for instant detection of glycated hemoglobin index. Anal Biochem 2022; 659:114958. [PMID: 36273622 DOI: 10.1016/j.ab.2022.114958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/02/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022]
Abstract
The percentage of glycated hemoglobin (HbA1c) in total hemoglobin (Hb) is an important index for the diagnosis of Type II diabetes (T2D) because it reflects the long-term glucose level in blood. Herein, employing a one-pot co-reduction approach using glutathione (GSH) as structure-directing agent, a cluster-like AuAg nanoparticle (AuAg NPs) material was synthesized, therefore an electrochemiluminescence (ECL) aptamer-sensor for HbA1c detection was developed based on functionalized electrode with this material. Meanwhile, the quantitative determination of total Hb was realized based on the quenching effect of Hb on the fluorescence (FL) of luminol. Under compatible conditions, the results of both indexes can be satisfactorily acquired. This multimodal detection system has a good linear response toward Hb from 0.1 to 2.5 μM and HbA1c from 0.005 to 0.5 μM. The blood test proves this strategy is capable of accurate Hb and HbA1c detection, thus to obtain the percentage of HbA1c in total Hb (HbA1c%), which has the potential application for clinical diagnosis of diabetes mellitus.
Collapse
Affiliation(s)
- Dongning Li
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, PR China
| | - Chen Fang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, PR China
| | - Huiling Li
- The First Affiliated Hospital, Nursing College, Soochow University, Suzhou, 215006, PR China.
| | - Yifeng Tu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
16
|
Chavan SG, Yagati AK, Koyappayil A, Go A, Yeon S, Lee T, Lee MH. Conformationally Flexible Dimeric-Serotonin-Based Sensitive and Selective Electrochemical Biosensing Strategy for Serotonin Recognition. Anal Chem 2022; 94:17020-17030. [PMID: 36414244 DOI: 10.1021/acs.analchem.2c02747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A novel electrochemical sensor was constructed based on an enzyme-mediated physiological reaction between neurotransmitter serotonin per-oxidation to reconstruct dual-molecule 4,4'-dimeric-serotonin self-assembled derivative, and the potential biomedical application of the multi-functional nano-platform was explored. Serotonin accelerated the catalytic activity to form a dual molecule at the C4 position and created phenolic radical-radical coupling intermediates in a peroxidase reaction system. Here, 4,4' dimeric-serotonin possessed the capability to recognize intermolecular interactions between amine groups. The excellent quenching effects on top of the gold surface electrode system archive logically inexpensive and straightforward analytical demands. In biochemical sensing analysis, the serotonin dimerization concept demonstrated a robust, low-cost, and highly sensitive immunosensor, presenting the potential of quantifying serotonin at point-of-care (POC) testing. The high-specificity serotonin electrochemical sensor had a limit of detection (LOD) of 0.9 nM in phosphate buffer and 1.4 nM in human serum samples and a linear range of 10 to 400 with a sensitivity of 2.0 × 10-2 nM. The bivalent 4,4'-dimer-serotonin interaction strategy provides a promising platform for serotonin biosensing with high specificity, sensitivity, selectivity, stability, and reproducibility. The self-assembling gold surface electrochemical system presents a new analytical method for explicitly detecting tiny neurotransmitter-responsive serotonin neuromolecules.
Collapse
Affiliation(s)
- Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-Gu, Seoul06974, South Korea
| | - Ajay Kumar Yagati
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-Gu, Seoul06974, South Korea
| | - Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-Gu, Seoul06974, South Korea
| | - Anna Go
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-Gu, Seoul06974, South Korea
| | - Sangho Yeon
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-Gu, Seoul06974, South Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul01897, Republic of Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-Gu, Seoul06974, South Korea
| |
Collapse
|
17
|
Boonkaew S, Dettlaff A, Sobaszek M, Bogdanowicz R, Jönsson-Niedziółka M. Electrochemical determination of neurotransmitter serotonin using boron/nitrogen co-doped diamond-graphene nanowall-structured particles. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Karthik V, Selvakumar P, Senthil Kumar P, Satheeskumar V, Godwin Vijaysunder M, Hariharan S, Antony K. Recent advances in electrochemical sensor developments for detecting emerging pollutant in water environment. CHEMOSPHERE 2022; 304:135331. [PMID: 35709842 DOI: 10.1016/j.chemosphere.2022.135331] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/07/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
In the latest times, considerable studies have been performed closer to detecting emerging pollutant such as paracetamol in wastewater. Electrochemical sensor developments have recently started to determine in fewer concentrations effectively. The detection of paracetamol using standard protocols corresponding to electroanalytical techniques has a greater impact noticed in directing the detecting process toward biosensors. Non-enzymatic sensors are the peak of all electro analysis approaches. Functionalized materials, such as metal oxide nanoparticles, conducting polymers, and carbon-based materials for electrode surface functionalization have been used to create a fortification for distributing passive enzyme-free biosensors. Synergic effects are possible by enhancing loading capacity and mass transfer of reactants for attaining high analytical sensitivity using a variety of nanomaterials with large surface areas. The main focus of this study is to address the prevailing issues in the identification of paracetamol with the tasks in the non-enzymatic sensors field, followed by the useful methods of electro analysis studies.
Collapse
Affiliation(s)
- V Karthik
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - P Selvakumar
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama, 1888, Ethiopia
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
| | - V Satheeskumar
- Department of Civil Engineering, Government College of Technology, Coimbatore, 641013, India
| | - M Godwin Vijaysunder
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - S Hariharan
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - K Antony
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| |
Collapse
|
19
|
Kumar P, Soni I, Jayaprakash GK, Flores-Moreno R. Studies of Monoamine Neurotransmitters at Nanomolar Levels Using Carbon Material Electrodes: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5782. [PMID: 36013918 PMCID: PMC9415512 DOI: 10.3390/ma15165782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Neurotransmitters (NTs) with hydroxyl groups can now be identified electrochemically, utilizing a variety of electrodes and voltammetric techniques. In particular, in monoamine, the position of the hydroxyl groups might alter the sensing properties of a certain neurotransmitter. Numerous research studies using electrodes modified on their surfaces to better detect specific neurotransmitters when other interfering factors are present are reviewed to improve the precision of these measures. An investigation of the monoamine neurotransmitters at nanoscale using electrochemical methods is the primary goal of this review article. It will be used to determine which sort of electrode is ideal for this purpose. The use of carbon materials, such as graphite carbon fiber, carbon fiber micro-electrodes, glassy carbon, and 3D printed electrodes are only some of the electrodes with surface modifications that can be utilized for this purpose. Electrochemical methods for real-time detection and quantification of monoamine neurotransmitters in real samples at the nanomolar level are summarized in this paper.
Collapse
Affiliation(s)
- Pankaj Kumar
- Laboratory of Quantum Electrochemistry, School of Advanced Chemical Sciences, Shoolini University, Bajhol, Solan 173229, India
| | - Isha Soni
- Laboratory of Quantum Electrochemistry, School of Advanced Chemical Sciences, Shoolini University, Bajhol, Solan 173229, India
| | - Gururaj Kudur Jayaprakash
- Laboratory of Quantum Electrochemistry, School of Advanced Chemical Sciences, Shoolini University, Bajhol, Solan 173229, India
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Bangalore 560064, India
| | - Roberto Flores-Moreno
- Departamento de Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Col. Olímpica, Guadalajara 44430, Mexico
| |
Collapse
|
20
|
Zare I, Yaraki MT, Speranza G, Najafabadi AH, Haghighi AS, Nik AB, Manshian BB, Saraiva C, Soenen SJ, Kogan MJ, Lee JW, Apollo NV, Bernardino L, Araya E, Mayer D, Mao G, Hamblin MR. Gold nanostructures: synthesis, properties, and neurological applications. Chem Soc Rev 2022; 51:2601-2680. [PMID: 35234776 DOI: 10.1039/d1cs01111a] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances in technology are expected to increase our current understanding of neuroscience. Nanotechnology and nanomaterials can alter and control neural functionality in both in vitro and in vivo experimental setups. The intersection between neuroscience and nanoscience may generate long-term neural interfaces adapted at the molecular level. Owing to their intrinsic physicochemical characteristics, gold nanostructures (GNSs) have received much attention in neuroscience, especially for combined diagnostic and therapeutic (theragnostic) purposes. GNSs have been successfully employed to stimulate and monitor neurophysiological signals. Hence, GNSs could provide a promising solution for the regeneration and recovery of neural tissue, novel neuroprotective strategies, and integrated implantable materials. This review covers the broad range of neurological applications of GNS-based materials to improve clinical diagnosis and therapy. Sub-topics include neurotoxicity, targeted delivery of therapeutics to the central nervous system (CNS), neurochemical sensing, neuromodulation, neuroimaging, neurotherapy, tissue engineering, and neural regeneration. It focuses on core concepts of GNSs in neurology, to circumvent the limitations and significant obstacles of innovative approaches in neurobiology and neurochemistry, including theragnostics. We will discuss recent advances in the use of GNSs to overcome current bottlenecks and tackle technical and conceptual challenges.
Collapse
Affiliation(s)
- Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | | | - Giorgio Speranza
- CMM - FBK, v. Sommarive 18, 38123 Trento, Italy.,IFN - CNR, CSMFO Lab., via alla Cascata 56/C Povo, 38123 Trento, Italy.,Department of Industrial Engineering, University of Trento, v. Sommarive 9, 38123 Trento, Italy
| | - Alireza Hassani Najafabadi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alireza Shourangiz Haghighi
- Department of Mechanical Engineering, Shiraz University of Technology, Modarres Boulevard, 13876-71557, Shiraz, Iran
| | - Amirala Bakhshian Nik
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Cláudia Saraiva
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg.,Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marques d'Avila e Bolama, 6201-001 Covilha, Portugal
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, 8380492 Santiago, Chile
| | - Jee Woong Lee
- Department of Medical Sciences, Clinical Neurophysiology, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Nicholas V Apollo
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Liliana Bernardino
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marques d'Avila e Bolama, 6201-001 Covilha, Portugal
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago, Chile
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Germany
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Michael R Hamblin
- Laser Research Center, University of Johannesburg, Doorfontein 2028, South Africa.
| |
Collapse
|
21
|
Tertis M, Sirbu PL, Suciu M, Bogdan D, Pana O, Cristea C, Simon I. An innovative sensor based on chitosan and graphene oxide for selective and highly‐sensitive detection of serotonin. ChemElectroChem 2022. [DOI: 10.1002/celc.202101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mihaela Tertis
- Iuliu Hațieganu University of Medicine and Pharmacy: Universitatea de Medicina si Farmacie Iuliu Hatieganu of Analytical Chemistry 4 Pasteut StreetCluj-Napoca 400021 Cluj-Napoca ROMANIA
| | - Petra Lia Sirbu
- Iuliu Hațieganu University of Medicine and Pharmacy: Universitatea de Medicina si Farmacie Iuliu Hatieganu of Analytical Chemistry 4 Pasteut StreetCluj-Napoca 400021 Cluj-Napoca ROMANIA
| | - Maria Suciu
- Babes-Bolyai University: Universitatea Babes-Bolyai Biology and Geology 5-7 Clinicilor Street 400009 Cluj Napoca ROMANIA
| | - Diana Bogdan
- Development and Policies Research Center Molecular and Biomolecular Physics Departemnt 67-103 Donat Street 400293 Cluj-Napoca ROMANIA
| | - Ovidiu Pana
- National Institute of Research and Development of Isotopic and Molecular Technologies Physics and Nanostructured Systems Department 67-103 Donat Street 400293 Cluj-Napoca ROMANIA
| | - Cecilia Cristea
- University of Medicine and Pharmacy Iuliu Hatieganu Cluj-Napoca Analytical Chemistry str. V. Babes nr. 8 400021 Cluj-Napoca ROMANIA
| | - Ioan Simon
- Iuliu Hațieganu University of Medicine and Pharmacy: Universitatea de Medicina si Farmacie Iuliu Hatieganu Surgery IV 18 Republicii Street 400021 Cluj-Napoca ROMANIA
| |
Collapse
|
22
|
Deng H, Zhao J, Zhao S, Jiang S, Cui G. A graphene-based electrochemical flow analysis device for simultaneous determination of dopamine, 5-hydroxytryptamine, and melatonin. Analyst 2022; 147:1598-1610. [DOI: 10.1039/d1an02318g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A graphene-based electrochemical flow analysis device for simultaneous determination of dopamine, 5-hydroxytryptamine, and melatonin.
Collapse
Affiliation(s)
- Huizhen Deng
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jie Zhao
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shifan Zhao
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Shuai Jiang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guofeng Cui
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
23
|
Zhao L, Niu G, Gao F, Lu K, Sun Z, Li H, Stenzel M, Liu C, Jiang Y. Gold Nanorods (AuNRs) and Zeolitic Imidazolate Framework-8 (ZIF-8) Core-Shell Nanostructure-Based Electrochemical Sensor for Detecting Neurotransmitters. ACS OMEGA 2021; 6:33149-33158. [PMID: 34901666 PMCID: PMC8655944 DOI: 10.1021/acsomega.1c05529] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/12/2021] [Indexed: 05/04/2023]
Abstract
The development of novel electrode materials for rapid and sensitive detection of neurotransmitters in the human body is of great significance for early disease diagnosis and personalized therapy. Herein, gold nanorod@zeolitic imidazolate framework-8 (AuNR@ZIF-8) core-shell nanostructures were prepared by controlled encapsulation of gold nanorods within a ZIF-8 assembly. The designed AuNR@ZIF-8 nanostructures have uniform morphology, good dispersion, a large specific surface area, and an average size of roughly 175 nm. Compared with individual ZIF-8 and AuNR-modified electrodes, the obtained core-shell-structured AuNR@ZIF-8 nanocomposite structure-modified electrode shows excellent electrocatalytic performance in the determination of dopamine (DA) and serotonin (ST). The designed AuNR@ZIF-8 exhibited a wide linear range of 0.1-50 μM and low detection limit (LOD, 0.03 μM, S/N = 3) for the determination of DA, as well as a linear range of 0.1-25 μM and low LOD (0.007 μM, S/N = 3) for monitoring ST. The improved performance is attributed to the synergistic effect of the high conductivity of AuNRs and multiple catalytic sites of ZIF-8. The good electroanalytical ability of AuNR@ZIF-8 for detection of DA and ST can provide a guide to efficiently and rapidly monitor other neurotransmitters and construct novel electrochemical sensors.
Collapse
Affiliation(s)
- Li Zhao
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Guiming Niu
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
- Shenzhen
Research Institute of Shandong University, Shenzhen, Guangdong 518057, P. R. China
| | - Fucheng Gao
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Kaida Lu
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Zhiwei Sun
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Hui Li
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Martina Stenzel
- School
of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chao Liu
- Department
of Oromaxillofacial Head and Neck Oncology, Shanghai Jiao Tong University School of Medicine Affiliated Ninth
People’s Hospital, Shanghai 200011, P. R. China
| | - Yanyan Jiang
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
- Shenzhen
Research Institute of Shandong University, Shenzhen, Guangdong 518057, P. R. China
| |
Collapse
|
24
|
Song H, Liu Y, Fang Y, Zhang D. Carbon-Based Electrochemical Sensors for In Vivo and In Vitro Neurotransmitter Detection. Crit Rev Anal Chem 2021; 53:955-974. [PMID: 34752170 DOI: 10.1080/10408347.2021.1997571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
As essential neurological chemical messengers, neurotransmitters play an integral role in the maintenance of normal mammalian physiology. Aberrant neurotransmitter activity is associated with a range of neurological conditions including Parkinson's disease, Alzheimer's disease, and Huntington's disease. Many studies to date have tested different approaches to detecting neurotransmitters, yet the detection of these materials within the brain, due to the complex environment of the brain and the rapid metabolism of neurotransmitters, remains challenging and an area of active research. There is a clear need for the development of novel neurotransmitter sensing technologies capable of rapidly and sensitively monitoring specific analytes within the brain without adversely impacting the local microenvironment in which they are implanted. Owing to their excellent sensitivity, portability, ease-of-use, amenability to microprocessing, and low cost, electrochemical sensors methods have been widely studied in the context of neurotransmitter monitoring. The present review, thus, surveys current progress in this research field, discussing developed electrochemical neurotransmitter sensors capable of detecting dopamine (DA), serotonin (5-HT), acetylcholine (Ach), glutamate (Glu), nitric oxide (NO), adenosine (ADO), and so on. Of these technologies, those based on carbon nanostructures-modified electrodes including carbon nanotubes (CNTs), graphene (GR), gaphdiyne (GDY), carbon nanofibers (CNFs), and derivatives thereof hold particular promise owing to their excellent biocompatibility and electrocatalytic performance. The continued development of these and related technologies is, thus, likely to lead to major advances in the clinical diagnosis of neurological diseases and the detection of novel biomarkers thereof.
Collapse
Affiliation(s)
- Huijun Song
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Yangyang Liu
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| |
Collapse
|
25
|
Li D, Tan R, Mi X, Fang C, Tu Y. An electrochemiluminescent biosensor for noninvasive glucose detection based on cluster-like AuAg hollowed-nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Miao R, Yang M, Compton RG. The Electro-oxidation of Hydrazine with Palladium Nanoparticle Modified Electrodes: Dissecting Chemical and Physical Effects: Catalysis, Surface Roughness, or Porosity? J Phys Chem Lett 2021; 12:6661-6666. [PMID: 34255524 DOI: 10.1021/acs.jpclett.1c01955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Palladium nanoparticles in the form of a layer on the surface of an electrode are shown to be electrocatalytic with respect to the four-electron oxidation of hydrazine to form dinitrogen. Quantitative voltammetry shows that the reduced overpotential in comparison with both carbon and bulk palladium electrodes partly arises from the increased surface area of the interface and partly from an increased catalytic activity of the nanoparticles relative to the bulk material. The relative catalytic activity per unit surface area of the nanoparticles as compared with the bulk material is shown to be ca. 35-45.
Collapse
Affiliation(s)
- Ruiyang Miao
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, Great Britain
| | - Minjun Yang
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, Great Britain
| | - Richard G Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, Great Britain
| |
Collapse
|
27
|
Le HT, Tran DT, Kim NH, Lee JH. Worm-like gold nanowires assembled carbon nanofibers-CVD graphene hybrid as sensitive and selective sensor for nitrite detection. J Colloid Interface Sci 2021; 583:425-434. [DOI: 10.1016/j.jcis.2020.09.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
|
28
|
Abstract
The present review deals with the recent progress made in the field of the electrochemical detection of serotonin by means of electrochemical sensors based on various nanomaterials incorporated in the sensitive element. Due to the unique chemical and physical properties of these nanomaterials, it was possible to develop sensitive electrochemical sensors with excellent analytical performances, useful in the practice. The main electrochemical sensors used in serotonin detection are based on carbon electrodes modified with carbon nanotubes and various materials, such as benzofuran, polyalizarin red-S, poly(L-arginine), Nafion/Ni(OH)2, or graphene oxide, incorporating silver-silver selenite nanoparticles, as well as screen-printed electrodes modified with zinc oxide or aluminium oxide. Also, the review describes the nanocomposite sensors based on conductive polymers, tin oxide-tin sulphide, silver/polypyrole/copper oxide or a hybrid structure of cerium oxide-gold oxide nanofibers together with ruthenium oxide nanowires. The presentation focused on describing the sensitive materials, characterizing the sensors, the detection techniques, electroanalytical properties, validation and use of sensors in lab practice.
Collapse
|
29
|
Cernat A, Ştefan G, Tertis M, Cristea C, Simon I. An overview of the detection of serotonin and dopamine with graphene-based sensors. Bioelectrochemistry 2020; 136:107620. [DOI: 10.1016/j.bioelechem.2020.107620] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
|
30
|
Mool-am-kha P, Themsirimongkon S, Saipanya S, Saianand G, Tuantranont A, Karuwan C, Jakmunee J. Hybrid Electrocatalytic Nanocomposites Based on Carbon Nanotubes/Nickel Oxide/Nafion toward an Individual and Simultaneous Determination of Serotonin and Dopamine in Human Serum. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Pijika Mool-am-kha
- Department of Chemistry, and Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence for Innovation in Chemistry and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Suwaphid Themsirimongkon
- Department of Chemistry, and Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Surin Saipanya
- Department of Chemistry, and Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence for Innovation in Chemistry and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Gopalan Saianand
- Global Center for Environmental Remediation, Faculty of Science, The University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Adisorn Tuantranont
- Graphene and Printed Electronics for Dual-Use Applications Research Division, National Security and Dual-Use Technology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
- Center of Advanced Materials of Printed Electronics and Sensors, Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chanpen Karuwan
- Graphene and Printed Electronics for Dual-Use Applications Research Division, National Security and Dual-Use Technology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
- Center of Advanced Materials of Printed Electronics and Sensors, Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry, and Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence for Innovation in Chemistry and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Advanced Materials of Printed Electronics and Sensors, Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
31
|
Geng X, Zhang M, Long H, Hu Z, Zhao B, Feng L, Du J. A reusable neurotransmitter aptasensor for the sensitive detection of serotonin. Anal Chim Acta 2020; 1145:124-131. [PMID: 33453873 DOI: 10.1016/j.aca.2020.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022]
Abstract
Serotonin is one of the important neurotransmitters in human nervous system and associated with central nervous system diseases. Herein, we have prepared a novel electrochemical aptasensor for rapid and sensitive detection of serotonin by using the pre-designed and prepared DNA aptamers. In the absence of serotonin, the electron transfer rate on the aptasensor was faster than that in the presence of serotonin due to the hairpin structure of the aptamer was loose and MB could be closer to the electrode surface. While in the presence of serotonin, the hairpin structure of the aptamer was extended and MB was far away from the electrode surface. The effect of MB labeled sites on analytical performances of the proposed aptasensors was discussed by comparing sensitivity of the aptasensors that MB labeled in the intermediate of the aptamer with that MB labeled at the 3' end of the aptamer. It was found that sensitivity of the intermediate-labeled aptasensor was much higher than the terminal-labeled aptasensor due to the specific conformational changes before and after aptamer binding to serotonin. The developed aptasensors exhibits a rapid electrochemical response and high sensitivity for the determination of serotonin. Under the optimal experimental conditions, the linear range for serotonin concentrations by the intermediate-labeled aptasensor was 1 pM-10 nM with a detection limit of 0.017 fM (S/N = 3). Moreover, the proposed aptasensor is reusable and shows good reproducibility and selectivity for the detection of serotonin in 100-fold diluted rat cerebrospinal fluid, suggesting a good application prospect in the detection of serotonin in real samples.
Collapse
Affiliation(s)
- Xue Geng
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, China
| | - Mengtian Zhang
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, China
| | - Hongyan Long
- Nanjing Hospital of Chinese Medicine Afliated to Nanjing University of Chinese Medicine, Nanjing, 210012, China
| | - Ziheng Hu
- Materials Genome Institute, And Department of Chemistry, College of Science, Shanghai University, 200444, Shanghai, China
| | - Biying Zhao
- Materials Genome Institute, And Department of Chemistry, College of Science, Shanghai University, 200444, Shanghai, China
| | - Lingyan Feng
- Materials Genome Institute, And Department of Chemistry, College of Science, Shanghai University, 200444, Shanghai, China.
| | - Jiangyan Du
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, China; Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing, 210046, China.
| |
Collapse
|
32
|
Cost-Effective Electrochemical Activation of Graphitic Carbon Nitride on the Glassy Carbon Electrode Surface for Selective Determination of Serotonin. SENSORS 2020; 20:s20216083. [PMID: 33114675 PMCID: PMC7662638 DOI: 10.3390/s20216083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 11/23/2022]
Abstract
A simple one-step electrochemical deposition/activation of graphitic carbon nitride (g-C3N4) is highly desired for sensor configurations and remains a great challenge. Herein, we attempt an electrochemical route to exfoliate the g-C3N4 nanosheets in an aqueous solution of pH 7.0 for constructing a sensor, which is highly sensitive for the detection of serotonin (5-HT). The significance of our design is to exfoliate the g-C3N4 nanosheets, a strong electrocatalyst for 5-HT detection. Investigations regarding the effect of neutral pH (pH 7.0) on the bulk g-C3N4 and g-C3N4 nanosheets, physical characterization, and electrochemical studies were extensively carried out. We demonstrate that the g-C3N4 nanosheets have a significant electrocatalytic effect for the 5-HT detection in a dynamic linear range from 500 pM to 1000 nM (R2 = 0.999). The limit of detection and sensitivity of the designed 5-HT sensor was calculated to be 150 pM and 1.03 µA µM−1 cm−2, respectively. The proposed sensor has great advantages such as high sensitivity, good selectivity, reproducibility, and stability. The constructed g-C3N4 nanosheets-based sensor platform opens new feasibilities for the determination of 5-HT even at the picomolar/nanomolar concentration range.
Collapse
|
33
|
Liu JL, Jiang B, Han GZ. Recent Developments on Noble Metal Based Microparticles for Their Applications in Organic Catalysis. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200427080644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Noble metal microparticles have been employed as desired catalysts for a number
of classical organic chemical reactions due to their unique physicochemical properties.
Currently, in order to obtain more benefits for practical applications such as low cost, easy
separation and high selectivity, many efforts of scientists are devoted to constructing composite
microparticles in which noble metals are coupled with other materials. In this paper,
we summarize some recent research developments on noble metal based microparticles for
their catalytic applications in organic synthesis. Among them, application of the gold and
silver based microparticles is the focus of this paper for their relatively low cost and the
diversity of preparation methods. Furthermore, the challenges and prospects of noble metal
based microparticles for their applications in organic catalysis are also discussed.
Collapse
Affiliation(s)
- Jian-Long Liu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Bo Jiang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Guo-Zhi Han
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
34
|
Meng T, Nsabimana A, Zeng T, Jia H, An S, Wang H, Zhang Y. Preparation of Pt anchored on cerium oxide and ordered mesoporous carbon tri-component composite for electrocatalytic oxidation of adrenaline. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110747. [DOI: 10.1016/j.msec.2020.110747] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/07/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022]
|
35
|
Dilmac Y, Guler M. Fabrication of non-enzymatic glucose sensor dependent upon Au nanoparticles deposited on carboxylated graphene oxide. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114091] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Nehru L, Chinnathambi S, Fazio E, Neri F, Leonardi SG, Bonavita A, Neri G. Electrochemical Sensing of Serotonin by a Modified MnO 2-Graphene Electrode. BIOSENSORS 2020; 10:bios10040033. [PMID: 32252484 PMCID: PMC7235847 DOI: 10.3390/bios10040033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 05/15/2023]
Abstract
The development of MnO2-graphene (MnO2-GR) composite by microwave irradiation method and its application as an electrode material for the selective determination of serotonin (SE), popularly known as "happy chemical", is reported. Anchoring MnO2 nanoparticles on graphene, yielded MnO2-GR composite with a large surface area, improved electron transport, high conductivity and numerous channels for rapid diffusion of electrolyte ions. The composite was characterized by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and scanning electron microscopy (SEM) for assessing the actual composition, structure and morphology. The MnO2-GR composite modified glassy carbon electrode (GCE) exhibited an excellent electrochemical activity towards the detection of SE in phosphate buffer saline (PBS) at physiological pH of 7.0. Under optimum conditions, the modified electrode could be applied to the quantification of serotonin by square wave voltammetry over a wide linear range of 0.1 to 800 µM with the lowest detection limit of 10 nM (S/N = 3). The newly fabricated sensor also exhibited attractive features such as good anti-interference ability, high reproducibility and long-term stability.
Collapse
Affiliation(s)
- Lavanya Nehru
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, India
- Department of Engineering, University of Messina, 98166 Messina, Italy; (S.G.L.); (A.B.); (G.N.)
- Correspondence: (L.N.); (S.C.); Tel.: +91-9442563637 (S.C.)
| | - Sekar Chinnathambi
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, India
- Correspondence: (L.N.); (S.C.); Tel.: +91-9442563637 (S.C.)
| | - Enza Fazio
- Department of Mathematical and Computational Sciences, Physics and Earth Physics, University of Messina, 98166 Messina, Italy; (E.F.); (F.N.)
| | - Fortunato Neri
- Department of Mathematical and Computational Sciences, Physics and Earth Physics, University of Messina, 98166 Messina, Italy; (E.F.); (F.N.)
| | | | - Anna Bonavita
- Department of Engineering, University of Messina, 98166 Messina, Italy; (S.G.L.); (A.B.); (G.N.)
| | - Giovanni Neri
- Department of Engineering, University of Messina, 98166 Messina, Italy; (S.G.L.); (A.B.); (G.N.)
| |
Collapse
|
37
|
Well-dispersed poly(cysteine)-Ni(OH)2 nanocomposites on graphene-modified electrode surface for highly sensitive non-enzymatic glucose detection. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
38
|
Chauhan N, Soni S, Agrawal P, Balhara YPS, Jain U. Recent advancement in nanosensors for neurotransmitters detection: Present and future perspective. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.12.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Ratnam KV, Manjunatha H, Janardan S, Babu Naidu KC, Ramesh S. Nonenzymatic electrochemical sensor based on metal oxide, MO (M= Cu, Ni, Zn, and Fe) nanomaterials for neurotransmitters: An abridged review. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
40
|
Amatatongchai M, Sitanurak J, Sroysee W, Sodanat S, Chairam S, Jarujamrus P, Nacapricha D, Lieberzeit PA. Highly sensitive and selective electrochemical paper-based device using a graphite screen-printed electrode modified with molecularly imprinted polymers coated Fe3O4@Au@SiO2 for serotonin determination. Anal Chim Acta 2019; 1077:255-265. [DOI: 10.1016/j.aca.2019.05.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 10/26/2022]
|
41
|
Yue X, Luo X, Zhou Z, Bai Y. Selective electrochemical determination of tertiary butylhydroquinone in edible oils based on an in-situ assembly molecularly imprinted polymer sensor. Food Chem 2019; 289:84-94. [DOI: 10.1016/j.foodchem.2019.03.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/05/2019] [Accepted: 03/10/2019] [Indexed: 11/15/2022]
|
42
|
Adumitrăchioaie A, Tertiș M, Suciu M, Graur F, Cristea C. A novel immunosensing platform for serotonin detection in complex real samples based on graphene oxide and chitosan. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.128] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
43
|
Synergic action of thermosensitive hydrogel and Au/Ag nanoalloy for sensitive and selective detection of pyocyanin. Anal Bioanal Chem 2019; 411:3829-3838. [PMID: 31172234 DOI: 10.1007/s00216-019-01857-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/11/2019] [Accepted: 04/17/2019] [Indexed: 02/03/2023]
Abstract
The rapid detection of bacterial strains has become a major topic thoroughly discussed across the biomedical field. Paired with the existence of nosocomial pathogen agents that imply extreme medical and financial challenges throughout diagnosis and treatment, the development of rapid and easy-to-use sensing devices has gained an increased amount of attention. Moreover, antibiotic resistance considered by World Health Organization as one of the "biggest threats to global health, food security, and development today" enables this topic as high priority. Pseudomonas aeruginosa, one of the most ubiquitous bacterial strains, has various quorum-sensing systems that are a direct cause of their virulence. One of them is represented by pyocyanin, a blue pigment with electroactive properties that is synthesized from early stages of bacterial colonization. Thus, the sensitive detection of this biomarker could enable a personalized and efficient therapy. It was achieved with the development of an electrochemical sensor based on a thermosensitive polymer, modified with Au/Ag nanoalloy for the rapid and accurate detection of pyocyanin, a virulence biomarker of Pseudomonas aeruginosa. The sensor displayed a linear range from 0.12 to 25 μM, and a limit of detection of 0.04 μM (signal/noise = 3). It was successfully tested in real samples spiked with the target analyte without any pretreatment other than a dilution step. The detection of pyocyanin with high recovery in whole blood in a time frame of 5-10 min from the moment of collection was performed with this electrochemical sensor. Graphical abstract.
Collapse
|
44
|
Mesoporous layered spinel zinc manganese oxide nanocrystals stabilized nitrogen-doped graphene as an effective catalyst for oxygen reduction reaction. J Colloid Interface Sci 2019; 545:43-53. [DOI: 10.1016/j.jcis.2019.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 01/18/2023]
|
45
|
SnO2-SnS2 nanocomposite as electrocatalyst for simultaneous determination of depression biomarkers serotonin and tryptophan. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Tavakolian-Ardakani Z, Hosu O, Cristea C, Mazloum-Ardakani M, Marrazza G. Latest Trends in Electrochemical Sensors for Neurotransmitters: A Review. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2037. [PMID: 31052309 PMCID: PMC6539656 DOI: 10.3390/s19092037] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/07/2019] [Accepted: 04/25/2019] [Indexed: 01/19/2023]
Abstract
Neurotransmitters are endogenous chemical messengers which play an important role in many of the brain functions, abnormal levels being correlated with physical, psychotic and neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's disease. Therefore, their sensitive and robust detection is of great clinical significance. Electrochemical methods have been intensively used in the last decades for neurotransmitter detection, outclassing more complicated analytical techniques such as conventional spectrophotometry, chromatography, fluorescence, flow injection, and capillary electrophoresis. In this manuscript, the most successful and promising electrochemical enzyme-free and enzymatic sensors for neurotransmitter detection are reviewed. Focusing on the activity of worldwide researchers mainly during the last ten years (2010-2019), without pretending to be exhaustive, we present an overview of the progress made in sensing strategies during this time. Particular emphasis is placed on nanostructured-based sensors, which show a substantial improvement of the analytical performances. This review also examines the progress made in biosensors for neurotransmitter measurements in vitro, in vivo and ex vivo.
Collapse
Affiliation(s)
- Zahra Tavakolian-Ardakani
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Fi), Italy.
- Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Iran.
| | - Oana Hosu
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Fi), Italy.
- Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400349 Pasteur 4 Cluj-Napoca, Romania.
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400349 Pasteur 4 Cluj-Napoca, Romania.
| | | | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Fi), Italy.
- Instituto Nazionale Biostrutture e Biosistemi (INBB), Unit of Florence, Viale delle Medaglie d'Oro 305, 00136 Roma, Italy.
| |
Collapse
|
47
|
Wang X, Shen W, Zhang X, Guo S, Gao Y, Li X, Feng F, Yang G. Indirect Electrochemical Determination of Ribavirin Using Boronic Acid-Diol Recognition on a 3-Aminophenylboronic Acid-Electrochemically Reduced Graphene Oxide Modified Glassy Carbon Electrode (APBA/ERGO/GCE). ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1576716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaoyan Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Weiyang Shen
- School of Science, China Pharmaceutical University, Nanjing, P.R. China
| | - Xiaolei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Siyan Guo
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ye Gao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaotong Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fang Feng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Gongjun Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
48
|
Khoshnevisan K, Maleki H, Honarvarfard E, Baharifar H, Gholami M, Faridbod F, Larijani B, Faridi Majidi R, Khorramizadeh MR. Nanomaterial based electrochemical sensing of the biomarker serotonin: a comprehensive review. Mikrochim Acta 2019; 186:49. [PMID: 30610391 DOI: 10.1007/s00604-018-3069-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023]
Abstract
This review (with 131 references) summarizes the progress made in the past years in the field of nanomaterial based sensing of serotonin (5-HT). An introduction summarizes the significant role of 5-HT as a biomarker for several major diseases, methods for its determination and the various kinds of nanomaterials for use in electrochemical sensing process relies principally on a precise choice of electrodes. The next main section covers nanomaterial based methods for sensing 5-HT, with subsections on electrodes modified with carbon nanotubes, graphene related materials, gold nanomaterials, and by other nanomaterials. A concluding section discusses future perspectives and current challenges of 5-HT determination. Graphical abstract Conceptual design of electrochemical sensing process of the biomarker serotonin by using nanomaterials and the role of 5-HTas biomarker in the body from preclinical to clincal.
Collapse
Affiliation(s)
- Kamyar Khoshnevisan
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Hassan Maleki
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755354, Iran
| | - Elham Honarvarfard
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699-5810, USA
| | - Hadi Baharifar
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Morteza Gholami
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Farnoush Faridbod
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran.
| | - Reza Faridi Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755354, Iran
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran. .,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran.
| |
Collapse
|
49
|
Nanomaterial-based electrochemical sensors for the detection of neurochemicals in biological matrices. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.08.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Tran DT, Hoa VH, Tuan LH, Kim NH, Lee JH. Cu-Au nanocrystals functionalized carbon nanotube arrays vertically grown on carbon spheres for highly sensitive detecting cancer biomarker. Biosens Bioelectron 2018; 119:134-140. [DOI: 10.1016/j.bios.2018.08.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/23/2018] [Accepted: 08/10/2018] [Indexed: 12/22/2022]
|