1
|
Chandio I, Rahujo S, Chandio ZA, Rashid MA, Rehman MU, Shar ZH, Thebo KH. Recent development in metal-organic frameworks-based electrochemical aptasensors for detection of cancer biomarkers. Bioelectrochemistry 2025; 165:109006. [PMID: 40393088 DOI: 10.1016/j.bioelechem.2025.109006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/22/2025]
Abstract
Aptasensors utilize aptamers as recognition elements, which offer high sensitivity, selectivity, ease of modification, outstanding stability, real-time detection, biocompatibility, cost-effectiveness, and good integration. Utilizing metal-organic framework (MOF)-based electrochemical aptasensors is a promising approach that is drawing significant attention. MOF-based aptasensors for cancer detection present a promising avenue, yet they face several challenges. The optimization of sensitivity and selectivity in the MOF-aptamer system is complex, requiring a delicate balance to distinguish the target analyte from interfering substances in physiological environments. Efficient immobilization of aptamers on MOF surfaces while maintaining their conformation and stability under physiological conditions poses a crucial challenge for robust sensing. Integrating MOFs and aptamers with transduction systems, such as electrodes in electrochemical sensors, is critical for achieving efficient signal transduction and maintaining sensor stability. Herein, the latest developments in MOF-based electrochemical aptasensors for detecting tumor markers will be discussed. Focus will be given on single metallic, bimetallic, and calcinated-based MOFs and their strengths and weaknesses will be summarized. Further, the synthesis strategy of electrochemical sensors is analyzed to meet the requirements of selectivity and sensitivity. Finally, the future perspectives for developing and applying electrochemical aptasensors are also discussed.
Collapse
Affiliation(s)
- Imamdin Chandio
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; National Centre of Excellence inraphene Analytical Chemistry, University of Sindh, Jamshoro, Pakistan.
| | - Sanam Rahujo
- National Centre of Excellence inraphene Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Zaheer Ahmed Chandio
- Department of Chemistry, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Pakistan
| | - Md Abdur Rashid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Al Faraa, Abha 62223, Saudi Arabi
| | - Misbah Ur Rehman
- Department of Chemistry, University of Mianwali, Mianwali 42200, Pakistan
| | - Zahid H Shar
- Dr. M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro, Pakistan
| | | |
Collapse
|
2
|
Wu Q, Li S, Long X, Liu L, Zhao Q, Cui Y, Zhang Y, He Y. β-Galactosidase-Mediated, Mn 2+-Activated CRISPR/Cas12a Cascade Reaction for Immunosorbent Assay of Carbendazim. Anal Chem 2025; 97:8402-8410. [PMID: 40195937 DOI: 10.1021/acs.analchem.4c07110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The CRISPR/Cas12a system is an emerging enzymatic tool for the development of enzyme-linked immunosorbent assay (ELISA) methods, owing to its robust signal amplification capability. Currently, most CRISPR/Cas12a-based ELISA approaches rely on strategies that convert target detection into nucleic acid analysis. This report presents a novel enzymatic cascade reaction for signal transduction and amplification in the development of a CRISPR/Cas12a-based ELISA method, utilizing β-galactosidase (β-gal)-mediated activation of the CRISPR/Cas12a system. Carbendazim (CBD), a widely used and versatile broad-spectrum benzimidazole fungicide, was chosen as the model analyte. In the absence of CBD, streptavidin-labeled β-gal is captured by a biotinylated secondary antibody immobilized on the microplate. The captured β-gal catalyzes the hydrolysis of p-aminophenyl β-D-galactopyranoside to generate p-aminophenol. This compound subsequently facilitates the decomposition of MnO2 nanosheets, leading to the generation of Mn2+ ions. The Mn2+ ions modulate the activity of the CRISPR/Cas12a system, thus producing high fluorescence in the detection solution. In the presence of CBD, the amount of β-gal captured on the microplate is reduced, thereby preventing effective cleavage of the reporter molecule by Cas12a, which results in a low fluorescence signal. After systematically optimizing experimental conditions, the developed method successfully detected CBD, demonstrating high sensitivity, selectivity, and applicability in complex food matrices. In comparison to the traditional nucleic acid-activated CRISPR/Cas12a-based ELISA method, our approach, which integrates β-gal-mediated, Mn2+-activated CRISPR/Cas12a cascade reactions into ELISA, exhibits superior analytical performance, thereby broadening the applicability of CRISPR/Cas12a for sensitive and convenient small-molecule analysis.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, P.R. China
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China
| | - Siying Li
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, P.R. China
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China
| | - Xinqi Long
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, P.R. China
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China
| | - Lei Liu
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, P.R. China
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China
| | - Qiyang Zhao
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, P.R. China
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China
| | - Yongliang Cui
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, P.R. China
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China
| | - Yaohai Zhang
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, P.R. China
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China
| | - Yue He
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, P.R. China
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China
| |
Collapse
|
3
|
Huang Z, Tian K, Xue Y, Luo F. A promising role of noble metal NPs@MOFs in chondrosarcoma management. NANOSCALE 2025; 17:2961-2984. [PMID: 39718125 DOI: 10.1039/d4nr03878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Chondrosarcoma, a challenging and malignant neoplasm originating from cartilage cells, poses significant diagnostic and therapeutic hurdles due to its resistance to conventional treatments and the complexity of its diagnosis. Noble metal nanoparticle-embedded metal-organic frameworks (NPs@MOFs) stand out as a novel approach for the diagnosis and treatment of chondrosarcoma. This review delves into the properties and applications of NPs@MOFs, focusing on their classification by noble metal type and their role in enhancing photothermal therapy (PTT), photodynamic therapy (PDT), targeted drug delivery and chondrosarcoma diagnosis. Despite promising in vitro and in vivo results, challenges such as understanding the mechanisms of action and clinical translation remain, and the therapeutic effect of PTT and PDT on deep chondrosarcoma seems unsatisfactory. Future exploration, such as combined therapy and multiple MOF therapy, could unlock the full potential of noble metal NPs@MOFs in revolutionizing chondrosarcoma management, offering insights into the prospect of these materials in chondrosarcoma management.
Collapse
Affiliation(s)
- Ziheng Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Keyue Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yiyuan Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Department of General Dentistry, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China.
| |
Collapse
|
4
|
Arabnejad M, Tothill IE, Chianella I. Impedimetric Biosensors for the Quantification of Serum Biomarkers for Early Detection of Lung Cancer. BIOSENSORS 2024; 14:624. [PMID: 39727890 DOI: 10.3390/bios14120624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
Lung cancer is the most common type of cancer diagnosed worldwide and is also among the most fatal. Early detection, before symptoms become evident, is fundamental for patients' survival. Therefore, several lung cancer biomarkers have been proposed to enable a prompt diagnosis, including neuron-specific enolase (NSE) and carcinoembryonic antigen (CEA). NSE and CEA are two serum proteins whose elevated levels have been associated with lung cancer. Hence, in this study, impedimetric biosensors (immunosensors) able to quantify NSE and CEA were developed as proof-of-concept devices for lung cancer diagnosis. The sensing platform exploited for the immunosensors comprises a novel combination of a magnetic platform, screen-printed gold electrode (SPGE), and magnetic nanobeads (MB). The MB were functionalized with antibodies to capture the analyte from the sample and to move it over the sensing area. The immunosensors were then developed by immobilizing another set of antibodies for either CEA or NSE on the SPGE through formation of self-assembled monolayer (SAM). The second set of antibodies enabled a sandwich assay to be formed on the surface of the sensor, while MB manipulation was applied during the sensor performance to depict a microfluidic system and increase antigen-antibody complex formation prior to CEA or NSE detection and quantification. The optimized immunosensors were successfully tested to measure various concentrations of CEA and NSE (0-100 ng/mL) in both phosphate buffer and 100% human serum samples. Clinically relevant detection limits of 0.26 ng/mL and 0.18 ng/mL in buffer and 0.76 ng/mL and 0.52 ng/mL in 100% serum for CEA and NSE, respectively, were achieved via electrochemical impedance spectroscopy with the use of potassium ferri/ferrocyanide as a redox probe. Hence, the two immunosensors demonstrated great potential as tools to be implemented for the early detection of lung cancer.
Collapse
Affiliation(s)
- Mahdi Arabnejad
- Faculty of Engineering and Applied Sciences, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
- Silveray, Stockport Road West, Stockport SK6 2BP, UK
| | - Ibtisam E Tothill
- Faculty of Engineering and Applied Sciences, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | - Iva Chianella
- Faculty of Engineering and Applied Sciences, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| |
Collapse
|
5
|
Sayed ZS, Hieba EM, Batakoushy HA, Rashdan HRM, Ismail E, Elkatlawy SM, Elzwawy A. Cancer treatment approaches within the frame of hyperthermia, drug delivery systems, and biosensors: concepts and future potentials. RSC Adv 2024; 14:39297-39324. [PMID: 39670162 PMCID: PMC11635600 DOI: 10.1039/d4ra06992g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024] Open
Abstract
This work presents a review of the therapeutic modalities and approaches for cancer treatment. A brief overview of the traditional treatment routes is presented in the introduction together with their reported side effects. A combination of the traditional approaches was reported to demonstrate an effective therapy until a few decades ago. With the improvement in the fabrication of nanomaterials, targeted therapy represents a novel therapeutic approach. This improvement established on nanoparticles is categorized into hyperthermia, drug delivery systems, and biosensors. Hyperthermia presents a personalized medicine-based approach in which targeted zones are heated up until the diseased tissue is destroyed by the thermal effect. The use of magnetic nanoparticles further improved the effectiveness of hyperthermia owing to the enhanced heating action, further increasing the accuracy of the targeting process. Nanoparticle-based biosensors present a smart nanodevice that can detect, monitor, and target tumor tissues by following the biomarkers in the body fluids. Magnetic nanoparticles offer a controlled thermo-responsive device that can be manipulated by changing the magnetic field, offering a more personalized and controlled hyperthermia therapeutic modality. Similarly, gold nanoparticles offer an effective aid in the hyperthermia treatment approach. Furthermore, carbon nanotubes and metal-organic frameworks present a cutting-edge approach to cancer treatment. A combination of functionalized nanoparticles offers a unique route for drug delivery systems, in which therapeutic agents carried by nanoparticles are guided into the human body and then released in the target spot.
Collapse
Affiliation(s)
- Zeinab S Sayed
- Faculty of Applied Medical Science, Misr University for Science and Technology (MUST) Giza Egypt
| | - Eman M Hieba
- Chemistry and Entomology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Hany A Batakoushy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Menoufia University Shebin Elkom 32511 Egypt
| | - Huda R M Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre 33 El Buhouth St., Dokki Giza 12622 Egypt
| | - Enas Ismail
- Department of Prosthodontics, Faculty of Dentistry, University of the Western Cape Cape Town 7505 South Africa
- Physics Department, Faculty of Science (Girl's Branch), Al Azhar University Nasr City 11884 Cairo Egypt
| | - Saeid M Elkatlawy
- Department of Physics, Faculty of Science, University of Sadat City Fifth Zone Sadat Egypt
| | - Amir Elzwawy
- Ceramics Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre (NRC) 33 El Bohouth St., Dokki Giza 12622 Egypt
| |
Collapse
|
6
|
Shahzad S, Iftikhar FJ, Shah A, Rehman HA, Iwuoha E. Novel interfaces for internet of wearable electrochemical sensors. RSC Adv 2024; 14:36713-36732. [PMID: 39559568 PMCID: PMC11570917 DOI: 10.1039/d4ra07165d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024] Open
Abstract
The integration of wearable devices, the Internet of Things (IoT), and advanced sensing platforms implies a significant paradigm shift in technological innovations and human interactions. The IoT technology allows continuous monitoring in real time. Thus, Internet of Wearables has made remarkable strides, especially in the field of medical monitoring. IoT-enabled wearable systems assist in early disease detection that facilitates personalized interventions and proactive healthcare management, thereby empowering individuals to take charge of their wellbeing. Until now, physical sensors have been successfully integrated into wearable devices for physical activity monitoring. However, obtaining biochemical information poses challenges in the contexts of fabrication compatibility and shorter operation lifetimes. IoT-based electrochemical wearable sensors allow real-time acquisition of data and interpretation of biomolecular information corresponding to biomarkers, viruses, bacteria and metabolites, extending the diagnostic capabilities beyond physical activity tracking. Thus, critical heath parameters such as glucose levels, blood pressure and cardiac rhythm may be monitored by these devices regardless of location and time. This work presents versatile electrochemical sensing devices across different disciplines, including but not limited to sports, safety and wellbeing by using IoT. It also discusses the detection principles for biomarkers and biofluid monitoring, and their integration into devices and advancements in sensing interfaces.
Collapse
Affiliation(s)
- Suniya Shahzad
- National University of Technology (NUTECH) Islamabad 44000 Pakistan
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | | | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | | | - Emmanuel Iwuoha
- Sensorlab, Department of Chemistry, University of the Western Cape Private Bag X17 Bellville 7535 South Africa
| |
Collapse
|
7
|
Alsharabasy AM, Sankar M, Biggs M, Farràs P, Pandit A. Iron protoporphyrin IX-hyaluronan hydrogel-supported luminol chemiluminescence for the detection of nitric oxide in physiological solutions. Talanta 2024; 278:126522. [PMID: 38991408 DOI: 10.1016/j.talanta.2024.126522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
Due to its role as a free radical signal-transducing agent with a short lifespan, precise measurement of nitric oxide (●NO) levels presents significant challenges. Various analytical techniques offer distinct advantages and disadvantages for ●NO detection. This research aims to simplify the detection process by developing a hydrogel system using iron(III)-protoporphyrin IX (hemin)-loaded hyaluronan for the detection of ●NO in solution. Various hydrogel formulations were created, and the effects of their components on hydrogel-supported luminol chemiluminescence (CL) kinetics, radical scavenging, and physicochemical properties were analysed through factorial analysis. The candidate formulations were then evaluated using two ●NO donors. An increase in the degree of crosslinking in unloaded formulations enhanced interactions with the CL reaction components, hydrogen peroxide (H2O2) and luminol, thereby affecting light generation. However, hemin loading negated these effects, resulting in more prominent luminescence kinetics in formulations with lower crosslinking degrees. Similarly, ●NO influenced the kinetics differently, interacting with both the CL reaction and hydrogel components. Hemin-loaded formulations exhibited enhanced signal propagation when exposed to ●NO, followed by H2O2 and luminol, whereas reversing the order of addition inhibited this propagation. The magnitude of these luminescence changes depended on the type and concentration of the ●NO donor, demonstrating greater sensitivity to ●NO levels compared to amperometric sensing. These findings suggest that the studied hydrogel platform has potential for the facile and accurate detection of ●NO in solution, requiring minimal sample sizes.
Collapse
Affiliation(s)
- Amir M Alsharabasy
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY, Ireland.
| | - Magesh Sankar
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY, Ireland
| | - Manus Biggs
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY, Ireland
| | - Pau Farràs
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY, Ireland; School of Biological and Chemical Sciences, Ryan Institute, University of Galway, H91 TK33, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY, Ireland.
| |
Collapse
|
8
|
Erkal-Aytemur A, Mülazımoğlu İE, Üstündağ Z, Caglayan MO. A novel aptasensor platform for the detection of carcinoembryonic antigen using quartz crystal microbalance. Talanta 2024; 277:126376. [PMID: 38852341 DOI: 10.1016/j.talanta.2024.126376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/13/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
In this study, a quartz crystal microbalance (QCM) aptasensor for carcinoembryonic antigen (CEA), a well-known biomarker for various cancer types, was reported, utilizing two different aptamers. To achieve this, a nanofilm of 4-mercaptophenyl was electrochemically attached to gold-coated QCM crystal surfaces via the reduction of 4-mercaptobenzenediazonium salt (4 MB-DAT) using cyclic voltammetry. Subsequently, gold nanoparticles (AuNP) were affixed to this structure, and then aptamers (antiCEA1 and antiCEA2) modified with SH-functional ends bound to AuNPs completed the modification. The analytical performance of the CEA sensor was evaluated through simultaneous QCM measurements employing CEA solutions ranging from 0.1 ng/mL to 25 ng/mL. The detection limit (LOD) for CEA was determined to be 102 pg/mL for antiCEA1 and 108 pg/mL for antiCEA2 aptamers. Interday and intraday precision and accuracy tests yielded maximum results of 4.3 and + 3.8, respectively, for both aptasensors, as measured by relative standard deviation (RSD%) and relative error (RE%). The kinetic data of the aptasensors resulted in affinity values (KD) of 0.43 ± 0.14 nM for antiCEA1 and 0.75 ± 0.42 nM for antiCEA2. These values were lower than the reported values of 3.9 nM and 37.8 nM for both aptamers, respectively. The selectivity of the aptasensor was evaluated by measuring the signal changes caused by alpha-fetoprotein (AFP), cancer antigen (CA-125), and vascular endothelial growth factor (VEGF-165) individually and together at a concentration of 500 ng/mL, resulting in a maximum 4.1 % change, which was comparable to precision and accuracy values reported in the literature. After confirming the selectivity of the aptamers, recovery experiments were conducted using spiked commercial serum samples to simulate real samples, and the lowest recovery value obtained was 95.4 %. It was determined that two different aptasensors could be successfully used for the QCM-based detection of CEA in this study.
Collapse
Affiliation(s)
- Aslı Erkal-Aytemur
- Alanya Alaaddin Keykubat University, R.K. Faculty of Engineering, Fundamental Science, Antalya, Turkey
| | | | - Zafer Üstündağ
- Kütahya Dumlupınar University, Faculty of Arts and Science, Department of Chemistry, Kütahya, Turkey
| | - Mustafa Oguzhan Caglayan
- Bilecik Seyh Edebali University, Faculty of Engineering, Department of Bioengineering, Bilecik, Turkey.
| |
Collapse
|
9
|
Jiang Y, Zheng J, Wang M, Xu W, Wang Y, Wen L, Dong J. Pros and Cons in Various Immobilization Techniques and Carriers for Enzymes. Appl Biochem Biotechnol 2024; 196:5633-5655. [PMID: 38175415 DOI: 10.1007/s12010-023-04838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
In recent years, enzyme immobilization technology has been developed, and studies on immobilized enzyme materials have become very prominent. With the immobilization technique, enzymes and compatible carrier materials are combined or enzyme crystals/aggregates are used in a carrier-free fashion, by physical, chemical, or biochemical methods. As a kind of biocatalyst, immobilized enzymes can catalyze certain chemical reactions with high selectivity and high efficiency under relatively mild reaction conditions and eliminate pollution to the environment. Considering the current status and applications of immobilized enzyme technology and materials emerging in the last 5 years, this mini-review introduces the advantages and disadvantages of various enzyme immobilization techniques with carriers as well as the pros and cons of different materials for immobilization. The future prospects of immobilization technology and carrier materials are outlined, aiming to provide a reference for further research and applications of sustainable technology.
Collapse
Affiliation(s)
- Yong Jiang
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Jinxia Zheng
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Mengna Wang
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Wanqi Xu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Yiquan Wang
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Li Wen
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Jian Dong
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China.
| |
Collapse
|
10
|
Chi Z, Gu J, Li H, Wang Q. Recent progress of metal-organic framework-based nanozymes with oxidoreductase-like activity. Analyst 2024; 149:1416-1435. [PMID: 38334683 DOI: 10.1039/d3an01995k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Nanozymes, a class of synthetic nanomaterials possessing enzymatic catalytic properties, exhibit distinct advantages such as exceptional stability and cost-effectiveness. Among them, metal-organic framework (MOF)-based nanozymes have garnered significant attention due to their large specific surface area, tunable pore size and uniform structure. MOFs are porous crystalline materials bridged by inorganic metal ions/clusters and organic ligands, which hold immense potential in the fields of catalysis, sensors and drug carriers. The combination of MOFs with diverse nanomaterials gives rise to various types of MOF-based nanozyme, encompassing original MOFs, MOF-based nanozymes with chemical modifications, MOF-based composites and MOF derivatives. It is worth mentioning that the metal ions and organic ligands in MOFs are perfectly suited for designing oxidoreductase-like nanozymes. In this review, we intend to provide an overview of recent trends and progress in MOF-based nanozymes with oxidoreductase-like activity. Furthermore, the current obstacles and prospective outlook of MOF-based nanozymes are proposed and briefly discussed. This comprehensive analysis aims to facilitate progress in the development of novel MOF-based nanozymes with oxidoreductase-like activity while serving as a valuable reference for scientists engaged in related disciplines.
Collapse
Affiliation(s)
- Zhongmei Chi
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| | - Jiali Gu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| | - Hui Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| | - Qiong Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| |
Collapse
|
11
|
Yao Y, Wang J, Wang Z, Li S, Tan H. Colorimetric immunoassay of carcinoembryonic antigen based on the glucose oxidase/MnO 2 nanosheet cascade reaction with self-supplying oxygen. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5351-5359. [PMID: 37800396 DOI: 10.1039/d3ay01425h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The detection of carcinoembryonic antigen (CEA) has profound implications in cancer diagnostics and therapeutic monitoring. In this work, we developed a colorimetric immunoassay for the detection of CEA. This assay involves the utilization of zinc(II)-based coordination polymers (ZnCPs) as a host for integrating glucose oxidase (GOx) and anti-carcinoembryonic antigen antibody (anti-CEA), which results in the formation of a detection antibody (anti-CEA/GOx@ZnCPs). The adaptable inclusion properties of ZnCPs enable the preservation of the original catalytic behavior of GOx and antigen capture ability of anti-CEA. Consequently, the anti-CEA/GOx@ZnCPs can act as a detection antibody to facilitate the development of an immunoassay. The combination of anti-CEA/GOx@ZnCPs in the immunoassay triggers a cascade reaction involving GOx and MnO2 nanosheets, leading to the generation of an amplified colorimetric signal through self-supplying oxygen. This colorimetric immunoassay exhibits a linear response ranging from 2 to 180 ng mL-1 CEA and has a detection limit of 50 pg mL-1. The practicality of this colorimetric immunoassay in biological matrices was demonstrated by the successful determination of CEA in serum samples with good recovery and precision. We believe that this study will pave the way to rationally design multifunctional CP-based composites for a wide range of applications in bioanalysis.
Collapse
Affiliation(s)
- Yuanzhi Yao
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418000, China.
| | - Jinhong Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Ziqi Wang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418000, China.
| | - Shenghua Li
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418000, China.
| | - Hongliang Tan
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418000, China.
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
12
|
Ibrahim MR, Greish YE. MOF-Based Biosensors for the Detection of Carcinoembryonic Antigen: A Concise Review. Molecules 2023; 28:5970. [PMID: 37630221 PMCID: PMC10458010 DOI: 10.3390/molecules28165970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer has been considered one of the most serious diseases in recent decades. Early diagnosis of cancer is a crucial step for expedited treatment. Ideally, detection of cancer biomarkers, which are usually elevated because of cancer, is the most straightforward approach to detecting cancer. Among these biomarkers, the carcinoembryonic antigen (CEA) is considered one of the most important tumor markers for colorectal cancer. The CEA has also been recognized as a biomarker for other types of cancers, including breast, gastric, ovarian, pancreatic, and lung cancers. Typically, conventional CEA testing depends on immunoassay approaches, which are known to be complex, highly expensive, and time consuming. Accordingly, various types of biosensors have been designed for the detection of cancer biomarkers. The main prerequisites of these biosensors are high sensitivity, fast response, and low cost. Many nanostructures have been involved in the design of biosensors, such as nanoparticles of certain metals and metal oxides that are further functionalized to contribute to the sensing of the biomarkers. Alternatively, metal organic frameworks (MOFs), which are extended crystalline structures comprising metal clusters surrounded by organic linkers, have been shown to be highly promising for the development of biosensors. The 3D structure of MOFs results in a combination of high surface area and high interconnected porosity, which are believed to facilitate their function in the design of a biosensor. This review briefly classifies and describes MOF-based biosensor trials that have been published recently for the aim of detecting CEA.
Collapse
Affiliation(s)
| | - Yaser E. Greish
- Department of Chemistry, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
13
|
Khan S, Cho WC, Sepahvand A, Haji Hosseinali S, Hussain A, Nejadi Babadaei MM, Sharifi M, Falahati M, Jaragh-Alhadad LA, ten Hagen TLM, Li X. Electrochemical aptasensor based on the engineered core-shell MOF nanostructures for the detection of tumor antigens. J Nanobiotechnology 2023; 21:136. [PMID: 37101280 PMCID: PMC10131368 DOI: 10.1186/s12951-023-01884-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
It is essential to develop ultrasensitive biosensors for cancer detection and treatment monitoring. In the development of sensing platforms, metal-organic frameworks (MOFs) have received considerable attention as potential porous crystalline nanostructures. Core-shell MOF nanoparticles (NPs) have shown different diversities, complexities, and biological functionalities, as well as significant electrochemical (EC) properties and potential bio-affinity to aptamers. As a result, the developed core-shell MOF-based aptasensors serve as highly sensitive platforms for sensing cancer biomarkers with an extremely low limit of detection (LOD). This paper aimed to provide an overview of different strategies for improving selectivity, sensitivity, and signal strength of MOF nanostructures. Then, aptamers and aptamers-modified core-shell MOFs were reviewed to address their functionalization and application in biosensing platforms. Additionally, the application of core-shell MOF-assisted EC aptasensors for detection of several tumor antigens such as prostate-specific antigen (PSA), carbohydrate antigen 15-3 (CA15-3), carcinoembryonic antigen (CEA), human epidermal growth factor receptor-2 (HER2), cancer antigen 125 (CA-125), cytokeratin 19 fragment (CYFRA21-1), and other tumor markers were discussed. In conclusion, the present article reviews the advancement of potential biosensing platforms toward the detection of specific cancer biomarkers through the development of core-shell MOFs-based EC aptasensors.
Collapse
Affiliation(s)
- Suliman Khan
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong China
| | - Afrooz Sepahvand
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Haji Hosseinali
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Depatment of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, The Netherlands
| | | | - Timo L. M. ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, The Netherlands
| | - Xin Li
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Tran VA, Doan VD, Le VT, Nguyen TQ, Don TN, Vien V, Luan NT, Vo GNL. Metal–Organic Frameworks-Derived Material for Electrochemical Biosensors: Recent Applications and Prospects. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Vy Anh Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Van Dat Doan
- The Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Danang, 550000, Vietnam
| | - Thanh-Quang Nguyen
- Department of External Relations and Project Development, Institute of Applied Science and Technology (IAST), Van Lang University, Ho Chi Minh City, 700000, Vietnam
| | - Ta Ngoc Don
- Ministry of Education and Training, Ha Noi City, 100000, Vietnam
| | - Vo Vien
- Applied Research Institute for Science and Technology, Quy Nhon University, Quy Nhon, 820000, Vietnam
| | - Nguyen Thanh Luan
- Department of Science and Technology, HUTECH University, Ho Chi Minh City 700000, Vietnam
| | - Giang N. L. Vo
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| |
Collapse
|
15
|
Zhou C, Wang N, Lv Y, Sun H, Wang G, Su X. Cascade reaction biosensor based on gold nanocluster decorated iron-cobalt oxide nanosheets as a superior peroxidase mimic for dual-mode detection of α-glucosidase and its inhibitor. Talanta 2023; 254:124148. [PMID: 36463805 DOI: 10.1016/j.talanta.2022.124148] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/20/2022] [Accepted: 11/26/2022] [Indexed: 11/30/2022]
Abstract
Herein, we have synthesized a novel kind of gold nanoclusters decorated iron-cobalt oxide nanosheets (His-AuNCs@FeCo-ONSs) assembled by electrostatic interaction, which possessed both outstanding peroxidase-like activity and fluorescence property. Taking advantage of our bifunctional hybrid nanozyme and enzyme cascade reactions, a sensitive dual-mode (colorimetric/fluorescent) detection method for α-glucosidase was constructed. The detection limits for α-glucosidase were 2.2 U/L and 3.3 U/L in fluorometric and colorimetric mode, respectively. This method not only provides high sensitivity, but also can correct itself to improve the accuracy of analysis due to the dual-response signals. Furthermore, it was employed for α-glucosidase determination in real samples and screening of α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Chenyu Zhou
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Nan Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yuntai Lv
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Huilin Sun
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Guannan Wang
- College of Medical Engineering, Jining Medical University, Jining, 272067, China.
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
16
|
Sui JH, Wei YY, Li J, Xu ZR. A portable multicolor aptasensor for MUC1 detection based on enzyme-mediated cascade reaction. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
A sensitive electrochemical sensor based on PtNPs@Cu-MOF signal probe and DNA walker signal amplification for Pb2+ detection. Bioelectrochemistry 2022; 146:108134. [DOI: 10.1016/j.bioelechem.2022.108134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/19/2022] [Accepted: 04/10/2022] [Indexed: 12/31/2022]
|
18
|
Shi J, Nie W, Zhao X, Yang X, Cheng H, Zhou T, Zhang Y, Zhang K, Liu J. An Intracellular Self-Assembly-Driven Uninterrupted ROS Generator Augments 5-Aminolevulinic-Acid-Based Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201049. [PMID: 35488781 DOI: 10.1002/adma.202201049] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Free radical therapy based on 5-aminolevulinic acid (ALA, a precursor of the photosensitizer protoporphyrin IX (PpIX)) has been approved by the US Food and Drug Administration for clinical tumor treatment. However, PpIX can be quickly converted into photoinactive heme, leading to unexpectedly paused production of free radicals and severely hindering its therapeutic benefits. Here, inspired by the natural biotransformation of ALA (ALA-PpIX-heme), an uninterrupted reactive oxygen species generator (URG) that converts useless heme to peroxidase mimics via intracellular self-assembly is developed. The URG is prepared by enwrapping ALA-loaded polyamide-amine dendrimers in red blood cell membrane vesicles with a further surface modification of G-quadruplex-structured AS1411. The URGs realize "1 O2 -•OH" uninterrupted generation through "recycling waste" in two steps: i) PpIX generates 1 O2 under laser irradiation; and ii) the photoinactive metabolite heme self-assembled with AS1411 to catalyze H2 O2 conversion into •OH. Interestingly, the specific generation of 1 O2 in mitochondria and •OH in nuclei further augments the free-radical-induced damage. It is demonstrated that URG can continuously produce free radicals for 6 h postirradiation, and shows 3.3-times more than that of the nonassembly group, achieving nearly 80% regression of tumors in vivo.
Collapse
Affiliation(s)
- Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Science and Technology, Department of Henan Province, Zhengzhou, 450001, China
| | - Weimin Nie
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiu Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinyuan Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hui Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Tonghai Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yun Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Science and Technology, Department of Henan Province, Zhengzhou, 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Science and Technology, Department of Henan Province, Zhengzhou, 450001, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Science and Technology, Department of Henan Province, Zhengzhou, 450001, China
| |
Collapse
|
19
|
Xu J, Ma J, Peng Y, Cao S, Zhang S, Pang H. Applications of metal nanoparticles/metal-organic frameworks composites in sensing field. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Zhu CY, Li FL, Zhang YW, Gupta RK, Patel SKS, Lee JK. Recent Strategies for the Immobilization of Therapeutic Enzymes. Polymers (Basel) 2022; 14:polym14071409. [PMID: 35406282 PMCID: PMC9003532 DOI: 10.3390/polym14071409] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Therapeutic enzymes play important roles in modern medicine due to their high affinity and specificity. However, it is very expensive to use them in clinical medicine because of their low stability and bioavailability. To improve the stability and effectiveness of therapeutic enzymes, immobilization techniques have been employed to enhance the applications of therapeutic enzymes in the past few years. Reported immobilization techniques include entrapment, adsorption, and covalent attachment. In addition, protein engineering is often used to improve enzyme properties; however, all methods present certain advantages and limitations. For carrier-bound immobilization, the delivery and release of the immobilized enzyme depend on the properties of the carrier and enzyme. In this review, we summarize the advantages and challenges of the current strategies developed to deliver therapeutic enzymes and provide a future perspective on the immobilization technologies used for therapeutic enzyme delivery.
Collapse
Affiliation(s)
- Chen-Yuan Zhu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; (C.-Y.Z.); (F.-L.L.)
| | - Fei-Long Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; (C.-Y.Z.); (F.-L.L.)
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; (C.-Y.Z.); (F.-L.L.)
- Correspondence: (Y.-W.Z.); (S.K.S.P.); (J.-K.L.); Tel.: +82-2-450-3505 (J.-K.L.)
| | - Rahul K. Gupta
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea;
| | - Sanjay K. S. Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea;
- Correspondence: (Y.-W.Z.); (S.K.S.P.); (J.-K.L.); Tel.: +82-2-450-3505 (J.-K.L.)
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea;
- Correspondence: (Y.-W.Z.); (S.K.S.P.); (J.-K.L.); Tel.: +82-2-450-3505 (J.-K.L.)
| |
Collapse
|
21
|
Dourandish Z, Tajik S, Beitollahi H, Jahani PM, Nejad FG, Sheikhshoaie I, Di Bartolomeo A. A Comprehensive Review of Metal-Organic Framework: Synthesis, Characterization, and Investigation of Their Application in Electrochemical Biosensors for Biomedical Analysis. SENSORS (BASEL, SWITZERLAND) 2022; 22:2238. [PMID: 35336408 PMCID: PMC8953394 DOI: 10.3390/s22062238] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 06/01/2023]
Abstract
Many studies have addressed electrochemical biosensors because of their simple synthesis process, adjustability, simplification, manipulation of materials' compositions and features, and wide ranges of detection of different kinds of biomedical analytes. Performant electrochemical biosensors can be achieved by selecting materials that enable faster electron transfer, larger surface areas, very good electrocatalytic activities, and numerous sites for bioconjugation. Several studies have been conducted on the metal-organic frameworks (MOFs) as electrode modifiers for electrochemical biosensing applications because of their respective acceptable properties and effectiveness. Nonetheless, researchers face challenges in designing and preparing MOFs that exhibit higher stability, sensitivity, and selectivity to detect biomedical analytes. The present review explains the synthesis and description of MOFs, and their relative uses as biosensors in the healthcare sector by dealing with the biosensors for drugs, biomolecules, as well as biomarkers with smaller molecular weight, proteins, and infectious disease.
Collapse
Affiliation(s)
- Zahra Dourandish
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran; (Z.D.); (F.G.N.); (I.S.)
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| | | | - Fariba Garkani Nejad
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran; (Z.D.); (F.G.N.); (I.S.)
| | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran; (Z.D.); (F.G.N.); (I.S.)
| | - Antonio Di Bartolomeo
- Dipartimento di Fisica “E.R. Caianiello”, Università di Salerno, 84084 Fisciano, SA, Italy
| |
Collapse
|
22
|
Zhao F, Xie S, Li B, Zhang X. Functional nucleic acids in glycobiology: A versatile tool in the analysis of disease-related carbohydrates and glycoconjugates. Int J Biol Macromol 2022; 201:592-606. [PMID: 35031315 DOI: 10.1016/j.ijbiomac.2022.01.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
Abstract
As significant components of the organism, carbohydrates and glycoconjugates play indispensable roles in energy supply, cell signaling, immune modulation, and tumor cell invasion, and function as biomarkers since aberrance of them has been proved to be associated with the emergence and development of certain diseases. Functional nucleic acids (FNAs) have properties including easy-to-synthesize, good stability, good biocompatibility, low cost, and high programmability, they have attracted significant research attention and been incorporated into biosensors for detecting disease-related carbohydrates and glycoconjugates. This review summarizes the construction strategies and biosensing applications of FNAs-based biosensors in glycobiology in terms of target recognition and signal transduction. By illustrating the mechanisms and comparing the performances, the challenges and development opportunities in this area have been critically elaborated. We believe that this review will provide a better understanding of the role of FNAs in the analysis of disease-related carbohydrates and glycoconjugates, and inspire further discovery in fields that include glycobiology, chemical biology, clinical diagnosis, and drug development.
Collapse
Affiliation(s)
- Furong Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Siying Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
23
|
Cao X, Liu M, Zhao M, Li J, Xia J, Zou T, Wang Z. Synergetic PtNP@Co3O4 hollow nanopolyhedrals as peroxidase-like nanozymes for the dual-channel homogeneous biosensing of prostate-specific antigen. Anal Bioanal Chem 2022; 414:1921-1932. [DOI: 10.1007/s00216-021-03827-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022]
|
24
|
Ge X, Wong R, Anisa A, Ma S. Recent development of metal-organic framework nanocomposites for biomedical applications. Biomaterials 2021; 281:121322. [PMID: 34959029 DOI: 10.1016/j.biomaterials.2021.121322] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/01/2021] [Accepted: 12/12/2021] [Indexed: 12/15/2022]
Abstract
Albeit metal-organic framework (MOF) composites have been extensively explored, reducing the size and dimensions of various contents within the composition, to the nanoscale regime, has recently presented unique opportunities for enhanced properties with the formation of MOF-based nanocomposites. Many distinctive strategies have been used to fabricate these nanocomposites such as through the introduction of nanoparticles (NPs) into a MOF precursor solution or vice versa to achieve a core-shell or heterostructure configuration. As such, MOF-based nanocomposites offer seemingly limitless possibilities and promising solutions for the vast range of applications across biomedical disciplines especially for improving in vivo implementation. In this review, we focus on the recent development of MOF-based nanocomposites, outline their classification according to the type of integrations (NPs, coating materials, and different MOF-derived nanocomposites), and direct special attention towards the various approaches and strategies employed to construct these nanocomposites for their prospective utilization in biomedical applications including biomimetic enzymes and photo, chemo, sonodynamic, starvation and hyperthermia therapies. Lastly, our work aims to highlight the exciting potential as well as the challenges of MOF-based nanocomposites to help guide future research as well as to contribute to the progress of MOF-based nanotechnology in biomedicine.
Collapse
Affiliation(s)
- Xueying Ge
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX, 76201, United States
| | - Raymond Wong
- Department of Cell and Molecular Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, 33620, United States
| | - Anee Anisa
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX, 76201, United States
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX, 76201, United States.
| |
Collapse
|
25
|
Metal-organic frameworks based hybrid nanocomposites as state-of-the-art analytical tools for electrochemical sensing applications. Biosens Bioelectron 2021; 199:113867. [PMID: 34890884 DOI: 10.1016/j.bios.2021.113867] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/22/2021] [Accepted: 12/05/2021] [Indexed: 12/18/2022]
Abstract
Metal-organic frameworks (MOFs) are remarkably porous materials that have sparked a lot of interest in recent years because of their fascinating architectures and variety of potential applications. This paper systematically summarizes recent breakthroughs in MOFs and their derivatives with different materials such as, carbon nanotubes, graphene oxides, carbon fibers, enzymes, antibodies and aptamers etc. for enhanced electrochemical sensing applications. Furthermore, an overview part is highlighted, which provides some insights into the future prospects and directions of MOFs and their derivatives in electrochemical sensing, with the goal of overcoming present limitations by pursuing more inventive ways. This overview can perhaps provide some creative ideas for future research on MOF-based materials in this rapidly expanding field.
Collapse
|
26
|
Jiang J, Xia J, Zang Y, Diao G. Electrochemistry/Photoelectrochemistry-Based Immunosensing and Aptasensing of Carcinoembryonic Antigen. SENSORS (BASEL, SWITZERLAND) 2021; 21:7742. [PMID: 34833818 PMCID: PMC8624776 DOI: 10.3390/s21227742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022]
Abstract
Recently, electrochemistry- and photoelectrochemistry-based biosensors have been regarded as powerful tools for trace monitoring of carcinoembryonic antigen (CEA) due to the fact of their intrinsic advantages (e.g., high sensitivity, excellent selectivity, small background, and low cost), which play an important role in early cancer screening and diagnosis and benefit people's increasing demands for medical and health services. Thus, this mini-review will introduce the current trends in electrochemical and photoelectrochemical biosensors for CEA assay and classify them into two main categories according to the interactions between target and biorecognition elements: immunosensors and aptasensors. Some recent illustrative examples are summarized for interested readers, accompanied by simple descriptions of the related signaling strategies, advanced materials, and detection modes. Finally, the development prospects and challenges of future electrochemical and photoelectrochemical biosensors are considered.
Collapse
Affiliation(s)
| | | | - Yang Zang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China; (J.J.); (J.X.); (G.D.)
| | | |
Collapse
|
27
|
Wang X, Wang Y, Ying Y. Recent advances in sensing applications of metal nanoparticle/metal–organic framework composites. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116395] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Zhang F, Liu Z, Han Y, Fan L, Guo Y. Sandwich electrochemical carcinoembryonic antigen aptasensor based on signal amplification of polydopamine functionalized graphene conjugate Pd-Pt nanodendrites. Bioelectrochemistry 2021; 142:107947. [PMID: 34507161 DOI: 10.1016/j.bioelechem.2021.107947] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/16/2021] [Accepted: 08/29/2021] [Indexed: 02/09/2023]
Abstract
Carcinoembryonic antigen (CEA) is considered as a disease biomarker, which is related to various cancers and tumors in the human bodies. Sensitive detection of CEA is significant for clinical diagnosis and treatment. Herein, we proposed an electrochemical aptasensor for CEA detection based on the amplification driven by polydopamine functional graphene and Pd-Pt nanodendrites (PDA@Gr/Pd-PtNDs), conjugated hemin/G-quadruplex (hemin/G4), which possess mimicking peroxidases activity. Firstly, PDA@Gr was modified on the electrode surface for fixing CEA aptamer 1 (Apt1). Then, PDA@Gr/Pd-PtNDs with large surface area served as matrix for immobilization of hemin/G4 to obtain the secondary aptamer. In virtue of the sandwich-type specific reaction between CEA and the corresponding aptamers, the second aptamer was captured on the sensing interface, which can catalyze the oxidation of signal probe hydroquinone (HQ) with H2O2 and amplify current signal. Furthermore, the electrochemical signals of HQ were proportional with CEA concentrations. Under the optimal conditions, a dynamic response range from 50 pg/mL to 1.0 μg/mL and a detection limit of 6.3 pg/mL for CEA were obtained. Moreover, the proposed strategy represented satisfactory sensitivity and stability, and showed a good precision in real samples application.
Collapse
Affiliation(s)
- Fenglin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Zhiguang Liu
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Yujie Han
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Lifang Fan
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Yujing Guo
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
29
|
Fathima Fasna PH, Sasi S. A Comprehensive Overview on Advanced Sensing Applications of Functional Metal Organic Frameworks (MOFs). ChemistrySelect 2021. [DOI: 10.1002/slct.202101533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- P. H. Fathima Fasna
- Department of Chemistry Maharaja's College Park Avenue Road Ernakulam Kerala India
| | - Sreesha Sasi
- Department of Chemistry Maharaja's College Park Avenue Road Ernakulam Kerala India
| |
Collapse
|
30
|
Ahirwar R, Khan N, Kumar S. Aptamer-based sensing of breast cancer biomarkers: a comprehensive review of analytical figures of merit. Expert Rev Mol Diagn 2021; 21:703-721. [PMID: 33877005 DOI: 10.1080/14737159.2021.1920397] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Accurate determination of the aberrantly expressed biomarkers such as human epidermal growth factor receptor 2 (HER2), carcinoembryonic antigen (CEA), platelet-derived growth factor (PDGF), mucin 1 (MUC1), and vascular endothelial growth factor VEGF165 have played an essential role in the clinical management of the breast cancer. Assessment of these cancer-specific biomarkers has conventionally relied on time-taking methods like the enzyme-linked immunosorbent assay and immunohistochemistry. However, recent development in the aptamer-based diagnostics has allowed developing tools that may substitute the conventional means of biomarker assessment in breast cancer. Adopting the aptamer-based diagnostic tools (aptasensors) to clinical practices will depend on their analytical performance on clinical samples. AREAS COVERED In this review, we provide an overview of the analytical merits of HER2, CEA, PDGF, MUC1, and VEGF165 aptasensors. Scopus and Pubmed databases were searched for studies reporting aptasensor development for the listed breast cancer biomarkers in the past one decade. Linearity, detection limit, and response time are emphasized. EXPERT OPINION In our opinion, aptasensors have proven to be on a par with the antibody-based methods for detection of various breast cancer biomarkers. Though robust validation of the aptasensors on significant sample size is required, their ability to detect pathophysiological range of biomarkers suggest the possibility of future clinical adoption.
Collapse
Affiliation(s)
- Rajesh Ahirwar
- Department of Environmental Biochemistry, ICMR- National Institute for Research in Environmental Health, Bhopal, India
| | - Nabab Khan
- Department of Environmental Biochemistry, ICMR- National Institute for Research in Environmental Health, Bhopal, India
| | - Saroj Kumar
- School of Biosciences, Apeejay Stya University, Gurgaon, India
| |
Collapse
|
31
|
Metal–organic frameworks (MOFs) based electrochemical biosensors for early cancer diagnosis in vitro. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213948] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Xu J, Jiang R, He H, Ma C, Tang Z. Recent advances on G-quadruplex for biosensing, bioimaging and cancer therapy. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116257] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Mujtaba J, Liu J, Dey KK, Li T, Chakraborty R, Xu K, Makarov D, Barmin RA, Gorin DA, Tolstoy VP, Huang G, Solovev AA, Mei Y. Micro-Bio-Chemo-Mechanical-Systems: Micromotors, Microfluidics, and Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007465. [PMID: 33893682 DOI: 10.1002/adma.202007465] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Wireless nano-/micromotors powered by chemical reactions and/or external fields generate motive forces, perform tasks, and significantly extend short-range dynamic responses of passive biomedical microcarriers. However, before micromotors can be translated into clinical use, several major problems, including the biocompatibility of materials, the toxicity of chemical fuels, and deep tissue imaging methods, must be solved. Nanomaterials with enzyme-like characteristics (e.g., catalase, oxidase, peroxidase, superoxide dismutase), that is, nanozymes, can significantly expand the scope of micromotors' chemical fuels. A convergence of nanozymes, micromotors, and microfluidics can lead to a paradigm shift in the fabrication of multifunctional micromotors in reasonable quantities, encapsulation of desired subsystems, and engineering of FDA-approved core-shell structures with tuneable biological, physical, chemical, and mechanical properties. Microfluidic methods are used to prepare stable bubbles/microbubbles and capsules integrating ultrasound, optoacoustic, fluorescent, and magnetic resonance imaging modalities. The aim here is to discuss an interdisciplinary approach of three independent emerging topics: micromotors, nanozymes, and microfluidics to creatively: 1) embrace new ideas, 2) think across boundaries, and 3) solve problems whose solutions are beyond the scope of a single discipline toward the development of micro-bio-chemo-mechanical-systems for diverse bioapplications.
Collapse
Affiliation(s)
- Jawayria Mujtaba
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jinrun Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Krishna K Dey
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China
| | - Rik Chakraborty
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Kailiang Xu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
- School of Information Science and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Roman A Barmin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Dmitry A Gorin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Valeri P Tolstoy
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Petergof, St. Petersburg, 198504, Russia
| | - Gaoshan Huang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Alexander A Solovev
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
34
|
Dhakshinamoorthy A, Asiri AM, Garcia H. Integration of metal organic frameworks with enzymes as multifunctional solids for cascade catalysis. Dalton Trans 2021; 49:11059-11072. [PMID: 32808625 DOI: 10.1039/d0dt02045a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Enzymes exhibit a large degree of compatibility with metal-organic frameworks (MOFs) which allows the development of multicomponent catalysts consisting of enzymes adsorbed or occluded by MOFs. The combination of enzymes and MOFs in a multicomponent catalyst can be used to promote cascade reactions in which two or more individual reactions are performed in a single step. Cascade reactions take place due to the cooperation of active sites present on the MOF with the enzyme. A survey of the available data establishes that often an enzyme undergoes stabilization by association with a MOF and the system exhibits notable recyclability. In addition, the existence of synergism is observed as a consequence of the close proximity of all the required active sites in the multicomponent catalyst. After an introductory section describing the specific features and properties of enzyme-MOF assemblies, the main part of the present review focuses on the description of the cascade reactions that have been reported with commercial enzymes associated with MOFs, paying special attention to the advantages derived from the multicomponent catalyst. Related to the catalytic activity to metabolize glucose, generating reactive oxygen species (ROS) and decreasing the solution pH, an independent section describes the recent use of enzyme-MOF catalysts in cancer therapy. The last paragraphs summarize the current state of the art and provide our view on future developments in this field.
Collapse
Affiliation(s)
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hermenegildo Garcia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia and Departamento de Quimica and Instituto Universitario de Tecnologia Quimica (CSIC-UPV), Universitat Politecnica de Valencia, Av. De los Naranjos s/n, 46022 Valencia, Spain.
| |
Collapse
|
35
|
Lv M, Zhou W, Tavakoli H, Bautista C, Xia J, Wang Z, Li X. Aptamer-functionalized metal-organic frameworks (MOFs) for biosensing. Biosens Bioelectron 2021; 176:112947. [PMID: 33412430 PMCID: PMC7855766 DOI: 10.1016/j.bios.2020.112947] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023]
Abstract
As a class of crystalline porous materials, metal-organic frameworks (MOFs) have attracted increasing attention. Due to the nanoscale framework structure, adjustable pore size, large specific surface area, and good chemical stability, MOFs have been applied widely in many fields such as biosensors, biomedicine, electrocatalysis, energy storage and conversions. Especially when they are combined with aptamer functionalization, MOFs can be utilized to construct high-performance biosensors for numerous applications ranging from medical diagnostics and food safety inspection, to environmental surveillance. Herein, this article reviews recent innovations of aptamer-functionalized MOFs-based biosensors and their bio-applications. We first briefly introduce different functionalization methods of MOFs with aptamers, which provide a foundation for the construction of MOFs-based aptasensors. Then, we comprehensively summarize different types of MOFs-based aptasensors and their applications, in which MOFs serve as either signal probes or signal probe carriers for optical, electrochemical, and photoelectrochemical detection, with an emphasis on the former. Given recent substantial research interests in stimuli-responsive materials and the microfluidic lab-on-a-chip technology, we also present the stimuli-responsive aptamer-functionalized MOFs for sensing, followed by a brief overview on the integration of MOFs on microfluidic devices. Current limitations and prospective trends of MOFs-based biosensors are discussed at the end.
Collapse
Affiliation(s)
- Mengzhen Lv
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, 266071, PR China; Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, 79968, USA
| | - Wan Zhou
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, 79968, USA
| | - Hamed Tavakoli
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, 79968, USA
| | - Cynthia Bautista
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, 79968, USA
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, 266071, PR China; Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, 79968, USA.
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, 266071, PR China
| | - XiuJun Li
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, 79968, USA; Biomedical Engineering, Border Biomedical Research Center, University of Texas at El Paso, El Paso, 79968, USA; Environmental Science and Engineering, University of Texas at El Paso, El Paso, 79968, USA.
| |
Collapse
|
36
|
Chakraborty B, Das A, Mandal N, Samanta N, Das N, Chaudhuri CR. Label free, electric field mediated ultrasensitive electrochemical point-of-care device for CEA detection. Sci Rep 2021; 11:2962. [PMID: 33536505 PMCID: PMC7859218 DOI: 10.1038/s41598-021-82580-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/20/2021] [Indexed: 01/09/2023] Open
Abstract
Developing point-of-care (PoC) diagnostic platforms for carcinoembryonic antigen detection is essential. However, thefew implementations of transferring the signal amplification strategies in electrochemical sensing on paper-based platforms are not satisfactory in terms of detection limit (LOD). In the quest for pushing down LOD, majority of the research has been targeted towards development of improved nanostructured substrates for entrapping more analyte molecules and augmenting the electron transfer rate to the working electrode. But, such approaches have reached saturation. This paper focuses on enhancing the mass transport of the analyte towards the sensor surface through the application of an electric field, in graphene-ZnO nanorods heterostructure. These hybrid nanostructures have been deposited on flexible polyethylene terephthalate substrates with screen printed electrodes for PoC application. The ZnO nanorods have been functionalized with aptamers and the working sensor has been integrated with smartphone interfaced indigenously developed low cost potentiostat. The performance of the system, requiring only 50 µl analyte has been evaluated using electrochemical impedance spectroscopy and validated against commercially available ELISA kit. Limit of detection of 1 fg/ml in human serum with 6.5% coefficient of variation has been demonstrated, which is more than three orders of magnitude lower than the existing attempts on PoC device.
Collapse
Affiliation(s)
- B Chakraborty
- Department of Electronics and Telecommunication Engineering, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal, 711103, India
| | - A Das
- Department of Electronics and Telecommunication Engineering, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal, 711103, India
| | - N Mandal
- School of Electrical Sciences, Indian Institute of Technology Goa, Ponda, 403401, Goa, India
| | - N Samanta
- Department of Electronics and Communication Engineering, Techno India University, Sector V, Kolkata, 700091, West Bengal, India
| | - N Das
- Department of Electronics and Communication Engineering, KL University, Green Fields, Vaddeswaram, Andhra Pradesh, 522502, India
| | - C Roy Chaudhuri
- Department of Electronics and Telecommunication Engineering, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal, 711103, India.
| |
Collapse
|
37
|
Wang X, Li L, Gu X, Yu B, Jiang M. Switchable electrochemical aptasensor for amyloid-β oligomers detection based on triple helix switch coupling with AuNPs@CuMOF labeled signaling displaced-probe. Mikrochim Acta 2021; 188:49. [PMID: 33495901 DOI: 10.1007/s00604-021-04704-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/09/2021] [Indexed: 11/28/2022]
Abstract
The aggregation of amyloid-β oligomers (AβOs) with extremely strong neurotoxicity has been proved to be the main pathogenesis of Alzheimer's disease (AD). For sensitive quantification of AβOs, a switchable electrochemical aptasensor is proposed. Metal organic framework carrying Au nanoparticles (AuNPs@CuMOF) has been used to label signaling displaced-probe (SD), which formed triple helix switch (THS) by hybridizing with label-free anti-AβOs aptamer (Apt) on the electrodeposited palladium electrode (EPd). Thus, a relatively strong response of differential pulse voltammetry (DPV) was produced (switch on). With the specific binding between AβOs and Apt, the DPV response obviously decreased, owing to destroyed structure of THS and the separation of AuNPs@CuMOF/SD from the EPd (switch off). The mode of "switch on-off" can dramatically enhance the AβOs-dependent DPV intensity change. As a result, the switchable EA exhibited excellent selectivity and sensitivity with the linear range from 0.5 fM to 500 fM and the detection limit of 0.25 fM. When evaluating the AβOs of artificial cerebrospinal fluid (aCSF) samples, the switchable EA exhibited desirable feasibility, and the results are basically consistent with the enzyme linked immunosorbent assay (ELISA). The work could provide a potential tool of the AD diagnosis and a bright future in clinical applications.
Collapse
Affiliation(s)
- Xiaoying Wang
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Linyu Li
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xuan Gu
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Bingjia Yu
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Meng Jiang
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| |
Collapse
|
38
|
Malecka K, Mikuła E, Ferapontova EE. Design Strategies for Electrochemical Aptasensors for Cancer Diagnostic Devices. SENSORS 2021; 21:s21030736. [PMID: 33499136 PMCID: PMC7866130 DOI: 10.3390/s21030736] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Improved outcomes for many types of cancer achieved during recent years is due, among other factors, to the earlier detection of tumours and the greater availability of screening tests. With this, non-invasive, fast and accurate diagnostic devices for cancer diagnosis strongly improve the quality of healthcare by delivering screening results in the most cost-effective and safe way. Biosensors for cancer diagnostics exploiting aptamers offer several important advantages over traditional antibodies-based assays, such as the in-vitro aptamer production, their inexpensive and easy chemical synthesis and modification, and excellent thermal stability. On the other hand, electrochemical biosensing approaches allow sensitive, accurate and inexpensive way of sensing, due to the rapid detection with lower costs, smaller equipment size and lower power requirements. This review presents an up-to-date assessment of the recent design strategies and analytical performance of the electrochemical aptamer-based biosensors for cancer diagnosis and their future perspectives in cancer diagnostics.
Collapse
Affiliation(s)
- Kamila Malecka
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland; (K.M.); (E.M.)
| | - Edyta Mikuła
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland; (K.M.); (E.M.)
| | - Elena E. Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Science and Technology, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
- Correspondence: ; Tel.: +45-87156703
| |
Collapse
|
39
|
Radi AE, Abd-Ellatief MR. Electrochemical Aptasensors: Current Status and Future Perspectives. Diagnostics (Basel) 2021; 11:104. [PMID: 33440751 PMCID: PMC7828092 DOI: 10.3390/diagnostics11010104] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
This article reviews the progress of diversity of electrochemical aptasensor for target analytes detection. The immobilization strategies of aptamers on an electrode surface are addressed. The aptasensors are also introduced in compliance with the assay platforms. Many electrochemical aptasensors are nearly identical to conventional immunochemical approaches, sandwich and competition assays using electroactive signaling moieties. Others are "signal-on" and "sign-off" aptasensors credited to the target binding-induced conformational change of aptamers. Label-free aptasensors are also highlighted. Furthermore, the aptasensors applied for clinically important biomarkers are emphasized.
Collapse
Affiliation(s)
- Abd-Elgawad Radi
- Department of Chemistry, Faculty of Science, Damietta University, Damietta 34517, Egypt;
| | | |
Collapse
|
40
|
Alsharabasy AM, Pandit A, Farràs P. Recent Advances in the Design and Sensing Applications of Hemin/Coordination Polymer-Based Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003883. [PMID: 33217074 DOI: 10.1002/adma.202003883] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/10/2020] [Indexed: 06/11/2023]
Abstract
The fabrication of biomimetic catalysts as substituents for enzymes is of critical interest in the field due to the problems associated with the extraction, purification, and storage of enzymes in sensing applications. Of these mimetics, hemin/coordination polymer-based nanocomposites, mainly hemin/metal-organic frameworks (MOF), have been developed for various biosensing applications because of the unique properties of each component, while trying to mimic the normal biological functions of heme within the protein milieu of enzymes. This critical review first discusses the different catalytic functions of heme in the body in the form of enzyme/protein structures. The properties of hemin dimerization are then elucidated with the supposed models of hemin oxidation. After that, the progress in the fabrication of hemin/MOF nanocomposites for the sensing of diverse biological molecules is discussed. Finally, the challenges in developing this type of composites are examined as well as possible proposals for future directions to enhance the sensing performance in this field further.
Collapse
Affiliation(s)
- Amir M Alsharabasy
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, H91W2TY, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, H91W2TY, Ireland
| | - Pau Farràs
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, H91W2TY, Ireland
- School of Chemistry, Ryan Institute, National University of Ireland Galway, Galway, H91CF50, Ireland
| |
Collapse
|
41
|
Ba Y, Zhang J, Sun Y, Liu Y, Yang H, Kong J. Novel fluorescent biosensor for carcinoembryonic antigen determination via atom transfer radical polymerization with a macroinitiator. NEW J CHEM 2021. [DOI: 10.1039/d0nj05822j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel fluorescence method for CEA via β-CD and BIBB-initiated atom transfer radical polymerization (ATRP) was reported.
Collapse
Affiliation(s)
- Yanyan Ba
- Pharmacy College
- Henan University of Traditional Chinese Medicine
- Zhengzhou 450046
- P. R. China
| | - Jingyu Zhang
- Pharmacy College
- Henan University of Traditional Chinese Medicine
- Zhengzhou 450046
- P. R. China
| | - Yuzhi Sun
- Pharmacy College
- Henan University of Traditional Chinese Medicine
- Zhengzhou 450046
- P. R. China
| | - Yanju Liu
- Pharmacy College
- Henan University of Traditional Chinese Medicine
- Zhengzhou 450046
- P. R. China
| | - Huaixia Yang
- Pharmacy College
- Henan University of Traditional Chinese Medicine
- Zhengzhou 450046
- P. R. China
| | - Jinming Kong
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| |
Collapse
|
42
|
Guo Y, Wang H, Zhang F, Xia J, Wang Z. Flexible enzyme cascade sensing platform based on a G-quadruplex nanofiber biohydrogel for target colorimetric sensing. Anal Chim Acta 2020; 1140:10-17. [PMID: 33218472 DOI: 10.1016/j.aca.2020.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 11/29/2022]
Abstract
Enzyme cascade reactions can greatly improve catalytic efficiency and achieve selective and sensitive detection of targets. This paper presents a novel strategy for colorimetric sensing of targets by loading natural enzymes into a hemin-doped G-quadruplex (G4-hemin) biohydrogel to form a flexible enzyme cascade sensing (FECS) platform. The biohydrogel has advantages of biocompatibility, printability and flexibility. The biohydrogel not only participates in the cascade reaction as the mimic enzyme but also provides a mild microenvironment for the natural enzyme. The FECS platform has a linear range from 0.4 μM to 120 μM and a detection limit of 3.6 × 10-6 M for hydrogen peroxide detection. Additionally, the FECS platform has a low detection limit and wide linear range for glucose and xanthine by loading xanthine oxidase (XOD) and glucose oxidase (GOD) into the biohydrogel, respectively. These results indicate that the novel FECS platform is an effective detection platform that can detect multiple targets and is expected to be widely used in flexible sensing.
Collapse
Affiliation(s)
- Yanmei Guo
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, PR China
| | - Huiqi Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, PR China
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, PR China
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, PR China.
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, PR China
| |
Collapse
|
43
|
Lin X, Li S, Zhang B, Yang H, Zhang K, Huang H. An enzyme-free fluorescent biosensor for highly sensitive detection of carcinoembryonic antigen based on aptamer-induced entropy-driven circuit. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5496-5502. [PMID: 33150889 DOI: 10.1039/d0ay01326a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carcinoembryonic antigen (CEA) is a disease biomarker, which can reflect the existence of tumors. The accurate detection of CEA in clinical samples is highly valuable for diagnosis of tumors. Herein, we developed an enzyme-free fluorescent biosensor for highly sensitive detection of CEA based on an aptamer-induced entropy-driven circuit. The aptamer hairpin specifically bound to CEA to expose the locked domain. Then, the exposed domain could trigger disassembly of multiple fluorophore strands from the three-strand complexes with the aid of fuel strands, leading to the production of remarkable amplified fluorescent signals. The one-step and homogeneous method exhibited high specificity and a wide linear range from 10 pg mL-1 to 500 ng mL-1 with a low limit of detection of 4.2 pg mL-1. What's more, the whole detection process could be performed within 45 min and did not involve the use of any protein enzymes and antibodies. The developed strategy could also be applied to detect CEA in clinical samples with satisfactory results. Therefore, the strategy is an alternative sensing method for the detection of CEA.
Collapse
Affiliation(s)
- Xiaojuan Lin
- Department of Clinical Laboratory, The Third Hospital of Xingtai, Xingtai, Hebei 054100, China.
| | | | | | | | | | | |
Collapse
|
44
|
Xu J, Liu H, Liu J, He Y, Gao J, Shi J, Jiang Y. Design and Construction of Enzyme–Nanozyme Integrated Catalyst as a Multifunctional Detection Platform. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Junyang Xu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Huajiao Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Jianqiao Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Ying He
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Jing Gao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Jiafu Shi
- Tianjin Key Lab of Biomass/Wastes Utilization, School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
45
|
Gold nanoparticles decorated bimetallic CuNi-based hollow nanoarchitecture for the enhancement of electrochemical sensing performance of nitrite. Mikrochim Acta 2020; 187:572. [PMID: 32940777 DOI: 10.1007/s00604-020-04545-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/02/2020] [Indexed: 01/24/2023]
Abstract
Gold nanoparticles (AuNPs) decorated bimetallic CuNi-based hollow nanoarchitecture (CNHN) are reported for the first time as a nonenzymatic sensor for the quantification of nitrite in neutral solution . The CNHN was prepared via a convenient calcining routine using the bimetallic CuNi-MOFs as a coprecursor. The unique chemical structure of hollow CNHN with high specific surface area and abundant terminal amino groups effectively avoid the aggregation of AuNPs and facilitate the subsequent adsorption of nitrite. The Au/CNHN exhibited high electrocatalytic activity towards nitrite oxidation due to the synergetic catalytic effect of AuNPs and CNHN. Chronoamperometric detection of nitrite at the Au/CNHN/GCE achieved a lower linear calibration range of 0.05 to 1.15 mM, with an LOD of 0.017 μM compared with previous reports. The proposed method obtained satisfactory recoveries for nitrite determination in practical applications, which was verified by UV-Vis spectrophotometry. The prepared sensor based on Au/CNHN featured favorable selectivity and stability, which provides a promising approach for real sample analysis. Graphical abstract.
Collapse
|
46
|
Huang H, Bai J, Li J, Lei L, Zhang W, Yan S, Li Y. Fluorescence detection of dopamine based on the polyphenol oxidase–mimicking enzyme. Anal Bioanal Chem 2020; 412:5291-5297. [DOI: 10.1007/s00216-020-02742-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
|
47
|
Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213222] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Ma CB, Zhang Y, Liu Q, Du Y, Wang E. Enhanced Stability of Enzyme Immobilized in Rationally Designed Amphiphilic Aerogel and Its Application for Sensitive Glucose Detection. Anal Chem 2020; 92:5319-5328. [DOI: 10.1021/acs.analchem.9b05858] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chong-Bo Ma
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, Jilin 130022, P. R. China
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Institute of Functional Materials Chemistry, and Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, P. R. China
| | - Yu Zhang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, Jilin 130022, P. R. China
| | - Qiong Liu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, Jilin 130022, P. R. China
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, Jilin 130022, P. R. China
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, Jilin 130022, P. R. China
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
49
|
Wu Q, Tan R, Mi X, Tu Y. Electrochemiluminescent aptamer-sensor for alpha synuclein oligomer based on a metal-organic framework. Analyst 2020; 145:2159-2167. [PMID: 32129373 DOI: 10.1039/d0an00169d] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The alpha synuclein (α-syn) oligomer is one of the biomarkers used for the early diagnosis of Parkinson's disease. In this paper, two electrochemiluminescent (ECL) biosensors with an aptamer as the recognition element for α-syn oligomer detection were prepared. A functionalized indium tin oxide (ITO) glass with metal-organic framework (MOF) materials provides an adequate sensing platform. Here the gold nanoparticles/metal organic frameworks (MOFs) composite (AuNPs@MOFs) using 3-aminopropyltrimethoxysilane as a binding agent, or to connect the MOFs onto the ITO directly via glutaraldehyde, both give a strong ECL emission for luminol, even under weak alkaline conditions. Thereafter, the thiolated or carboxylated aptamer was coalesced onto the MOF material functionalized electrode using an Au-S bond or amide bond via the classic 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide (EDC-NHS) coupling, respectively. Thus, the ECL emission of the sensors significantly reduced after the specific binding of the α-syn oligomer to the aptamer. The good linear relationship of the ECL sensing signals upon the logarithm of the α-syn oligomer concentration were established, from 2.43 fM to 0.486 pM or 1.39 fM to 0.243 pM, and the limit of detection reached as low as 0.42 or 0.38 fM, for these two sensors. Both of the obtained sensors have the advantages of a high sensitivity, selectivity, and reproducibility and are capable of detecting the target in human serum.
Collapse
Affiliation(s)
- Qian Wu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, P. R. China.
| | | | | | | |
Collapse
|
50
|
Xiang W, Lv Q, Shi H, Xie B, Gao L. Aptamer-based biosensor for detecting carcinoembryonic antigen. Talanta 2020; 214:120716. [PMID: 32278406 DOI: 10.1016/j.talanta.2020.120716] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
Carcinoembryonic antigen (CEA), as one of the common tumor markers, is a human glycoprotein involved in cell adhesion and is expressed during human fetal development. Since the birth of human, CEA expression is largely inhibited, with only low levels in the plasma of healthy adults. Generally, CEA will overexpressed in many cancers, including gastric, breast, ovarian, lung, and pancreatic cancers, especially colorectal cancer. As one of the important tumor markers, the detection of CEA has great significance in differential diagnosis, condition monitoring and therapeutic evaluation of diseases. Conventional CEA testing typically uses immunoassay methods. However, immunoassay methods require complex and expensive instruments and professional personnel to operate. Moreover, radioactive element may cause certain damage to the human body, which limits their wide application. In the past few years, biosensors, especially aptamer-based biosensors, have attracted extensive attention due to their high sensitivity, good selectivity, high accuracy, fast response and low cost. This review briefly classifies and describes the advance in optical and electrochemical aptamer biosensors for CEA detection, also explains and compares their advantages and disadvantages.
Collapse
Affiliation(s)
- Wenwen Xiang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qiuxiang Lv
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China
| | - Haixia Shi
- P. E. Department of Jiangsu University, Zhenjiang, 212013, PR China
| | - Bing Xie
- Department of Obstetrics and Gynecology, The Fourth People's Hospital of Zhenjiang, Zhenjiang, 212000, PR China
| | - Li Gao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|