1
|
Liu X, Sanchez SW, Gong Y, Riddle R, Jiang Z, Trevor S, Contag CH, Saha D, Li W. An insect-based bioelectronic sensing system combining flexible dual-sided microelectrode array and insect olfactory circuitry for human lung cancer detection. Biosens Bioelectron 2025; 281:117356. [PMID: 40215892 DOI: 10.1016/j.bios.2025.117356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 05/04/2025]
Abstract
Early detection of lung cancer significantly enhances treatment outcomes, yet current screening methods are limited by accessibility, sensitivity, and cost. This study introduces a bioelectronic sensing platform that integrates the highly sensitive locust olfactory system with a flexible dual-sided microelectrode array (MEA), for robust, noninvasive, and label-free detection of volatile lung cancer biomarkers. Using an innovative folding-annealing fabrication technique and PEDOT:PSS surface functionalization, we developed flexible, dual-sided MEAs with high electrode densities of 463, 687, and 766 channels/mm2 across prototypes, maintaining low impedance (within 4 × 104 Ω). These MEAs demonstrated mechanical flexibility and stability, enabling direct insertion into locust brain tissue without mechanical reinforcement and facilitating precise recording of neural activity in the antennal lobe triggered by lung cancer-related volatile organic compounds (VOCs) from low concentration (1 ppm). Advanced dimensionality reduction techniques applied to the electrophysiological recordings identified distinct neural response patterns to each VOC biomarker and the complex "scent" emitted from various cell lines. Using high-dimensional population neuronal response analysis with a leave-one-trial-out approach, the platform achieved a 100 % classification success rate for unknown VOCs. Additionally, varying concentrations (ppm-ppb) of individual VOC biomarkers were detected and classified with an accuracy of 86 %. The system was further tested for its ability to detect and classify human lung cancer cell lines based on the unique "scent" of cultured cells, including two non-small cell lung cancer (NSCLC) and two small cell lung cancer (SCLC) types. Quantitative assessments demonstrated that the platform achieved a classification accuracy of 85 % across these cell lines. These results substantiate the platform's potential for enhancing clinical diagnostics through the accurate identification of lung cancer stages and cell types. By integrating biological sensory systems with advanced bioelectronics, this study introduces a novel and efficient approach to lung cancer biomarker detection. It provides a non-invasive, brain-based cancer screening method, offering an accessible and innovative solution for early lung cancer diagnosis.
Collapse
Affiliation(s)
- Xiang Liu
- Neuroscience Program, Department of Physiology, Michigan State University, East Lansing, MI, USA; Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, USA
| | - Simon W Sanchez
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Yan Gong
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, USA; Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA
| | - Roksana Riddle
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, USA; Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, USA
| | - Zebin Jiang
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, USA; Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA
| | - Stevens Trevor
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA
| | - Christopher H Contag
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA; Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, USA
| | - Debajit Saha
- Neuroscience Program, Department of Physiology, Michigan State University, East Lansing, MI, USA; Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA.
| | - Wen Li
- Neuroscience Program, Department of Physiology, Michigan State University, East Lansing, MI, USA; Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA; Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Chapman S, Kondo K, Ihara S, Ijichi C, Touhara K, Sato K. Fibronectin in the olfactory mucus increases sensitivity of olfactory receptor response to odorants. SCIENCE ADVANCES 2025; 11:eadu7271. [PMID: 40367171 PMCID: PMC12077508 DOI: 10.1126/sciadv.adu7271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Olfaction is a highly sensitive chemical detection system, but the origins of this sensitivity remain poorly understood. In terrestrial vertebrates, inhaled odorants diffuse through olfactory epithelial mucus (OEM) before activating olfactory receptors (ORs) on olfactory sensory neurons and initiating adenosine 3',5'-monophosphate (cAMP)-mediated signaling. Impaired OEM secretion is associated with impaired olfactory sensitivity in humans and mice, but it remains unclear whether OEM directly improves sensitivity and whether specific active factors exist. Here, using a cAMP imaging-based heterologous OR expression assay, we demonstrate that fibronectin from human OEM increases the sensitivity of OR response to odorant. Fibronectin application partially restores electrical olfactory response of the mouse olfactory epithelium after OEM removal. In humans, OEM fibronectin levels are significantly decreased in patients with idiopathic olfactory disorder. These findings shed light on the role of OEM fibronectin in olfaction and may lead to sensitivity-enhancing additives for odorant sensors and treatments for hyposmia.
Collapse
Affiliation(s)
- Stella Chapman
- Laboratory of Biological Chemistry, Department of Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kenji Kondo
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Sayoko Ihara
- Laboratory of Biological Chemistry, Department of Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan
| | - Chiori Ijichi
- Food Products Division, Technology & Solution Development Center, Institute of Food Science and Technologies, Ajinomoto Co. Inc., Kawasaki 210-8681, Japan
| | - Kazushige Touhara
- Laboratory of Biological Chemistry, Department of Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan
| | - Koji Sato
- Laboratory of Biological Chemistry, Department of Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
3
|
Pohanka M. Piezoelectric Chemosensors and Biosensors in Medical Diagnostics. BIOSENSORS 2025; 15:197. [PMID: 40136994 PMCID: PMC11940703 DOI: 10.3390/bios15030197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
This article explores the development and application of innovative piezoelectric sensors in point-of-care diagnostics. It highlights the significance of bedside tests, such as lateral flow and electrochemical tests, in providing rapid and accurate results directly at the patient's location. This paper delves into the principles of piezoelectric assays, emphasizing their ability to detect disease-related biomarkers through mechanical stress-induced electrical signals. Various applications of piezoelectric chemosensors and biosensors are discussed, including their use in the detection of cancer biomarkers, pathogens, and other health-related analytes. This article also addresses the integration of piezoelectric materials with advanced sensing technologies to improve diagnostic accuracy and efficiency, offering a comprehensive overview of current advances and future directions in medical diagnostics.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| |
Collapse
|
4
|
Rashed MS, Abdelkarim EA, Elsamahy T, Sobhy M, El-Mesery HS, Salem A. Advances in cell-based biosensors: Transforming food flavor evaluation with novel approaches. Food Chem X 2025; 26:102336. [PMID: 40115496 PMCID: PMC11923814 DOI: 10.1016/j.fochx.2025.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/23/2025] Open
Abstract
Food flavor, a blend of taste and smell, is key to consumer acceptance and food quality. Traditional sensory and instrumental methods often fail to replicate human sensory responses. This review discusses the role of cell-based biosensors in flavor evaluation, showcasing their sensitivity, specificity, and rapid response. Using living cells like taste and olfactory cells, these biosensors surpass traditional approaches. Advancements include microelectrode array systems with taste receptor cells for real-time detection of bitter, sweet, and umami substances and improved cell immobilization technologies for detecting complex odorant profiles. Challenges such as signal stability, selective detection, cell cultivation, and scalability persist. However, integrating artificial intelligence and portable technologies could broaden their applications. With the potential to revolutionize sensory analysis, cell-based biosensors offer a sustainable, precise, and scalable approach to food flavor evaluation, bridging sensory perception with advanced analytical methods and driving innovation in food science.
Collapse
Affiliation(s)
- Mahmoud Said Rashed
- Food Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Esraa A Abdelkarim
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | | | - Mabrouk Sobhy
- Food Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hany S El-Mesery
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
- Agricultural Engineering Research Institute, Agricultural Research Center, Dokki, 12611 Giza, Egypt
| | - Ali Salem
- Civil Engineering Department, Faculty of Engineering, Minia University, Minia 61111, Egypt
- Structural Diagnostics and Analysis Research Group, Faculty of Engineering and Information Technology, University of Pecs, Hungary
| |
Collapse
|
5
|
Hu J, Hu N, Pan D, Zhu Y, Jin X, Wu S, Lu Y. Smell cancer by machine learning-assisted peptide/MXene bioelectronic array. Biosens Bioelectron 2024; 262:116562. [PMID: 39018975 DOI: 10.1016/j.bios.2024.116562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Non-invasive detection of tumors is of utmost importance to save lives. Nonetheless, identifying tumors through gas analysis is a challenging task. In this work, biosensors with remarkable gas-sensing characteristics were developed using a self-assembly method consisting of peptides and MXene. Based on these biosensors, a mimetic biosensor array (MBA) was fabricated and integrated into a real-time testing platform (RTP). In addition, machine learning (ML) algorithms were introduced to improve the RTP's detection and identification capabilities of exhaled gas signals. The synthesized biosensor, with the ability to specifically bind to targeted gas molecules, demonstrated higher performance than the pristine MXene, with a response up to 150% greater. Besides, the MBA successfully detected 15 odor molecules affiliated with five categories of alcohols, ketones, aldehydes, esters, and acids by pattern recognition algorithms. Furthermore, with the ML assistance, the RTP detected the breath odor samples from volunteers of four categories, including healthy populations, patients of lung cancer, upper digestive tract cancer, and lower digestive tract cancer, with accuracies of 100%, 94.1%, 90%, and 95.2%, respectively. In summary, we have developed a cost-effective and precise model for non-invasive tumor diagnosis. Furthermore, this prototype also offers a versatile solution for diagnosing other diseases like nephropathy, diabetes, etc.
Collapse
Affiliation(s)
- Jiawang Hu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China; Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Nanlin Hu
- Department of Medical Oncology, Peking University First Hospital, Beijing, 100034, China
| | - Donglei Pan
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China; Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Yan Zhu
- Department of Medical Oncology, Peking University First Hospital, Beijing, 100034, China
| | - Xuan Jin
- Department of Medical Oncology, Peking University First Hospital, Beijing, 100034, China
| | - Shikai Wu
- Department of Medical Oncology, Peking University First Hospital, Beijing, 100034, China.
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China; Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Parnas M, McLane-Svoboda AK, Cox E, McLane-Svoboda SB, Sanchez SW, Farnum A, Tundo A, Lefevre N, Miller S, Neeb E, Contag CH, Saha D. Precision detection of select human lung cancer biomarkers and cell lines using honeybee olfactory neural circuitry as a novel gas sensor. Biosens Bioelectron 2024; 261:116466. [PMID: 38850736 DOI: 10.1016/j.bios.2024.116466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Human breath contains biomarkers (odorants) that can be targeted for early disease detection. It is well known that honeybees have a keen sense of smell and can detect a wide variety of odors at low concentrations. Here, we employ honeybee olfactory neuronal circuitry to classify human lung cancer volatile biomarkers at different concentrations and their mixtures at concentration ranges relevant to biomarkers in human breath from parts-per-billion to parts-per-trillion. We also validated this brain-based sensing technology by detecting human non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) cell lines using the 'smell' of the cell cultures. Different lung cancer biomarkers evoked distinct spiking response dynamics in the honeybee antennal lobe neurons indicating that those neurons encoded biomarker-specific information. By investigating lung cancer biomarker-evoked population neuronal responses from the honeybee antennal lobe, we classified individual human lung cancer biomarkers successfully (88% success rate). When we mixed six lung cancer biomarkers at different concentrations to create 'synthetic lung cancer' vs. 'synthetic healthy' human breath, honeybee population neuronal responses were able to classify those complex breath mixtures reliably with exceedingly high accuracy (93-100% success rate with a leave-one-trial-out classification method). Finally, we employed this sensor to detect human NSCLC and SCLC cell lines and we demonstrated that honeybee brain olfactory neurons could distinguish between lung cancer vs. healthy cell lines and could differentiate between different NSCLC and SCLC cell lines successfully (82% classification success rate). These results indicate that the honeybee olfactory system can be used as a sensitive biological gas sensor to detect human lung cancer.
Collapse
Affiliation(s)
- Michael Parnas
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Autumn K McLane-Svoboda
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Elyssa Cox
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Summer B McLane-Svoboda
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Simon W Sanchez
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Alexander Farnum
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Anthony Tundo
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Noël Lefevre
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Sydney Miller
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Emily Neeb
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Christopher H Contag
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, USA
| | - Debajit Saha
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Neuroscience Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
7
|
Peng C, Sui Y, Fang C, Sun H, Liu W, Li X, Qu C, Li W, Liu J, Wu C. Highly sensitive and selective electrochemical biosensor using odorant-binding protein to detect aldehydes. Anal Chim Acta 2024; 1318:342932. [PMID: 39067919 DOI: 10.1016/j.aca.2024.342932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024]
Abstract
Recently, various biosensors based on odorant-binding proteins (OBPs) were developed for the detection of odorants and pheromones. However, important data gaps exist regarding the sensitive and selective detection of aldehydes with various carbon numbers. In this work, an OBP2a-based electrochemical impedance spectroscopy (EIS) biosensor was developed by immobilizing OBP2a on a gold interdigital electrode, and was characterized by EIS and atomic force microscopy. EIS responses showed the OBP2a-based biosensor was highly sensitive to citronellal, lily aldehyde, octanal, and decanal (detection limit of 10-11 mol/L), and was selective towards aldehydes compared with interfering odorants such as small-molecule alcohols and fatty acids (selectivity coefficients lower than 0.15). Moreover, the OBP2a-based biosensor exhibited high repeatability (relative standard deviation: 1.6%-9.1 %, n = 3 for each odorant), stability (NIC declined by 3.6 % on 6th day), and recovery (91.2%-96.6 % on three real samples). More specifically, the sensitivity of the biosensor to aldehydes was positively correlated to the molecular weight and the heterocyclic molecule structure of the odorants. These results proved the availability and the potential usage of the OBP2a-based EIS biosensor for the rapid and sensitive detection of aldehydes in aspects such as medical diagnostics, food and favor analysis, and environmental monitoring.
Collapse
Affiliation(s)
- Cong Peng
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Eco-environmental Sciences, Tianjin, 300191, China
| | - Yutong Sui
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chaohua Fang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongxu Sun
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenxin Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xinying Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chen Qu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenhui Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiemin Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Institute of Graphic Communication, Beijing, 102600, China
| | - Chuandong Wu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
8
|
Zhao C, Chen M, Liu X, Yuan W, Li K, Wang Y, Chen C, Zhang M, Dong Y, Xiao Y, Deng D, Geng J. Direct single-molecule detection of CoA-SH and ATP by the membrane proteins TMEM120A and TMEM120B. NANOSCALE 2024; 16:6087-6094. [PMID: 38444242 DOI: 10.1039/d3nr05054h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Membrane proteins are vital resources for developing biosensors. TMEM120A is a membrane protein associated with human pain transmission and lipid metabolism, and recent studies have demonstrated its ability to transport ions and bind to coenzyme A (COA-SH), indicating its potential to develop into a single-molecule sensor based on electrical methods. In this study, we investigated the ion transport properties of TMEM120A and its homolog TMEM120B on an artificial lipid bilayer using single-channel recording. The results demonstrate that both proteins can fuse into the lipid bilayer and generate stable ion currents under a bias voltage. Based on the stable ion transport capabilities of TMEM120A and TMEM120B, as well as the feature of TMEM120A binding with COA-SH, we developed these two proteins into a single-molecule sensor for detecting COA-SH and structurally similar molecules. We found that both COA-SH and ATP can reversibly bind to single TMEM120A and TMEM120B proteins embedded in the lipid bilayer and temporarily block ion currents during the binding process. By analyzing the current blocking signal, COA-SH and ATP can be identified at the single-molecule level. In conclusion, our work has provided two single-molecule biosensors for detecting COA-SH and ATP, offering insights for exploring and developing bio-inspired small molecule sensors.
Collapse
Affiliation(s)
- Changjian Zhao
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 610500, China
| | - Mutian Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 610500, China
| | - Xiaofeng Liu
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Weidan Yuan
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Kaiju Li
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 610500, China
| | - Yu Wang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 610500, China
| | - Chen Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 610500, China
| | - Ming Zhang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yuhan Dong
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 610500, China
| | - Yuling Xiao
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Dong Deng
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 610500, China
| |
Collapse
|
9
|
Brickson L, Zhang L, Vollrath F, Douglas-Hamilton I, Titus AJ. Elephants and algorithms: a review of the current and future role of AI in elephant monitoring. J R Soc Interface 2023; 20:20230367. [PMID: 37963556 PMCID: PMC10645515 DOI: 10.1098/rsif.2023.0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
Artificial intelligence (AI) and machine learning (ML) present revolutionary opportunities to enhance our understanding of animal behaviour and conservation strategies. Using elephants, a crucial species in Africa and Asia's protected areas, as our focal point, we delve into the role of AI and ML in their conservation. Given the increasing amounts of data gathered from a variety of sensors like cameras, microphones, geophones, drones and satellites, the challenge lies in managing and interpreting this vast data. New AI and ML techniques offer solutions to streamline this process, helping us extract vital information that might otherwise be overlooked. This paper focuses on the different AI-driven monitoring methods and their potential for improving elephant conservation. Collaborative efforts between AI experts and ecological researchers are essential in leveraging these innovative technologies for enhanced wildlife conservation, setting a precedent for numerous other species.
Collapse
Affiliation(s)
| | | | - Fritz Vollrath
- Save the Elephants, Nairobi, Kenya
- Department of Biology, University of Oxford, Oxford, UK
| | | | - Alexander J. Titus
- Colossal Biosciences, Dallas, TX, USA
- Information Sciences Institute, University of Southern California, Los Angeles, USA
| |
Collapse
|
10
|
Qin C, Wang Y, Hu J, Wang T, Liu D, Dong J, Lu Y. Artificial Olfactory Biohybrid System: An Evolving Sense of Smell. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204726. [PMID: 36529960 PMCID: PMC9929144 DOI: 10.1002/advs.202204726] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The olfactory system can detect and recognize tens of thousands of volatile organic compounds (VOCs) at low concentrations in complex environments. Bioelectronic nose (B-EN), which mimics olfactory systems, is becoming an emerging sensing technology for identifying VOCs with sensitivity and specificity. B-ENs integrate electronic sensors with bioreceptors and pattern recognition technologies to enable medical diagnosis, public security, environmental monitoring, and food safety. However, there is currently no commercially available B-EN on the market. Apart from the high selectivity and sensitivity necessary for volatile organic compound analysis, commercial B-ENs must overcome issues impacting sensor operation and other problems associated with odor localization. The emergence of nanotechnology has provided a novel research concept for addressing these problems. In this work, the structure and operational mechanisms of biomimetic olfactory systems are discussed, with an emphasis on the development and immobilization of materials. Various biosensor applications and current developments are reviewed. Challenges and opportunities for fulfilling the potential of artificial olfactory biohybrid systems in fundamental and practical research are investigated in greater depth.
Collapse
Affiliation(s)
- Chuanting Qin
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
- Tianjin Industrial Microbiology Key LaboratoryCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457China
| | - Yi Wang
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
- Tianjin Industrial Microbiology Key LaboratoryCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457China
| | - Jiawang Hu
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Ting Wang
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Dong Liu
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Jian Dong
- Tianjin Industrial Microbiology Key LaboratoryCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457China
| | - Yuan Lu
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| |
Collapse
|
11
|
Cho S, Park TH. Advances in the Production of Olfactory Receptors for Industrial Use. Adv Biol (Weinh) 2023; 7:e2200251. [PMID: 36593488 DOI: 10.1002/adbi.202200251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/11/2022] [Indexed: 01/04/2023]
Abstract
In biological olfactory systems, olfactory receptors (ORs) can recognize and discriminate between thousands of volatile organic compounds with very high sensitivity and specificity. The superior properties of ORs have led to the development of OR-based biosensors that have shown promising potential in many applications over the past two decades. In particular, newly designed technologies in gene synthesis, protein expression, solubilization, purification, and membrane mimetics for membrane proteins have greatly opened up the previously inaccessible industrial potential of ORs. In this review, gene design, expression and solubilization strategies, and purification and reconstitution methods available for modern industrial applications are examined, with a focus on ORs. The limitations of current OR production technology are also estimated, and future directions for further progress are suggested.
Collapse
Affiliation(s)
- Seongyeon Cho
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
12
|
Chen Y, Du L, Tian Y, Zhu P, Liu S, Liang D, Liu Y, Wang M, Chen W, Wu C. Progress in the Development of Detection Strategies Based on Olfactory and Gustatory Biomimetic Biosensors. BIOSENSORS 2022; 12:858. [PMID: 36290995 PMCID: PMC9599203 DOI: 10.3390/bios12100858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/01/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The biomimetic olfactory and gustatory biosensing devices have broad applications in many fields, such as industry, security, and biomedicine. The development of these biosensors was inspired by the organization of biological olfactory and gustatory systems. In this review, we summarized the most recent advances in the development of detection strategies for chemical sensing based on olfactory and gustatory biomimetic biosensors. First, sensing mechanisms and principles of olfaction and gustation are briefly introduced. Then, different biomimetic sensing detection strategies are outlined based on different sensing devices functionalized with various molecular and cellular components originating from natural olfactory and gustatory systems. Thereafter, various biomimetic olfactory and gustatory biosensors are introduced in detail by classifying and summarizing the detection strategies based on different sensing devices. Finally, the future directions and challenges of biomimetic biosensing development are proposed and discussed.
Collapse
Affiliation(s)
- Yating Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Liping Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Yulan Tian
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Ping Zhu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Shuge Liu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Dongxin Liang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Yage Liu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Miaomiao Wang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Wei Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| |
Collapse
|
13
|
Wang X, Lu D, Liu Y, Wang W, Ren R, Li M, Liu D, Liu Y, Liu Y, Pang G. Electrochemical Signal Amplification Strategies and Their Use in Olfactory and Taste Evaluation. BIOSENSORS 2022; 12:bios12080566. [PMID: 35892464 PMCID: PMC9394270 DOI: 10.3390/bios12080566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 05/07/2023]
Abstract
Biosensors are powerful analytical tools used to identify and detect target molecules. Electrochemical biosensors, which combine biosensing with electrochemical analysis techniques, are efficient analytical instruments that translate concentration signals into electrical signals, enabling the quantitative and qualitative analysis of target molecules. Electrochemical biosensors have been widely used in various fields of detection and analysis due to their high sensitivity, superior selectivity, quick reaction time, and inexpensive cost. However, the signal changes caused by interactions between a biological probe and a target molecule are very weak and difficult to capture directly by using detection instruments. Therefore, various signal amplification strategies have been proposed and developed to increase the accuracy and sensitivity of detection systems. This review serves as a reference for biosensor and detector research, as it introduces the research progress of electrochemical signal amplification strategies in olfactory and taste evaluation. It also discusses the latest signal amplification strategies currently being employed in electrochemical biosensors for nanomaterial development, enzyme labeling, and nucleic acid amplification techniques, and highlights the most recent work in using cell tissues as biosensitive elements.
Collapse
Affiliation(s)
- Xinqian Wang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Dingqiang Lu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
- Correspondence: (D.L.); (G.P.)
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (W.W.)
| | - Wenli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (W.W.)
| | - Ruijuan Ren
- Tianjin Institute for Food Safety Inspection Technology, Tianjin 300308, China;
| | - Ming Li
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Danyang Liu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Yujiao Liu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Yixuan Liu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Guangchang Pang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
- Correspondence: (D.L.); (G.P.)
| |
Collapse
|
14
|
Saito T, Nishida Y, Tabata M, Isobayashi A, Tomizawa H, Miyahara Y, Sugizaki Y. Molecular Interactions between an Enzyme and Its Inhibitor for Selective Detection of Limonene. Anal Chem 2022; 94:7692-7702. [PMID: 35543317 DOI: 10.1021/acs.analchem.2c01110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Researchers widely apply enzyme inhibition to chemicals such as pesticides, nerve gases, and anti-Alzheimer's drugs. However, application of enzyme inhibition to odorant sensors is less common because the corresponding reaction mechanisms have not yet been clarified in detail. In this study, we propose a new strategy for highly selective detection of odorant molecules by using an inhibitor-specific enzyme. As an example, we analyzed the selective interactions between acetylcholinesterase (AChE) and limonene─the major odorant of citrus and an AChE inhibitor─using molecular dynamics simulations. In these simulations, limonene was found to be captured at specific binding sites of AChE by modifying the binding site of acetylcholine (ACh), which induced inhibition of the catalytic activity of AChE toward ACh hydrolysis. We confirmed the simulation results by experiments using an ion-sensitive field-effect transistor, and the degree of inhibition of ACh hydrolysis depended on the limonene concentration. Accordingly, we quantitatively detected limonene at a detection limit of 5.7 μM. We furthermore distinguished the response signals to limonene from those to other odorants, such as pinene and perillic acid. Researchers will use our proposed odorant detection method for other odorant-enzyme combinations and applications of miniaturized odorant-sensing systems based on rapid testing.
Collapse
Affiliation(s)
- Tatsuro Saito
- Toshiba Corporation, 1 Komukai-Toshiba-cho, Saiwai, Kawasaki 212-8582, Japan
| | - Yasutaka Nishida
- Toshiba Corporation, 1 Komukai-Toshiba-cho, Saiwai, Kawasaki 212-8582, Japan
| | - Miyuki Tabata
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Atsunobu Isobayashi
- Toshiba Corporation, 1 Komukai-Toshiba-cho, Saiwai, Kawasaki 212-8582, Japan
| | - Hideyuki Tomizawa
- Toshiba Corporation, 1 Komukai-Toshiba-cho, Saiwai, Kawasaki 212-8582, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Yoshiaki Sugizaki
- Toshiba Corporation, 1 Komukai-Toshiba-cho, Saiwai, Kawasaki 212-8582, Japan
| |
Collapse
|
15
|
Wasilewski T, Brito NF, Szulczyński B, Wojciechowski M, Buda N, Melo ACA, Kamysz W, Gębicki J. Olfactory Receptor-based Biosensors as Potential Future Tools in Medical Diagnosis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Lan K, Wang Z, Yang X, Wei J, Qin Y, Qin G. Flexible silicon nanowires sensor for acetone detection on plastic substrates. NANOTECHNOLOGY 2022; 33:155502. [PMID: 34963109 DOI: 10.1088/1361-6528/ac46b3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Acetone commonly exists in daily life and is harmful to human health, therefore the convenient and sensitive monitoring of acetone is highly desired. In addition, flexible sensors have the advantages of light-weight, conformal attachable to irregular shapes, etc. In this study, we fabricated high performance flexible silicon nanowires (SiNWs) sensor for acetone detection by transferring the monocrystalline Si film and metal-assisted chemical etching method on polyethylene terephthalate (PET). The SiNWs sensor enabled detection of gaseous acetone with a concentration as low as 0.1 parts per million (ppm) at flat and bending states. The flexible SiNWs sensor was compatible with the CMOS process and exhibited good sensitivity, selectivity and repeatability for acetone detection at room temperature. The flexible sensor showed performance improvement under mechanical bending condition and the underlying mechanism was discussed. The results demonstrated the good potential of the flexible SiNWs sensor for the applications of wearable devices in environmental safety, food quality, and healthcare.
Collapse
Affiliation(s)
- Kuibo Lan
- School of Microelectronics, Tianjin University, Tianjin 300072, People's Republic of China
- Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Zhi Wang
- School of Microelectronics, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xiaodong Yang
- School of Microelectronics, Tianjin University, Tianjin 300072, People's Republic of China
| | - Junqing Wei
- School of Microelectronics, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yuxiang Qin
- School of Microelectronics, Tianjin University, Tianjin 300072, People's Republic of China
- Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Guoxuan Qin
- School of Microelectronics, Tianjin University, Tianjin 300072, People's Republic of China
- Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
17
|
Wang Z, Ma W, Wei J, Lan K, Yan S, Chen R, Qin G. High-performance olfactory receptor-derived peptide sensor for trimethylamine detection based on Steglich esterification reaction and native chemical ligation connection. Biosens Bioelectron 2022; 195:113673. [PMID: 34619485 DOI: 10.1016/j.bios.2021.113673] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/25/2021] [Accepted: 09/25/2021] [Indexed: 11/02/2022]
Abstract
Trimethylamine (TMA) commonly exists in daily life and is harmful to human health, therefore the convenient and sensitive monitoring of TMA is highly desired. In this study, we developed a method to fabricate a high-performance TMA sensor by chemically conjugating olfactory receptor-derived peptides (ORPs) to single-walled carbon nanotubes (SWCNTs) on interdigital electrodes. First, the SWCNTs were modified with thioester by Steglich esterification reaction. Next, the ORPs with a cysteine residue at the N-terminus were connected to the thioester by native chemical ligation and modified to the surface of the SWCNTs. The chemical connection method enabled more effective loading of ORPs to the SWCNTs compared to the previously reported physical connection method. Using this approach, the ORPs-SWCNTs sensor for gaseous TMA was fabricated and enabled detection of TMA with a concentration as low as 0.01 parts per trillion, which was three orders of magnitude lower than the reported lowest detection limit up to date. Furthermore, we tested the performance of the ORP-sensor with vaporized TMA and TMA generated from various spoiled food, and the sensor exhibited excellent sensitivity, selectivity, and stability for TMA detection. The results demonstrated the effectiveness of the proposed chemical connection method for the fabrication of ORP-sensor and the great potential of using these sensors for applications in environmental safety, food quality evaluation, and healthcare.
Collapse
Affiliation(s)
- Zhi Wang
- School of Microelectronics, Tianjin University, Tianjin, 300072, PR China; Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin, 300072, PR China
| | - Weichao Ma
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China
| | - Junqing Wei
- School of Microelectronics, Tianjin University, Tianjin, 300072, PR China; Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin, 300072, PR China
| | - Kuibo Lan
- School of Microelectronics, Tianjin University, Tianjin, 300072, PR China; Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin, 300072, PR China
| | - Shanchun Yan
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China.
| | - Guoxuan Qin
- School of Microelectronics, Tianjin University, Tianjin, 300072, PR China; Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin, 300072, PR China.
| |
Collapse
|
18
|
Schackart KE, Yoon JY. Machine Learning Enhances the Performance of Bioreceptor-Free Biosensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:5519. [PMID: 34450960 PMCID: PMC8401027 DOI: 10.3390/s21165519] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 01/06/2023]
Abstract
Since their inception, biosensors have frequently employed simple regression models to calculate analyte composition based on the biosensor's signal magnitude. Traditionally, bioreceptors provide excellent sensitivity and specificity to the biosensor. Increasingly, however, bioreceptor-free biosensors have been developed for a wide range of applications. Without a bioreceptor, maintaining strong specificity and a low limit of detection have become the major challenge. Machine learning (ML) has been introduced to improve the performance of these biosensors, effectively replacing the bioreceptor with modeling to gain specificity. Here, we present how ML has been used to enhance the performance of these bioreceptor-free biosensors. Particularly, we discuss how ML has been used for imaging, Enose and Etongue, and surface-enhanced Raman spectroscopy (SERS) biosensors. Notably, principal component analysis (PCA) combined with support vector machine (SVM) and various artificial neural network (ANN) algorithms have shown outstanding performance in a variety of tasks. We anticipate that ML will continue to improve the performance of bioreceptor-free biosensors, especially with the prospects of sharing trained models and cloud computing for mobile computation. To facilitate this, the biosensing community would benefit from increased contributions to open-access data repositories for biosensor data.
Collapse
Affiliation(s)
- Kenneth E. Schackart
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ 85721, USA;
| | - Jeong-Yeol Yoon
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ 85721, USA;
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
19
|
Hirata Y, Oda H, Osaki T, Takeuchi S. Biohybrid sensor for odor detection. LAB ON A CHIP 2021; 21:2643-2657. [PMID: 34132291 DOI: 10.1039/d1lc00233c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Biohybrid odorant sensors that directly integrate a biological olfactory system have been increasingly studied and are suggested to be the next generation of ultrasensitive sensors by taking advantage of the sensitivity and selectivity of living organisms. In this review, we provide a detailed description of the recent developments of biohybrid odorant sensors, especially considering the requisites for their perspective of on-site applications. We introduce the methodologies to effectively capture the biological signals from olfactory systems by readout devices, and describe the essential properties regarding the gaseous detection, stability, quality control, and portability. Moreover, we address the recent progress on multiple odorant recognition using multiple sensors as well as the current screening approaches for pairs of orphan receptors and ligands necessary for the extension of the currently available range of biohybrid sensors. Finally, we discuss our perspectives for the future for the development of practical odorant sensors.
Collapse
Affiliation(s)
- Yusuke Hirata
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Haruka Oda
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Toshihisa Osaki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan and Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Shoji Takeuchi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. and Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan and Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
20
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
21
|
Full J, Baumgarten Y, Delbrück L, Sauer A, Miehe R. Market Perspectives and Future Fields of Application of Odor Detection Biosensors within the Biological Transformation-A Systematic Analysis. BIOSENSORS-BASEL 2021; 11:bios11030093. [PMID: 33806819 PMCID: PMC8004717 DOI: 10.3390/bios11030093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023]
Abstract
The technological advantages that biosensors have over conventional technical sensors for odor detection and the role they play in the biological transformation have not yet been comprehensively analyzed. However, this is necessary for assessing their suitability for specific fields of application as well as their improvement and development goals. An overview of biological basics of olfactory systems is given and different odor sensor technologies are described and classified in this paper. Specific market potentials of biosensors for odor detection are identified by applying a tailored methodology that enables the derivation and systematic comparison of both the performance profiles of biosensors as well as the requirement profiles for various application fields. Therefore, the fulfillment of defined requirements is evaluated for biosensors by means of 16 selected technical criteria in order to determine a specific performance profile. Further, a selection of application fields, namely healthcare, food industry, agriculture, cosmetics, safety applications, environmental monitoring for odor detection sensors is derived to compare the importance of the criteria for each of the fields, leading to market-specific requirement profiles. The analysis reveals that the requirement criteria considered to be the most important ones across all application fields are high specificity, high selectivity, high repeat accuracy, high resolution, high accuracy, and high sensitivity. All these criteria, except for the repeat accuracy, can potentially be better met by biosensors than by technical sensors, according to the results obtained. Therefore, biosensor technology in general has a high application potential for all the areas of application under consideration. Health and safety applications especially are considered to have high potential for biosensors due to their correspondence between requirement and performance profiles. Special attention is paid to new areas of application that require multi-sensing capability. Application scenarios for multi-sensing biosensors are therefore derived. Moreover, the role of biosensors within the biological transformation is discussed.
Collapse
Affiliation(s)
- Johannes Full
- Fraunhofer Institute of Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany; (Y.B.); (L.D.); (A.S.); (R.M.)
- Correspondence: ; Tel.: +49-711-970-1434
| | - Yannick Baumgarten
- Fraunhofer Institute of Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany; (Y.B.); (L.D.); (A.S.); (R.M.)
| | - Lukas Delbrück
- Fraunhofer Institute of Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany; (Y.B.); (L.D.); (A.S.); (R.M.)
| | - Alexander Sauer
- Fraunhofer Institute of Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany; (Y.B.); (L.D.); (A.S.); (R.M.)
- Institute for Energy Efficiency in Production (EEP), University of Stuttgart, 70569 Stuttgart, Germany
| | - Robert Miehe
- Fraunhofer Institute of Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany; (Y.B.); (L.D.); (A.S.); (R.M.)
| |
Collapse
|
22
|
Gonçalves F, Ribeiro A, Silva C, Cavaco-Paulo A. Biotechnological applications of mammalian odorant-binding proteins. Crit Rev Biotechnol 2021; 41:441-455. [PMID: 33541154 DOI: 10.1080/07388551.2020.1853672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The olfactory system of mammals allows the detection and discrimination of thousands of odors from the environment. In mammals, odorant-binding proteins (OBPs) are considered responsible to carry odorant molecules across the aqueous nasal mucus to the olfactory receptors (ORs). The three-dimensional structure of these proteins presents eight antiparallel β-sheets and a short α-helical segment close to the C terminus, typical of the lipocalins family. The great ability of OBPs to bind differentiated ligand molecules has driven the research to understand the mechanisms underlying the OBP function in nature and the development of advanced biotechnological applications. This review describes the role of mammalian OBPs in the olfactory perception, highlighting the influence of several key parameters (amino acids, temperature, ionic strength, and pH) in the formation of the OBP/ligand complex. The information from the literature regarding OBP structure, affinity, the strength of binding, and stability inspiring the development of several applications herein detailed.
Collapse
Affiliation(s)
- Filipa Gonçalves
- Centre of Biological Engineering, University of Minho - Campus de Gualtar, Braga, Portugal
| | - Artur Ribeiro
- Centre of Biological Engineering, University of Minho - Campus de Gualtar, Braga, Portugal
| | - Carla Silva
- Centre of Biological Engineering, University of Minho - Campus de Gualtar, Braga, Portugal
| | - Artur Cavaco-Paulo
- Centre of Biological Engineering, University of Minho - Campus de Gualtar, Braga, Portugal
| |
Collapse
|
23
|
Wu T, Li Y, Liang X, Liu X, Tang M. Identification of potential circRNA-miRNA-mRNA regulatory networks in response to graphene quantum dots in microglia by microarray analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111672. [PMID: 33396004 DOI: 10.1016/j.ecoenv.2020.111672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/03/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Along with the increasing application of graphene quantum dots (GQDs) in the fields of biomedicine and neuroscience, it is important to assess the probably adverse effects of GQDs in the central nervous system (CNS) but their underlying toxic mechanisms is still unclear. In this study, we evaluate the molecular mechanisms associated with circular RNAs (circRNAs) of nitrogen-doped GQDs (N-GQDs) and amino-functionalized GQDs (A-GQDs) damaging the cell viability and cellular structure in microglia by an integrative analysis of RNA microarray. The differentially expressed circRNA (DEcircRNAs)-miRNA- differentially expressed mRNA (DEmRNAs) regulatory networks were conducted in BV2 microglial cells treated with 25 µg/mL N-GQDs, 100 µg/mL N-GQDs and 100 µg/mL A-GQDs. Based on that, the protein-coding genes in each ceRNA network were collected to do bio-functional analysis to evaluate signaling pathways that were indirectly mediated by circRNAs. Some pathways that could play indispensable roles in the neurotoxicity of N-GQDs or both two kinds of GQDs were found. Low-dosed N-GQDs exposure mainly induced inflammatory action in microglia, while high-dosed N-GQDs and A-GQDs exposure both affect olfactory transduction and GABAergic synapse. Meanwhile, several classical signaling pathways, including mTOR, ErbB and MAPK, could make diverse contributions to the neurotoxicity of both two kinds of GQDs. These circRNAs could be toxic biomarkers or protective targets in neurotoxicity of GQDs. More importantly, they emphasized the necessity of comprehensive analysis of latent molecular mechanisms through epigenetics approaches in biosafety assessment of graphene-based nanomaterials.
Collapse
Affiliation(s)
- Tianshu Wu
- School of Public Health, Southeast University, Nanjing 210009, PR China; Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Southeast University, Nanjing 210009, PR China.
| | - Yimeng Li
- School of Public Health, Southeast University, Nanjing 210009, PR China; Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Southeast University, Nanjing 210009, PR China
| | - Xue Liang
- School of Public Health, Southeast University, Nanjing 210009, PR China; Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Southeast University, Nanjing 210009, PR China
| | - Xi Liu
- School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Meng Tang
- School of Public Health, Southeast University, Nanjing 210009, PR China; Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
24
|
Devi A, Chiu YT, Hsueh HT, Lin TF. Quantitative PCR based detection system for cyanobacterial geosmin/2-methylisoborneol (2-MIB) events in drinking water sources: Current status and challenges. WATER RESEARCH 2021; 188:116478. [PMID: 33045635 DOI: 10.1016/j.watres.2020.116478] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/14/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Taste and odor (T&O) are an important issue in drinking water, aquaculture, recreation and a few other associated industries, and cyanobacteria-relevant geosmin and 2-methylisoborneol (2-MIB) are the two most commonly detected T&O compounds worldwide. A rise in the cyanobacterial blooms and associated geosmin/2-MIB episodes due to anthropogenic activities as well as climate change has led to global concerns for drinking water quality. The increasing awareness for the safe drinking, aquaculture or recreational water systems has boost the demand for rapid, robust, on-site early detection and monitoring system for cyanobacterial geosmin/2-MIB events. In past years, research has indicated quantitative PCR (qPCR) as one of the promising tools for detection of geosmin/2-MIB episodes. It offers advantages of detecting the source organism even at very low concentrations, distinction of odor-producing cyanobacterial strains from non-producers and evaluation of odor producing potential of the cyanobacteria at much faster rates compared to conventional techniques.The present review aims at examining the current status of developed qPCR primers and probes in identifying and detecting the cyanobacterial blooms along with geosmin/2-MIB events. Among the more than 100 articles about cyanobacteria associated geosmin/2-MIB in drinking water systems published after 1990, limited reports (approx. 10 each for geosmin and 2-MIB) focused on qPCR detection and its application in the field. Based on the review of literature, a comprehensive open access global cyanobacterial geosmin/2-MIB events database (CyanoGM Explorer) is curated. It acts as a single platform to access updated information related to origin and geographical distribution of geosmin/2-MIB events, cyanobacterial producers, frequency, and techniques associated with the monitoring of the events. Although a total of 132 cyanobacterial strains from 21 genera and 72 cyanobacterial strains from 13 genera have been reported for geosmin and 2-MIB production, respectively, only 58 geosmin and 28 2-MIB synthesis regions have been assembled in the NCBI database. Based on the identity, geosmin sequences were found to be more diverse in the geosmin synthase conserved/primer design region, compared to 2-MIB synthesis region, hindering the design of universal primers/probes. Emerging technologies such as the bioelectronic nose, Surface Enhanced Raman Scattering (SERS), and nanopore sequencing are discussed for future applications in early on-site detection of geosmin/2-MIB and producers. In the end, the paper also highlights various challenges in applying qPCR as a universal system of monitoring and development of response system for geosmin/2-MIB episodes.
Collapse
Affiliation(s)
- Apramita Devi
- Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan ROC
| | - Yi-Ting Chiu
- Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan ROC
| | - Hsin-Ta Hsueh
- Sustainable Environment Research Laboratories, National Cheng Kung University, Tainan 70101, Taiwan ROC
| | - Tsair-Fuh Lin
- Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan ROC.
| |
Collapse
|
25
|
Yamada T, Sugiura H, Mimura H, Kamiya K, Osaki T, Takeuchi S. Highly sensitive VOC detectors using insect olfactory receptors reconstituted into lipid bilayers. SCIENCE ADVANCES 2021; 7:7/3/eabd2013. [PMID: 33523876 PMCID: PMC7806217 DOI: 10.1126/sciadv.abd2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/18/2020] [Indexed: 05/10/2023]
Abstract
This paper reports a volatile organic compound (VOC) sensor based on olfactory receptors that were reconstituted into a lipid bilayer and used in a specifically designed gas flow system for rapid parts per billion (ppb)-level detection. This VOC sensor achieves both rapid detection and high detection probability because of its gas flow system and array design. Specifically, the gas flow system includes microchannels and hydrophobic microslits, which facilitate both the introduction of gas into the droplet and droplet mixing. We installed this system into a parallel lipid bilayer device and subsequently demonstrated parts per billion-level (0.5 ppb) detection of 1-octen-3-ol in human breath. Therefore, this system extends the various applications of biological odorant sensing, including breath diagnosis systems and environmental monitoring.
Collapse
Affiliation(s)
- Tetsuya Yamada
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Hirotaka Sugiura
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Hisatoshi Mimura
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Koki Kamiya
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
- Division of Molecular Science, Graduate School of Science and Technology Gunma University, 1-5-1 Tenjin-cho, Kiryu city, Gunma 376-8515, Japan
| | - Toshihisa Osaki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Shoji Takeuchi
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan.
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
26
|
Moitra P, Bhagat D, Kamble VB, Umarji AM, Pratap R, Bhattacharya S. First example of engineered β-cyclodextrinylated MEMS devices for volatile pheromone sensing of olive fruit pests. Biosens Bioelectron 2020; 173:112728. [PMID: 33220535 DOI: 10.1016/j.bios.2020.112728] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/24/2020] [Accepted: 10/12/2020] [Indexed: 01/21/2023]
Abstract
Olive oil is more preferred than other vegetable oils because of the increasing health concern among people throughout the world. The major hindrance in large-scale production of olive oil is olive fruit pests which cause serious economic damage to the olive orchards. This requires careful monitoring and timely application of suitable remedies before pest infestation. Herein we demonstrate efficacious utilization of covalently functionalized β-cyclodextrinylated MEMS devices for selective and sensitive detection of female sex pheromone of olive fruit pest, Bactocera oleae. Two of the MEMS devices, silicon dioxide surface-micromachined cantilever arrays and zinc oxide surface-microfabricated interdigitated circuits, have been used to selectively capture the major pheromone component, 1,7-dioxaspiro[5,5]undecane. The non-covalent capture of olive pheromones inside the β-cyclodextrin cavity leads to the reduction of resonant frequency of the cantilevers, whereas an increase in resistance has been found in case of zinc oxide derived MEMS devices. Sensitivity of the MEMS devices towards the olive pheromone was found to be directly correlated with the increasing availability of β-cyclodextrin moieties over the surface of the devices and thus the detection limit of the devices has been achieved to a value as low as 0.297 ppq of the olive pheromone when the devices were functionalized with one of the standardized protocols. Overall, the reversible usability and potential capability of the suitably functionalized MEMS devices to selectively detect the presence of female sex pheromone of olive fruit fly before the onset of pest infestation in an orchard makes the technology quite attractive for viable commercial application.
Collapse
Affiliation(s)
- Parikshit Moitra
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Health Sciences Facility III, 670 W Baltimore St, Baltimore, MD, 21201, USA; Technical Research Center, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Deepa Bhagat
- National Bureau of Agricultural Insect Resources, P.B. No. 2491, H. A. Farm Post, Bangalore, 560024, India
| | - Vinayak B Kamble
- Materials Research Center, Indian Institute of Science, Bangalore, 560012, India
| | - Arun M Umarji
- Materials Research Center, Indian Institute of Science, Bangalore, 560012, India
| | - Rudra Pratap
- Centre of Nano Science and Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Santanu Bhattacharya
- Technical Research Center, Indian Association for the Cultivation of Science, Kolkata, 700032, India; Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India; School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India.
| |
Collapse
|
27
|
Oprea A, Weimar U. Gas sensors based on mass-sensitive transducers. Part 2: Improving the sensors towards practical application. Anal Bioanal Chem 2020; 412:6707-6776. [PMID: 32737549 PMCID: PMC7496080 DOI: 10.1007/s00216-020-02627-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/24/2020] [Accepted: 03/27/2020] [Indexed: 01/03/2023]
Abstract
Within the framework outlined in the first part of the review, the second part addresses attempts to increase receptor material performance through the use of sensor systems and chemometric methods, in conjunction with receptor preparation methods and sensor-specific tasks. Conclusions are then drawn, and development perspectives for gravimetric sensors are discussed.
Collapse
Affiliation(s)
- Alexandru Oprea
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University, Tübingen, Germany.
- Center for Light-Matter Interaction, Sensors & Analytics, Eberhard Karls University, Auf der Morgenstelle 15, 72076, Tübingen, Germany.
| | - Udo Weimar
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University, Tübingen, Germany
- Center for Light-Matter Interaction, Sensors & Analytics, Eberhard Karls University, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| |
Collapse
|
28
|
Brito NF, Oliveira DS, Santos TC, Moreira MF, Melo ACA. Current and potential biotechnological applications of odorant-binding proteins. Appl Microbiol Biotechnol 2020; 104:8631-8648. [PMID: 32888038 DOI: 10.1007/s00253-020-10860-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
Odorant-binding proteins (OBPs) are small soluble proteins whose biological function is believed to be facilitating olfaction by assisting the transport of volatile chemicals in both vertebrate and insect sensory organs, where they are secreted. Their capability to interact with a broad range of hydrophobic compounds combined with interesting features such as being small, stable, and easy to produce and modify, makes them suitable targets for applied research in various industrial segments, including textile, cosmetic, pesticide, and pharmaceutical, as well as for military, environmental, health, and security field applications. In addition to reviewing already established biotechnological applications of OBPs, this paper also discusses their potential use in prospecting of new technologies. The development of new products for insect population management is currently the most prevailing use for OBPs, followed by biosensor technology, an area that has recently seen a significant increase in studies evaluating their incorporation into sensing devices. Finally, less typical approaches include applications in anchorage systems and analytical tools. KEY POINTS: • Odorant-binding proteins (OBPs) present desired characteristics for applied research. • OBPs are mainly used for developing new products for insect population control. • Incorporation of OBPs into chemosensory devices is a growing area of study. • Less conventional uses for OBPs include anchorage systems and analytical purposes. Graphical Abstract.
Collapse
Affiliation(s)
- Nathália F Brito
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Daniele S Oliveira
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Thaisa C Santos
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Monica F Moreira
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Claudia A Melo
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
29
|
Abstract
Integration of materials acts as a bridge between the electronic and biological worlds, which has revolutionized the development of bioelectronic devices. This review highlights the rapidly emerging field of switchable interface and its bioelectronics applications. This review article highlights the role and importance of two-dimensional (2D) materials, especially graphene, in the field of bioelectronics. Because of the excellent electrical, optical, and mechanical properties graphene have promising application in the field of bioelectronics. The easy integration, biocompatibility, mechanical flexibility, and conformity add impact in its use for the fabrication of bioelectronic devices. In addition, the switchable behavior of this material adds an impact on the study of natural biochemical processes. In general, the behavior of the interfacial materials can be tuned with modest changes in the bioelectronics interface systems. It is also believed that switchable behavior of materials responds to a major change at the nanoscale level by regulating the behavior of the stimuli-responsive interface architecture.
Collapse
|
30
|
Bio-Inspired Strategies for Improving the Selectivity and Sensitivity of Artificial Noses: A Review. SENSORS 2020; 20:s20061803. [PMID: 32214038 PMCID: PMC7146165 DOI: 10.3390/s20061803] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 12/20/2022]
Abstract
Artificial noses are broad-spectrum multisensors dedicated to the detection of volatile organic compounds (VOCs). Despite great recent progress, they still suffer from a lack of sensitivity and selectivity. We will review, in a systemic way, the biomimetic strategies for improving these performance criteria, including the design of sensing materials, their immobilization on the sensing surface, the sampling of VOCs, the choice of a transduction method, and the data processing. This reflection could help address new applications in domains where high-performance artificial noses are required such as public security and safety, environment, industry, or healthcare.
Collapse
|
31
|
Abstract
Increased animal productivity has reduced animal fitness, resulting in increased susceptibility to infectious and metabolic diseases, locomotion problems and subfertility. Future animal breeding strategies should focus on balancing high production levels with health status monitoring and improved welfare. Additionally, understanding how animals interact with their internal and external environment is essential for improving health, fitness, and welfare. In this context, the continuous validation of existing biomarkers and the discovery and field implementation of new biomarkers will enable us to understand the specific physiological process and regulatory mechanisms used by the organism to adapt to different environmental conditions. Thus, biomarkers may be used to monitor welfare and improve management and breeding strategies. In this article, we describe major achievements in the establishment of biomarkers in dairy cows and small ruminants. This review mainly focuses on the physiological biomarkers used to monitor animal responses to, and recovery from, environmental perturbations. We highlight future avenues for research in this field and present a timely positioning document to the scientific community.
Collapse
|
32
|
Broza YY, Zhou X, Yuan M, Qu D, Zheng Y, Vishinkin R, Khatib M, Wu W, Haick H. Disease Detection with Molecular Biomarkers: From Chemistry of Body Fluids to Nature-Inspired Chemical Sensors. Chem Rev 2019; 119:11761-11817. [DOI: 10.1021/acs.chemrev.9b00437] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yoav Y. Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Xi Zhou
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi’an 710072, P.R. China
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, P.R. China
| | - Danyao Qu
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Shaanxi 710126, P.R. China
| | - Youbing Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Rotem Vishinkin
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Muhammad Khatib
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Shaanxi 710126, P.R. China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Shaanxi 710126, P.R. China
| |
Collapse
|
33
|
Warden AC, Trowell SC, Gel M. A Miniature Gas Sampling Interface with Open Microfluidic Channels: Characterization of Gas-to-Liquid Extraction Efficiency of Volatile Organic Compounds. MICROMACHINES 2019; 10:mi10070486. [PMID: 31331015 PMCID: PMC6681057 DOI: 10.3390/mi10070486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/03/2022]
Abstract
Chemosensory protein based olfactory biosensors are expected to play a significant role in next-generation volatile organic compound (VOC) detection systems due to their ultra-high sensitivity and selectivity. As these biosensors can perform most efficiently in aqueous environments, the detection systems need to incorporate a gas sampling interface for gas-to-liquid extraction. This interface should extract the VOCs from the gas phase with high efficiency and transfer them into the liquid containing biosensors to enable subsequent detection. To design such a transfer interface, an understanding of the key parameters influencing the gas-to-liquid extraction efficiency of target VOCs is crucial. This paper reports a gas sampling interface system based on a microfluidic open-channel device for gas-to-liquid extraction. By using this device as a model platform, the key parameters dictating the VOC extraction efficiency were identified. When loaded with 30 μL of capture liquid, the microfluidic device generates a gas-liquid interface area of 3 cm2 without using an interfacial membrane. The pumpless operation based on capillary flow was demonstrated for capture liquid loading and collection. Gas samples spiked with lipophilic model volatiles (hexanal and allyl methyl sulfide) were used for characterization of the VOC extraction efficiency. Decreasing the sampling temperature to 15 °C had a significant impact on increasing capture efficiency, while variation in the gas sampling flow rate had no significant impact in the range between 40–120 mL min−1. This study found more than a 10-fold increase in capture efficiency by chemical modification of the capture liquid with alpha-cyclodextrin. The highest capture efficiency of 30% was demonstrated with gas samples spiked with hexanal to a concentration of 16 ppm (molar proportion). The approach in this study should be useful for further optimisation of miniaturised gas-to-liquid extraction systems and contribute to the design of chemosensory protein-based VOC detection systems.
Collapse
Affiliation(s)
| | | | - Murat Gel
- CSIRO Manufacturing, Clayton, VIC 3168, Australia.
| |
Collapse
|
34
|
Kuznetsov AE, Komarova NV, Kuznetsov EV, Andrianova MS, Grudtsov VP, Rybachek EN, Puchnin KV, Ryazantsev DV, Saurov AN. Integration of a field effect transistor-based aptasensor under a hydrophobic membrane for bioelectronic nose applications. Biosens Bioelectron 2019; 129:29-35. [PMID: 30682686 DOI: 10.1016/j.bios.2019.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 01/29/2023]
Abstract
A new bioelectronic nose based on a field effect transistor coupled with an aptamer as the sensing element was developed. The gas-to-liquid extraction interface required for appropriate aptamer function was integrated into standard CMOS technology. It was developed with the use of a sacrificial aluminium etching technique combined with surface modifications by silanes for wettability control. As a proof of concept, aptamer Van74 for vanillin was immobilized on the sensitive surface of the ISFET. The developed microsystem can selectively detect vanillin vapor in a concentration range from 2.7 ppt to 0.3 ppm, with a detection limit of 2.7 ppt. The sensor was able to detect vanillin in a gas sample obtained from roasted coffee beans. This outcome provides a foundation for developing a new generation of bioelectronic noses for the detection and discrimination of volatile compounds.
Collapse
Affiliation(s)
- Alexander E Kuznetsov
- Scientific-Manufacturing Complex Technological Centre, 1-7 Shokin Square, Zelenograd, 124498 Moscow, Russian Federation.
| | - Natalia V Komarova
- Scientific-Manufacturing Complex Technological Centre, 1-7 Shokin Square, Zelenograd, 124498 Moscow, Russian Federation
| | - Evgeniy V Kuznetsov
- Scientific-Manufacturing Complex Technological Centre, 1-7 Shokin Square, Zelenograd, 124498 Moscow, Russian Federation
| | - Maria S Andrianova
- Scientific-Manufacturing Complex Technological Centre, 1-7 Shokin Square, Zelenograd, 124498 Moscow, Russian Federation
| | - Vitaliy P Grudtsov
- Scientific-Manufacturing Complex Technological Centre, 1-7 Shokin Square, Zelenograd, 124498 Moscow, Russian Federation
| | - Elena N Rybachek
- Scientific-Manufacturing Complex Technological Centre, 1-7 Shokin Square, Zelenograd, 124498 Moscow, Russian Federation
| | - Kirill V Puchnin
- Scientific-Manufacturing Complex Technological Centre, 1-7 Shokin Square, Zelenograd, 124498 Moscow, Russian Federation
| | - Dmitriy V Ryazantsev
- Scientific-Manufacturing Complex Technological Centre, 1-7 Shokin Square, Zelenograd, 124498 Moscow, Russian Federation
| | - Alexander N Saurov
- Scientific-Manufacturing Complex Technological Centre, 1-7 Shokin Square, Zelenograd, 124498 Moscow, Russian Federation
| |
Collapse
|
35
|
Wasilewski T, Szulczyński B, Kamysz W, Gębicki J, Namieśnik J. Evaluation of Three Peptide Immobilization Techniques on a QCM Surface Related to Acetaldehyde Responses in the Gas Phase. SENSORS 2018; 18:s18113942. [PMID: 30441858 PMCID: PMC6264005 DOI: 10.3390/s18113942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 12/18/2022]
Abstract
The quartz-crystal microbalance is a sensitive and universal tool for measuring concentrations of various gases in the air. Biochemical functionalization of the QCM electrode allows a label-free detection of specific molecular interactions with high sensitivity and specificity. In addition, it enables a real-time determination of its kinetic rates and affinity constants. This makes QCM a versatile bioanalytical screening tool for various applications, with surface modifications ranging from the detection of single molecular monolayers to whole cells. Various types of biomaterials, including peptides mapping the binding sites of olfactory receptors, can be deposited as a sensitive element on the surface of the electrodes. One of key ways to ensure the sensitivity and accuracy of the sensor is provided by application of an optimal and repeatable method of immobilization. Therefore, effective sensors operation requires development of an optimal method of deposition. This paper reviews popular techniques (drop-casting, spin-coating, dip-coating) for coating peptides on piezoelectric crystals surface. Peptide (LEKKKKDC-NH₂) derived from an aldehyde binding site in the HarmOBP7 protein was synthesized and used as a sensing material for the biosensor. The degree of deposition of the sensitive layer was monitoring by variations in the sensors frequency. The highest mass threshold for QCM measurements for peptides was approximately 16.43 µg·mm-2 for spin coating method. Developed sensor exhibited repeatable response to acetaldehyde. Moreover, responses to toluene was observed to evaluate sensors specificity. Calibration curves of the three sensors showed good determination coefficients (R² > 0.99) for drop casting and dip coating and 0.97 for the spin-coating method. Sensors sensitivity vs. acetaldehyde were significantly higher for the dip-coating and drop-casting methods and lower for spin-coating one.
Collapse
Affiliation(s)
- Tomasz Wasilewski
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdansk, Poland.
| | - Bartosz Szulczyński
- Department of Process Engineering and Chemical Technology, Chemical Faculty, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdansk, Poland.
| | - Jacek Gębicki
- Department of Process Engineering and Chemical Technology, Chemical Faculty, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Chemical Faculty, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|