1
|
Zhao Y, Wang T, Liu J, Wang Z, Lu Y. Emerging brain organoids: 3D models to decipher, identify and revolutionize brain. Bioact Mater 2025; 47:378-402. [PMID: 40026825 PMCID: PMC11869974 DOI: 10.1016/j.bioactmat.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Brain organoids are an emerging in vitro 3D brain model that is integrated from pluripotent stem cells. This model mimics the human brain's developmental process and disease-related phenotypes to a certain extent while advancing the development of human brain-based biological intelligence. However, many limitations of brain organoid culture (e.g., lacking a functional vascular system, etc.) prevent in vitro-cultured organoids from truly replicating the human brain in terms of cell type and structure. To improve brain organoids' scalability, efficiency, and stability, this paper discusses important contributions of material biology and microprocessing technology in solving the related limitations of brain organoids and applying the latest imaging technology to make real-time imaging of brain organoids possible. In addition, the related applications of brain organoids, especially the development of organoid intelligence combined with artificial intelligence, are analyzed, which will help accelerate the rational design and guidance of brain organoids.
Collapse
Affiliation(s)
- Yuli Zhao
- College of Life Sciences, Shenyang Normal University, Shenyang, 110034, Liaoning, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Ting Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Jiajun Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ze Wang
- College of Life Sciences, Shenyang Normal University, Shenyang, 110034, Liaoning, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Cavallaro A, Santonocito R, Puglisi R, Pappalardo A, La Spada F, Parlascino R, Riolo M, Cacciola SO, Tuccitto N, Trusso Sfrazzetto G. Fast detection of penicillium rot and the conservation status of packaged citrus fruit using an optical array sensor. Chem Commun (Camb) 2024; 60:13702-13705. [PMID: 39499202 DOI: 10.1039/d4cc04700a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
A novel optical array sensor designed to detect the conservation status of citrus fruit as well as contamination of ripened fruits by green mold incited by the fungus Penicillium digitatum is reported here. The device demonstrates high sensitivity, specificity, and cost-effectiveness, making it suitable for integration into the citrus fruit supply chain, including production and packaging systems.
Collapse
Affiliation(s)
- Alessia Cavallaro
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95123 Catania, Italy.
| | - Rossella Santonocito
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95123 Catania, Italy.
| | - Roberta Puglisi
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95123 Catania, Italy.
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95123 Catania, Italy.
- INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Federico La Spada
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95123 Catania, Italy
| | - Rossana Parlascino
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95123 Catania, Italy
| | - Mario Riolo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95123 Catania, Italy
| | - Santa Olga Cacciola
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95123 Catania, Italy
| | - Nunzio Tuccitto
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95123 Catania, Italy.
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95123 Catania, Italy.
- INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
3
|
Deng H, Nakamoto T. Biosensors for Odor Detection: A Review. BIOSENSORS 2023; 13:1000. [PMID: 38131760 PMCID: PMC10741685 DOI: 10.3390/bios13121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Animals can easily detect hundreds of thousands of odors in the environment with high sensitivity and selectivity. With the progress of biological olfactory research, scientists have extracted multiple biomaterials and integrated them with different transducers thus generating numerous biosensors. Those biosensors inherit the sensing ability of living organisms and present excellent detection performance. In this paper, we mainly introduce odor biosensors based on substances from animal olfactory systems. Several instances of organ/tissue-based, cell-based, and protein-based biosensors are described and compared. Furthermore, we list some other biological materials such as peptide, nanovesicle, enzyme, and aptamer that are also utilized in odor biosensors. In addition, we illustrate the further developments of odor biosensors.
Collapse
Affiliation(s)
| | - Takamichi Nakamoto
- Laboratory for Future Interdisciplinary Research of Science and Technology, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori, Yokohama 226-8503, Kanagawa, Japan;
| |
Collapse
|
4
|
Hoch-Schneider EE, Saleski T, Jensen ED, Jensen MK. Rational engineering approaches for establishing insect olfaction reporters in yeast. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2023; 4:90-99. [PMID: 39416924 PMCID: PMC11446376 DOI: 10.1016/j.biotno.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 11/12/2023] [Indexed: 10/19/2024]
Abstract
Insect olfaction directly impacts insect behavior and thus is an important consideration in the development of smart farming tools and in integrated pest management strategies. Insect olfactory receptors (ORs) have been traditionally studied using Drosophila empty neuron systems or with expression and functionalization in HEK293 cells or Xenopus laevis oocytes. Recently, the yeast Saccharomyces cerevisiae (S. cerevisiae) has emerged as a promising chassis for the functional expression of heterologous seven transmembrane receptors. S. cerevisiae provides a platform for the cheap and high throughput study of these receptors and potential deorphanization. In this study, we explore the foundations of a scalable yeast-based platform for the functional expression of insect olfactory receptors by employing a genetically encoded calcium sensor for quantitative evaluation of fluorescence and optimized experimental parameters for enhanced functionality. While the co-receptor of insect olfactory receptors remains non-functional in our yeast-based system, we thoroughly evaluated various experimental variables and identified future research directions for establishing an OR platform in S. cerevisiae.
Collapse
Affiliation(s)
- Emma Elise Hoch-Schneider
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Tatyana Saleski
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Emil D. Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
5
|
Kleinheinz D, D’Onofrio C, Carraher C, Bozdogan A, Ramach U, Schuster B, Geiß M, Valtiner M, Knoll W, Andersson J. Activity of Single Insect Olfactory Receptors Triggered by Airborne Compounds Recorded in Self-Assembled Tethered Lipid Bilayer Nanoarchitectures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46655-46667. [PMID: 37753951 PMCID: PMC10571041 DOI: 10.1021/acsami.3c09304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023]
Abstract
Membrane proteins are among the most difficult to study as they are embedded in the cellular membrane, a complex and fragile environment with limited experimental accessibility. To study membrane proteins outside of these environments, model systems are required that replicate the fundamental properties of the cellular membrane without its complexity. We show here a self-assembled lipid bilayer nanoarchitecture on a solid support that is stable for several days at room temperature and allows the measurement of insect olfactory receptors at the single-channel level. Using an odorant binding protein, we capture airborne ligands and transfer them to an olfactory receptor from Drosophila melanogaster (OR22a) complex embedded in the lipid membrane, reproducing the complete olfaction process in which a ligand is captured from air and transported across an aqueous reservoir by an odorant binding protein and finally triggers a ligand-gated ion channel embedded in a lipid bilayer, providing direct evidence for ligand capture and olfactory receptor triggering facilitated by odorant binding proteins. This model system presents a significantly more user-friendly and robust platform to exploit the extraordinary sensitivity of insect olfaction for biosensing. At the same time, the platform offers a new opportunity for label-free studies of the olfactory signaling pathways of insects, which still have many unanswered questions.
Collapse
Affiliation(s)
- David Kleinheinz
- Austrian
Institute of Technology GmbH, Giefinggasse 4, Vienna 1210, Austria
| | - Chiara D’Onofrio
- Austrian
Institute of Technology GmbH, Giefinggasse 4, Vienna 1210, Austria
| | - Colm Carraher
- The
New Zealand Institute for Plant and Food Research, 120 Mount Albert Road, Sandringham, Auckland 1025, New Zealand
| | - Anil Bozdogan
- Austrian
Institute of Technology GmbH, Giefinggasse 4, Vienna 1210, Austria
| | - Ulrich Ramach
- Technische
Universität Wien, Wiedner Hauptstr. 8-10/134, Wien 1040, Austria
- CEST
Kompetenzzentrum für Oberflächentechnologie, Viktor Kaplan-Straße 2, Wiener Neustadt 2700, Austria
| | - Bernhard Schuster
- Department
of Bionanosciences, Institute of Synthetic Bioarchitectures, University of Natural Resources and Life Sciences
(BOKU), Muthgasse 11, Vienna 1190, Austria
| | - Manuela Geiß
- Software
Competence Center Hagenberg GmbH, Softwarepark 32a, Hagenberg 4232, Austria
| | - Markus Valtiner
- Technische
Universität Wien, Wiedner Hauptstr. 8-10/134, Wien 1040, Austria
| | - Wolfgang Knoll
- Austrian
Institute of Technology GmbH, Giefinggasse 4, Vienna 1210, Austria
- Danube
Private University, Steiner
Landstraße 124, Krems an der Donau 3500, Austria
| | - Jakob Andersson
- Austrian
Institute of Technology GmbH, Giefinggasse 4, Vienna 1210, Austria
- Technische
Universität Wien, Wiedner Hauptstr. 8-10/134, Wien 1040, Austria
| |
Collapse
|
6
|
Mariette J, Noël A, Louis T, Montagné N, Chertemps T, Jacquin-Joly E, Marion-Poll F, Sandoz JC. Transcuticular calcium imaging as a tool for the functional study of insect odorant receptors. Front Mol Neurosci 2023; 16:1182361. [PMID: 37645702 PMCID: PMC10461100 DOI: 10.3389/fnmol.2023.1182361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/12/2023] [Indexed: 08/31/2023] Open
Abstract
The primary actors in the detection of olfactory information in insects are odorant receptors (ORs), transmembrane proteins expressed at the dendrites of olfactory sensory neurons (OSNs). In order to decode the insect olfactome, many studies focus on the deorphanization of ORs (i.e., identification of their ligand), using various approaches involving heterologous expression coupled to neurophysiological recordings. The "empty neuron system" of the fruit fly Drosophila melanogaster is an appreciable host for insect ORs, because it conserves the cellular environment of an OSN. Neural activity is usually recorded using labor-intensive electrophysiological approaches (single sensillum recordings, SSR). In this study, we establish a simple method for OR deorphanization using transcuticular calcium imaging (TCI) at the level of the fly antenna. As a proof of concept, we used two previously deorphanized ORs from the cotton leafworm Spodoptera littoralis, a specialist pheromone receptor and a generalist plant odor receptor. We demonstrate that by co-expressing the GCaMP6s/m calcium probes with the OR of interest, it is possible to measure robust odorant-induced responses under conventional microscopy conditions. The tuning breadth and sensitivity of ORs as revealed using TCI were similar to those measured using single sensillum recordings (SSR). We test and discuss the practical advantages of this method in terms of recording duration and the simultaneous testing of several insects.
Collapse
Affiliation(s)
- Julia Mariette
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| | - Amélie Noël
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| | - Thierry Louis
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| | - Nicolas Montagné
- Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | - Thomas Chertemps
- Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | - Emmanuelle Jacquin-Joly
- Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | - Frédéric Marion-Poll
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| |
Collapse
|
7
|
Deng H, Sukekawa Y, Mitsuno H, Kanzaki R, Nakamoto T. Active Tracking of Temporally Changing Gas-Phase Odor Mixture Using an Array of Cells Expressing Olfactory Receptors. Anal Chem 2023. [PMID: 37466237 DOI: 10.1021/acs.analchem.3c02675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
A cell expressing an olfactory receptor (OR) exhibits excellent odorant detection ability and thus is widely applied in odor biosensors. Most of those biosensors, however, could detect only liquid-phase nonchanging single-component odorants. In this paper, we raised up an odor biosensor for the active tracking of temporally changing gas-phase odor mixture by an array of cells expressing ORs. A thin stable liquid film covered the cell, thus allowing gas-phase odorants to penetrate. The online image processing generated individual cell brightness data which were used to compute the biosensor response. Based on the obtained responses, we adjusted the known odor components to be similar with the unknown odor. The function of our biosensor was validated by tracking the variable single-component odorant or the binary odor mixture. The influence from the sensor drift could be overcome by comparing the adjacent unknown and known odor responses. In the odor mixture quantification, adding the OR label to mixed cells and then quantifying separately (named as the pre-label method) was more efficient, while directly using the cell response pattern (named as the label-free method) was still capable even if the OR odor had cross-sensitivity.
Collapse
Affiliation(s)
- Hongchao Deng
- Laboratory for Future Interdisciplinary Research of Science and Technology, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori, Yokohama, Kanagawa 226-8503, Japan
| | - Yuji Sukekawa
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Hidefumi Mitsuno
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Takamichi Nakamoto
- Laboratory for Future Interdisciplinary Research of Science and Technology, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
8
|
Kuroda S, Nakaya-Kishi Y, Tatematsu K, Hinuma S. Human Olfactory Receptor Sensor for Odor Reconstitution. SENSORS (BASEL, SWITZERLAND) 2023; 23:6164. [PMID: 37448013 DOI: 10.3390/s23136164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Among the five human senses, light, sound, and force perceived by the eye, ear, and skin, respectively are physical phenomena, and therefore can be easily measured and expressed as objective, univocal, and simple digital data with physical quantity. However, as taste and odor molecules perceived by the tongue and nose are chemical phenomena, it has been difficult to express them as objective and univocal digital data, since no reference chemicals can be defined. Therefore, while the recording, saving, transmitting to remote locations, and replaying of human visual, auditory, and tactile information as digital data in digital devices have been realized (this series of data flow is defined as DX (digital transformation) in this review), the DX of human taste and odor information is not yet in the realization stage. Particularly, since there are at least 400,000 types of odor molecules and an infinite number of complex odors that are mixtures of these molecules, it has been considered extremely difficult to realize "human olfactory DX" by converting all odors perceived by human olfaction into digital data. In this review, we discuss the current status and future prospects of the development of "human olfactory DX", which we believe can be realized by utilizing odor sensors that employ the olfactory receptors (ORs) that support human olfaction as sensing molecules (i.e., human OR sensor).
Collapse
Affiliation(s)
- Shun'ichi Kuroda
- Department of Biomolecular Science and Reaction, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- R&D Center, Komi-Hakko Corp, 3F Osaka University Technoalliance C Bldg, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukiko Nakaya-Kishi
- R&D Center, Komi-Hakko Corp, 3F Osaka University Technoalliance C Bldg, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kenji Tatematsu
- Department of Biomolecular Science and Reaction, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- R&D Center, Komi-Hakko Corp, 3F Osaka University Technoalliance C Bldg, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shuji Hinuma
- Department of Biomolecular Science and Reaction, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
9
|
Wasilewski T, Neubauer D, Wojciechowski M, Szulczyński B, Gębicki J, Kamysz W. Evaluation of Linkers' Influence on Peptide-Based Piezoelectric Biosensors' Sensitivity to Aldehydes in the Gas Phase. Int J Mol Sci 2023; 24:10610. [PMID: 37445789 DOI: 10.3390/ijms241310610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Recent findings qualified aldehydes as potential biomarkers for disease diagnosis. One of the possibilities is to use electrochemical biosensors in point-of-care (PoC), but these need further development to overcome some limitations. Currently, the primary goal is to enhance their metrological parameters in terms of sensitivity and selectivity. Previous findings indicate that peptide OBPP4 (KLLFDSLTDLKKKMSEC-NH2) is a promising candidate for further development of aldehyde-sensitive biosensors. To increase the affinity of a receptor layer to long-chain aldehydes, a structure stabilization of the peptide active site via the incorporation of different linkers was studied. Indeed, the incorporation of linkers improved sensitivity to and binding of aldehydes in comparison to that of the original peptide-based biosensor. The tendency to adopt disordered structures was diminished owing to the implementation of suitable linkers. Therefore, to improve the metrological characteristics of peptide-based piezoelectric biosensors, linkers were added at the C-terminus of OBPP4 peptide (KLLFDSLTDLKKKMSE-linker-C-NH2). Those linkers consist of proteinogenic amino acids from group one: glycine, L-proline, L-serine, and non proteinogenic amino acids from group two: β-alanine, 4-aminobutyric acid, and 6-aminohexanoic acid. Linkers were evaluated with in silico studies, followed by experimental verification. All studied linkers enhanced the detection of aldehydes in the gas phase. The highest difference in frequency (60 Hz, nonanal) was observed between original peptide-based biosensors and ones based on peptides modified with the GSGSGS linker. It allowed evaluation of the limit of detection for nonanal at the level of 2 ppm, which is nine times lower than that of the original peptide. The highest sensitivity values were also obtained for the GSGSGS linker: 0.3312, 0.4281, and 0.4676 Hz/ppm for pentanal, octanal, and nonanal, respectively. An order of magnitude increase in sensitivity was observed for the six linkers used. Generally, the linker's rigidity and the number of amino acid residues are much more essential for biosensors' metrological characteristics than the amino acid sequence itself. It was found that the longer the linkers, the better the effect on docking efficiency.
Collapse
Affiliation(s)
- Tomasz Wasilewski
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland
| | - Damian Neubauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland
| | - Marek Wojciechowski
- Department of Pharmaceutical Technology and Biochemistry, Chemical Faculty, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Bartosz Szulczyński
- Department of Process Engineering and Chemical Technology, Chemical Faculty, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Jacek Gębicki
- Department of Process Engineering and Chemical Technology, Chemical Faculty, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland
| |
Collapse
|
10
|
Chen G, Xu M, He C. Preparation of an aptamer electrochemical sensor for the highly sensitive detection of glioma cells. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
11
|
Farouil L, Duchaudé Y, Zozo L, Sylvestre M, Lafay F, Marote P, Cebrián-Torrejón G. Cyclic voltammetry of immobilized particles as an alternative pesticide screening method for Aedes aegypti mosquitoes. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
12
|
Qin C, Wang Y, Hu J, Wang T, Liu D, Dong J, Lu Y. Artificial Olfactory Biohybrid System: An Evolving Sense of Smell. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204726. [PMID: 36529960 PMCID: PMC9929144 DOI: 10.1002/advs.202204726] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The olfactory system can detect and recognize tens of thousands of volatile organic compounds (VOCs) at low concentrations in complex environments. Bioelectronic nose (B-EN), which mimics olfactory systems, is becoming an emerging sensing technology for identifying VOCs with sensitivity and specificity. B-ENs integrate electronic sensors with bioreceptors and pattern recognition technologies to enable medical diagnosis, public security, environmental monitoring, and food safety. However, there is currently no commercially available B-EN on the market. Apart from the high selectivity and sensitivity necessary for volatile organic compound analysis, commercial B-ENs must overcome issues impacting sensor operation and other problems associated with odor localization. The emergence of nanotechnology has provided a novel research concept for addressing these problems. In this work, the structure and operational mechanisms of biomimetic olfactory systems are discussed, with an emphasis on the development and immobilization of materials. Various biosensor applications and current developments are reviewed. Challenges and opportunities for fulfilling the potential of artificial olfactory biohybrid systems in fundamental and practical research are investigated in greater depth.
Collapse
Affiliation(s)
- Chuanting Qin
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
- Tianjin Industrial Microbiology Key LaboratoryCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457China
| | - Yi Wang
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
- Tianjin Industrial Microbiology Key LaboratoryCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457China
| | - Jiawang Hu
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Ting Wang
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Dong Liu
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Jian Dong
- Tianjin Industrial Microbiology Key LaboratoryCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457China
| | - Yuan Lu
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| |
Collapse
|
13
|
Wang Z, Ma W, Gao Z, Zhao Z, Du B, Wei J, Jiang D, Lan K, Chen R, Yan S, Qin G. Sex Pheromone Receptor-Derived Peptide Biosensor for Efficient Monitoring of the Cotton Bollworm Helicoverpa armigera. ACS Sens 2023; 8:363-371. [PMID: 36607353 DOI: 10.1021/acssensors.2c02384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The cotton bollworm, Helicoverpa armigera (H. armigera), causes damage to a wide range of cultivated crops and is one of the pests with the greatest economic importance for global agriculture. Currently, the detection of H. armigera is based on manual sampling. A low limit of detection (LOD), convenient, and real-time monitoring method is urgently needed for its early warning and efficient management. Here, we characterized the amino acid sequence in the sex pheromone receptors (SPRs) recognizing the pheromone components of H. armigera by three-dimensional (3D) modeling and molecular docking. Next, sex pheromone receptor-derived peptides (SPRPs) were synthesized and conjugated to nanotubes by chemical connection. The modified nanotubes were used to fabricate a sensor capable of real-time monitoring of gaseous sex pheromone compounds with a low LOD (∼10 ppb for Z11-16:Ald) and selectivity, and the sensor was able to detect a single live H. armigera. Furthermore, the developed biosensor allowed direct monitoring of the pheromone release dynamics by female H. armigera and showed that the release was instantly reduced in response to light. Here, we report the first demonstration of a biosensing method for detecting gaseous sex pheromones and live H. armigera. The findings show the great potential of the SPRP sensor for broad applications in insect biology study and infestation monitoring.
Collapse
Affiliation(s)
- Zhi Wang
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Weichao Ma
- College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, P. R. China
| | - Zisen Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, P. R. China
| | - Zhihan Zhao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Baojiang Du
- Shanghe County Agriculture and Rural Enterprise Development Center, Jinan 251600, Shandong, P. R. China
| | - Junqing Wei
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Dun Jiang
- College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, P. R. China
| | - Kuibo Lan
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Shanchun Yan
- College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, P. R. China
| | - Guoxuan Qin
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
14
|
Lagunas A, Belloir C, Briand L, Gorostiza P, Samitier J. Determination of the nanoscale electrical properties of olfactory receptor hOR1A1 and their dependence on ligand binding: Towards the development of capacitance-operated odorant biosensors. Biosens Bioelectron 2022; 218:114755. [PMID: 36191583 DOI: 10.1016/j.bios.2022.114755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/09/2022] [Accepted: 09/23/2022] [Indexed: 12/30/2022]
Abstract
The transduction of odorant binding into cellular signaling by olfactory receptors (ORs) is not understood and knowing its mechanism would enable developing new pharmacology and biohybrid electronic detectors of volatile organic compounds bearing high sensitivity and selectivity. The electrical characterization of ORs in bulk experiments is subject to microscopic models and assumptions. We have directly determined the nanoscale electrical properties of ORs immobilized in a fixed orientation, and their change upon odorant binding, using electrochemical scanning tunneling microscopy (EC-STM) in near-physiological conditions. Recordings of current versus time, distance, and electrochemical potential allows determining the OR impedance parameters and their dependence with odorant binding. Our results allow validating OR structural-electrostatic models and their functional activation processes, and anticipating a novel macroscopic biosensor based on ORs.
Collapse
Affiliation(s)
- Anna Lagunas
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain; Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, c/Baldiri i Reixac 10-12, 08028, Barcelona, Spain.
| | - Christine Belloir
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, 9E Bd Jeanne d'Arc, 21000, Dijon, France
| | - Loïc Briand
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, 9E Bd Jeanne d'Arc, 21000, Dijon, France
| | - Pau Gorostiza
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain; Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, c/Baldiri i Reixac 10-12, 08028, Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Josep Samitier
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain; Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, c/Baldiri i Reixac 10-12, 08028, Barcelona, Spain; Department of Electronics and Biomedical Engineering, Faculty of Physics, University of Barcelona (UB), c/Martí i Franquès 1, 08028, Barcelona, Spain.
| |
Collapse
|
15
|
Hruška M, More-Chevalier J, Fitl P, Novotný M, Hruška P, Prokop D, Pokorný P, Kejzlar J, Gadenne V, Patrone L, Vrňata M, Lančok J. Surface Enhancement Using Black Coatings for Sensor Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4297. [PMID: 36500920 PMCID: PMC9738287 DOI: 10.3390/nano12234297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The resolution of a quartz crystal microbalance (QCM) is particularly crucial for gas sensor applications where low concentrations are detected. This resolution can be improved by increasing the effective surface of QCM electrodes and, thereby, enhancing their sensitivity. For this purpose, various researchers have investigated the use of micro-structured materials with promising results. Herein, we propose the use of easy-to-manufacture metal blacks that are highly structured even on a nanoscale level and thus provide more bonding sites for gas analytes. Two different black metals with thicknesses of 280 nm, black aluminum (B-Al) and black gold (B-Au), were deposited onto the sensor surface to improve the sensitivity following the Sauerbrey equation. Both layers present a high surface roughness due to their cauliflower morphology structure. A high response (i.e., resonant frequency shift) of these QCM sensors coated with a black metal layer was obtained. Two gaseous analytes, H2O vapor and EtOH vapor, at different concentrations, are tested, and a distinct improvement of sensitivity is observed for the QCM sensors coated with a black metal layer compared to the blank ones, without strong side effects on resonance frequency stability or mechanical quality factor. An approximately 10 times higher sensitivity to EtOH gas is reported for the QCM coated with a black gold layer compared to the blank QCM sensor.
Collapse
Affiliation(s)
- Martin Hruška
- Department of Physics and Measurements, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Joris More-Chevalier
- Department of Physics and Measurements, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Přemysl Fitl
- Department of Physics and Measurements, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Michal Novotný
- Department of Physics and Measurements, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Petr Hruška
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
- Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, 180 00 Prague, Czech Republic
| | - Dejan Prokop
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
- Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, 180 00 Prague, Czech Republic
| | - Petr Pokorný
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Jan Kejzlar
- Department of Physics and Measurements, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Virginie Gadenne
- ISEN Yncréa Méditerranée, Aix Marseille Univ, Université de Toulon, CNRS, IM2NP, 83000 Toulon, France
| | - Lionel Patrone
- ISEN Yncréa Méditerranée, Aix Marseille Univ, Université de Toulon, CNRS, IM2NP, 83000 Toulon, France
| | - Martin Vrňata
- Department of Physics and Measurements, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Jan Lančok
- Department of Physics and Measurements, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| |
Collapse
|
16
|
Raji JI, Potter CJ. Chemosensory ionotropic receptors in human host-seeking mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2022; 54:100967. [PMID: 36096415 PMCID: PMC11683686 DOI: 10.1016/j.cois.2022.100967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Half the world's human population is at risk for mosquito-borne diseases. Mosquitoes rely mainly on their sense of smell to find a vertebrate blood host, nectar source, and a suitable oviposition site. Advances in neurogenetic tools have now aided our understanding of the receptors that mediate the detection of sensory cues that emanate from humans. Recent studies in the anthropophilic mosquito vectors, Aedes aegypti and Anopheles gambiae, have implicated the chemosensory ionotropic-receptor (IR) family in the detection of behaviorally relevant odors and uncovered functions beyond chemical sensing. Here, we highlight the multifunctional roles of the chemosensory ionotropic receptors in anthropophilic mosquito vectors and suggest future directions to improve our understanding of the IR family.
Collapse
Affiliation(s)
- Joshua I Raji
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
17
|
Chen Y, Du L, Tian Y, Zhu P, Liu S, Liang D, Liu Y, Wang M, Chen W, Wu C. Progress in the Development of Detection Strategies Based on Olfactory and Gustatory Biomimetic Biosensors. BIOSENSORS 2022; 12:858. [PMID: 36290995 PMCID: PMC9599203 DOI: 10.3390/bios12100858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/01/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The biomimetic olfactory and gustatory biosensing devices have broad applications in many fields, such as industry, security, and biomedicine. The development of these biosensors was inspired by the organization of biological olfactory and gustatory systems. In this review, we summarized the most recent advances in the development of detection strategies for chemical sensing based on olfactory and gustatory biomimetic biosensors. First, sensing mechanisms and principles of olfaction and gustation are briefly introduced. Then, different biomimetic sensing detection strategies are outlined based on different sensing devices functionalized with various molecular and cellular components originating from natural olfactory and gustatory systems. Thereafter, various biomimetic olfactory and gustatory biosensors are introduced in detail by classifying and summarizing the detection strategies based on different sensing devices. Finally, the future directions and challenges of biomimetic biosensing development are proposed and discussed.
Collapse
Affiliation(s)
- Yating Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Liping Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Yulan Tian
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Ping Zhu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Shuge Liu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Dongxin Liang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Yage Liu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Miaomiao Wang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Wei Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| |
Collapse
|
18
|
Wasilewski T, Brito NF, Szulczyński B, Wojciechowski M, Buda N, Melo ACA, Kamysz W, Gębicki J. Olfactory Receptor-based Biosensors as Potential Future Tools in Medical Diagnosis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Deng H, Mitsuno H, Kanzaki R, Nakamoto T. Extending lifetime of gas-phase odor biosensor using liquid thickness control and liquid exchange. Biosens Bioelectron 2021; 199:113887. [PMID: 34922319 DOI: 10.1016/j.bios.2021.113887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022]
Abstract
In recent few years, researchers utilized cell expressing olfactory receptor for vapor detection under various sensing mechanisms. Those olfactory systems, however, have relatively short lifetime due to the dry out of aqueous solution covering the cell. In this paper, we came up with a feedback control structure composed of an impedance measurement circuit, a microcontroller and two syringe pumps for maintaining thin liquid layer above cell. Cell lifetime was improved from less than 40 min to longer than 75 min when liquid film control was introduced. However, the biosensor lifetime remained similar between with or without liquid thickness control. Then, we added liquid exchange to further extend the lifetime of our odor biosensor. Minimal liquid exchange speed was able to significantly extend the biosensor lifetime. Meanwhile, faster liquid exchange speed resulted in better sensor responses. Furthermore, the enhancement acquired from intermittent liquid exchange was compared with continuous one. In this study, the lifetime of odor biosensor was extended to more than 3 h whereas it was less than half an hour without liquid thickness control. We believe the methodology we established in this paper will facilitate gas phase odor biosensor in continuous monitoring of target substances.
Collapse
Affiliation(s)
- Hongchao Deng
- Laboratory for Future Interdisciplinary Research of Science and Technology (FIRST), Institute of Innovative Research (IIR), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori, Yokohama, Kanagawa, 226-8503, Japan
| | - Hidefumi Mitsuno
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan
| | - Takamichi Nakamoto
- Laboratory for Future Interdisciplinary Research of Science and Technology (FIRST), Institute of Innovative Research (IIR), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori, Yokohama, Kanagawa, 226-8503, Japan.
| |
Collapse
|
20
|
Abstract
Quartz Crystal Microbalance (QCM) is one of the many acoustic transducers. It is the most popular and widely used acoustic transducer for sensor applications. It has found wide applications in chemical and biosensing fields owing to its high sensitivity, robustness, small sized-design, and ease of integration with electronic measurement systems. However, it is necessary to coat QCM with a sensing film. Without coating materials, its selectivity and sensitivity are not obtained. At present, this is not an issue, mainly due to the advancement of oscillator circuits and dedicated measurement circuits. Since a new researcher may seek to understand QCM sensors, we provide an overview of QCM from its fundamental knowledge. Then, we explain some of the recent QCM applications both in gas-phase and liquid-phase. Next, the theory of QCM is introduced by using piezoelectric stress equations and the Mason equivalent circuit, which explains how the QCM behavior is obtained. Then, the conventional equations that govern QCM behaviors in terms of resonant frequency and resistance are described. We show the behavior of QCM with a viscous film based on the acoustic wave equation and Mason equivalent circuit. Then, we present various existing QCM electronic measurement methods. Furthermore, we describe the experiment on QCM with viscous loading and its interpretation based on the Mason equivalent circuit. Lastly, we review some theoretical models to describe QCM behavior with various models.
Collapse
|
21
|
Cheema JA, Carraher C, Plank NOV, Travas-Sejdic J, Kralicek A. Insect odorant receptor-based biosensors: Current status and prospects. Biotechnol Adv 2021; 53:107840. [PMID: 34606949 DOI: 10.1016/j.biotechadv.2021.107840] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/02/2021] [Accepted: 09/27/2021] [Indexed: 02/01/2023]
Abstract
Whilst the senses of vision and hearing have been successfully automated and miniaturized in portable formats (e.g. smart phone), this is yet to be achieved with the sense of smell. This is because the sensing challenge is not trivial as it involves navigating a chemosensory space comprising thousands of volatile organic compounds. Distinct aroma recognition is based on detecting unique combinations of volatile organic compounds. In natural olfactory systems this is accomplished by employing odorant receptors (ORs) with varying specificities, together with combinatorial neural coding mechanisms. Attempts to mimic the remarkable sensitivity and accuracy of natural olfactory systems has therefore been challenging. Current portable chemical sensors for odorant detection are neither sensitive nor selective, prompting research exploring artificial olfactory devices that use natural OR proteins for sensing. Much research activity to develop OR based biosensors has concentrated on mammalian ORs, however, insect ORs have not been explored as extensively. Insects possess an extraordinary sense of smell due to a repertoire of odorant receptors evolved to interpret olfactory cues vital to the insects' survival. The potential of insect ORs as sensing elements is only now being unlocked through recent research efforts to understand their structure, ligand binding mechanisms and development of odorant biosensors. Like their mammalian counterparts, there are many challenges with working with insect ORs. These include expression, purification and presentation of the insect OR in a stable display format compatible with an effective transduction methodology while maintaining OR structure and function. Despite these challenges, significant progress has been demonstrated in developing OR-based biosensors which exploit insect ORs in cells, lipid bilayers, liposomes and nanodisc formats. Ultrasensitive and highly selective detection of volatile organic compounds has been validated by coupling these insect OR display formats with transduction methodologies spanning optical (fluorescence) and electrical (field effect transistors, electrochemical impedance spectroscopy) techniques. This review summarizes the current status of insect OR based biosensors and their future outlook.
Collapse
Affiliation(s)
- Jamal Ahmed Cheema
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1023, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand; The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Colm Carraher
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Natalie O V Plank
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand; School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6021, New Zealand
| | - Jadranka Travas-Sejdic
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1023, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand.
| | - Andrew Kralicek
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand; Scentian Bio Limited, 1c Goring Road, Sandringham, Auckland 1025, New Zealand.
| |
Collapse
|
22
|
|
23
|
Hirata Y, Oda H, Osaki T, Takeuchi S. Biohybrid sensor for odor detection. LAB ON A CHIP 2021; 21:2643-2657. [PMID: 34132291 DOI: 10.1039/d1lc00233c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Biohybrid odorant sensors that directly integrate a biological olfactory system have been increasingly studied and are suggested to be the next generation of ultrasensitive sensors by taking advantage of the sensitivity and selectivity of living organisms. In this review, we provide a detailed description of the recent developments of biohybrid odorant sensors, especially considering the requisites for their perspective of on-site applications. We introduce the methodologies to effectively capture the biological signals from olfactory systems by readout devices, and describe the essential properties regarding the gaseous detection, stability, quality control, and portability. Moreover, we address the recent progress on multiple odorant recognition using multiple sensors as well as the current screening approaches for pairs of orphan receptors and ligands necessary for the extension of the currently available range of biohybrid sensors. Finally, we discuss our perspectives for the future for the development of practical odorant sensors.
Collapse
Affiliation(s)
- Yusuke Hirata
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Haruka Oda
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Toshihisa Osaki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan and Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Shoji Takeuchi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. and Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan and Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
24
|
De Pascali C, Francioso L, Giampetruzzi L, Rescio G, Signore MA, Leone A, Siciliano P. Modeling, Fabrication and Integration of Wearable Smart Sensors in a Monitoring Platform for Diabetic Patients. SENSORS (BASEL, SWITZERLAND) 2021; 21:1847. [PMID: 33800949 PMCID: PMC7962045 DOI: 10.3390/s21051847] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
The monitoring of some parameters, such as pressure loads, temperature, and glucose level in sweat on the plantar surface, is one of the most promising approaches for evaluating the health state of the diabetic foot and for preventing the onset of inflammatory events later degenerating in ulcerative lesions. This work presents the results of sensors microfabrication, experimental characterization and FEA-based thermal analysis of a 3D foot-insole model, aimed to advance in the development of a fully custom smart multisensory hardware-software monitoring platform for the diabetic foot. In this system, the simultaneous detection of temperature-, pressure- and sweat-based glucose level by means of full custom microfabricated sensors distributed on eight reading points of a smart insole will be possible, and the unit for data acquisition and wireless transmission will be fully integrated into the platform. Finite element analysis simulations, based on an accurate bioheat transfer model of the metabolic response of the foot tissue, demonstrated that subcutaneous inflamed lesions located up to the muscle layer, and ischemic damage located not below the reticular/fat layer, can be successfully detected. The microfabrication processes and preliminary results of functional characterization of flexible piezoelectric pressure sensors and glucose sensors are presented. Full custom pressure sensors generate an electric charge in the range 0-20 pC, proportional to the applied load in the range 0-4 N, with a figure of merit of 4.7 ± 1 GPa. The disposable glucose sensors exhibit a 0-6 mM (0-108 mg/dL) glucose concentration optimized linear response (for sweat-sensing), with a LOD of 3.27 µM (0.058 mg/dL) and a sensitivity of 21 µA/mM cm2 in the PBS solution. The technical prerequisites and experimental sensing performances were assessed, as preliminary step before future integration into a second prototype, based on a full custom smart insole with enhanced sensing functionalities.
Collapse
Affiliation(s)
| | - Luca Francioso
- National Research Council of Italy, Institute for Microelectronics and Microsystems (CNR-IMM), 95121 Lecce, Italy; (C.D.P.); (G.R.); (M.A.S.); (A.L.); (P.S.)
| | - Lucia Giampetruzzi
- National Research Council of Italy, Institute for Microelectronics and Microsystems (CNR-IMM), 95121 Lecce, Italy; (C.D.P.); (G.R.); (M.A.S.); (A.L.); (P.S.)
| | | | | | | | | |
Collapse
|
25
|
Asadpour F, Mazloum-Ardakani M, Hoseynidokht F, Moshtaghioun SM. In situ monitoring of gating approach on mesoporous silica nanoparticles thin-film generated by the EASA method for electrochemical detection of insulin. Biosens Bioelectron 2021; 180:113124. [PMID: 33714159 DOI: 10.1016/j.bios.2021.113124] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/19/2021] [Accepted: 02/25/2021] [Indexed: 01/02/2023]
Abstract
An innovative label-free electrochemical aptasensing platform has been designed for detection of insulin using functionalized mesoporous silica thin-film (MSTF) coated on a glassy carbon electrode through the one-step electrochemically assisted self-assembly (EASA) method. This strategy is contingent upon the covalent attachment of a complementary DNA (cDNA) oligonucleotide sequence on the mesoporous silica surface, for which further hybridization with its labeled aptamer as a gating molecule restricts the diffusion of the electroactive probe (Fe(CN)63-/4-) toward the electrode surface by the closing of mesochannels. Upon insulin introduction as the stimulus target molecule, hybridization between aptamer and cDNA is efficiently destroyed, which triggers the opening of nanochannels to facilitate redox probe diffusion toward the electrode with a noticeable increase in differential pulse voltammetry signal. The proposed aptasensor showed a wide detection ranging from 10.0 to 350.0 nM and a suitable detection limit of 3.0 nM. This method offers the sensitive and rapid detection of insulin without the need for cargo (dye/fluorophore) as an electrochemical marker inside the pore, at low cost and with a fast modification time.
Collapse
Affiliation(s)
- Farzaneh Asadpour
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
| | | | | | | |
Collapse
|
26
|
Sukekawa Y, Mitsuno H, Kanzaki R, Nakamoto T. Binary mixture quantification using cell-based odor biosensor system with active sensing. Biosens Bioelectron 2021; 179:113053. [PMID: 33581427 DOI: 10.1016/j.bios.2021.113053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/17/2021] [Accepted: 01/27/2021] [Indexed: 11/29/2022]
Abstract
Organisms perceive odorants in the environment through the use of a large number of olfactory receptors. Various odor biosensors have been researched and developed in order to mimic this olfactory mechanism. This study examines the quantification of odorant concentrations through the use of a sensor array comprised of several types of cell-based odor sensors expressing insect olfactory receptors with nonlinear characteristics. The sensor system utilized an active sensing method in order to compare the responses of a target odorant and a prepared odorant in determining the relative concentration of the target odorant. By combining an active sensing method with a real-time reference method in which the target odorant was measured every time the prepared odorant was measured, the relative concentrations were successfully determined even when the response fluctuation was large or odorant sensor cell responses varied as measurement time increased. For proof of concept purposes, the study primarily focused on quantifying odorant concentrations composed of one or two odorant components. It was confirmed that an algorithm to find the optimal relative odorant concentration among a limited number of odorant concentrations is achievable. Though this study is still in the initial stage of the developing odor sensors and has many challenges, it can provide insight into paving the way towards a new type of odor biosensor with active sensing.
Collapse
Affiliation(s)
- Yuji Sukekawa
- Laboratory for Future Interdisciplinary Research of Science and Technology (FIRST), Institute of Innovative Research (IIR), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori, Yokohama, Kanagawa, 226-8503, Japan.
| | - Hidefumi Mitsuno
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan.
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan.
| | - Takamichi Nakamoto
- Laboratory for Future Interdisciplinary Research of Science and Technology (FIRST), Institute of Innovative Research (IIR), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori, Yokohama, Kanagawa, 226-8503, Japan.
| |
Collapse
|
27
|
Yuvaraj JK, Roberts RE, Sonntag Y, Hou XQ, Grosse-Wilde E, Machara A, Zhang DD, Hansson BS, Johanson U, Löfstedt C, Andersson MN. Putative ligand binding sites of two functionally characterized bark beetle odorant receptors. BMC Biol 2021; 19:16. [PMID: 33499862 PMCID: PMC7836466 DOI: 10.1186/s12915-020-00946-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/22/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Bark beetles are major pests of conifer forests, and their behavior is primarily mediated via olfaction. Targeting the odorant receptors (ORs) may thus provide avenues towards improved pest control. Such an approach requires information on the function of ORs and their interactions with ligands, which is also essential for understanding the functional evolution of these receptors. Hence, we aimed to identify a high-quality complement of ORs from the destructive spruce bark beetle Ips typographus (Coleoptera, Curculionidae, Scolytinae) and analyze their antennal expression and phylogenetic relationships with ORs from other beetles. Using 68 biologically relevant test compounds, we next aimed to functionally characterize ecologically important ORs, using two systems for heterologous expression. Our final aim was to gain insight into the ligand-OR interaction of the functionally characterized ORs, using a combination of computational and experimental methods. RESULTS We annotated 73 ORs from an antennal transcriptome of I. typographus and report the functional characterization of two ORs (ItypOR46 and ItypOR49), which are responsive to single enantiomers of the common bark beetle pheromone compounds ipsenol and ipsdienol, respectively. Their responses and antennal expression correlate with the specificities, localizations, and/or abundances of olfactory sensory neurons detecting these enantiomers. We use homology modeling and molecular docking to predict their binding sites. Our models reveal a likely binding cleft lined with residues that previously have been shown to affect the responses of insect ORs. Within this cleft, the active ligands are predicted to specifically interact with residues Tyr84 and Thr205 in ItypOR46. The suggested importance of these residues in the activation by ipsenol is experimentally supported through site-directed mutagenesis and functional testing, and hydrogen bonding appears key in pheromone binding. CONCLUSIONS The emerging insight into ligand binding in the two characterized ItypORs has a general importance for our understanding of the molecular and functional evolution of the insect OR gene family. Due to the ecological importance of the characterized receptors and widespread use of ipsenol and ipsdienol in bark beetle chemical communication, these ORs should be evaluated for their potential use in pest control and biosensors to detect bark beetle infestations.
Collapse
Affiliation(s)
- Jothi K Yuvaraj
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | | | - Yonathan Sonntag
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-223 62, Lund, Sweden
| | - Xiao-Qing Hou
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - Ewald Grosse-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
- Present address: Faculty of Forestry & Wood Sci, Excellent Team for Mitigation, Czech University Life Sci Prague, Kamycka 129, Prague 6, 16521, Suchdol, Czech Republic
| | - Aleš Machara
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10, Prague 6, Czech Republic
| | - Dan-Dan Zhang
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Urban Johanson
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-223 62, Lund, Sweden
| | | | | |
Collapse
|
28
|
Yuvaraj JK, Roberts RE, Sonntag Y, Hou XQ, Grosse-Wilde E, Machara A, Zhang DD, Hansson BS, Johanson U, Löfstedt C, Andersson MN. Putative ligand binding sites of two functionally characterized bark beetle odorant receptors. BMC Biol 2021. [PMID: 33499862 DOI: 10.1101/2020.03.07.980797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
BACKGROUND Bark beetles are major pests of conifer forests, and their behavior is primarily mediated via olfaction. Targeting the odorant receptors (ORs) may thus provide avenues towards improved pest control. Such an approach requires information on the function of ORs and their interactions with ligands, which is also essential for understanding the functional evolution of these receptors. Hence, we aimed to identify a high-quality complement of ORs from the destructive spruce bark beetle Ips typographus (Coleoptera, Curculionidae, Scolytinae) and analyze their antennal expression and phylogenetic relationships with ORs from other beetles. Using 68 biologically relevant test compounds, we next aimed to functionally characterize ecologically important ORs, using two systems for heterologous expression. Our final aim was to gain insight into the ligand-OR interaction of the functionally characterized ORs, using a combination of computational and experimental methods. RESULTS We annotated 73 ORs from an antennal transcriptome of I. typographus and report the functional characterization of two ORs (ItypOR46 and ItypOR49), which are responsive to single enantiomers of the common bark beetle pheromone compounds ipsenol and ipsdienol, respectively. Their responses and antennal expression correlate with the specificities, localizations, and/or abundances of olfactory sensory neurons detecting these enantiomers. We use homology modeling and molecular docking to predict their binding sites. Our models reveal a likely binding cleft lined with residues that previously have been shown to affect the responses of insect ORs. Within this cleft, the active ligands are predicted to specifically interact with residues Tyr84 and Thr205 in ItypOR46. The suggested importance of these residues in the activation by ipsenol is experimentally supported through site-directed mutagenesis and functional testing, and hydrogen bonding appears key in pheromone binding. CONCLUSIONS The emerging insight into ligand binding in the two characterized ItypORs has a general importance for our understanding of the molecular and functional evolution of the insect OR gene family. Due to the ecological importance of the characterized receptors and widespread use of ipsenol and ipsdienol in bark beetle chemical communication, these ORs should be evaluated for their potential use in pest control and biosensors to detect bark beetle infestations.
Collapse
Affiliation(s)
- Jothi K Yuvaraj
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | | | - Yonathan Sonntag
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-223 62, Lund, Sweden
| | - Xiao-Qing Hou
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - Ewald Grosse-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
- Present address: Faculty of Forestry & Wood Sci, Excellent Team for Mitigation, Czech University Life Sci Prague, Kamycka 129, Prague 6, 16521, Suchdol, Czech Republic
| | - Aleš Machara
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10, Prague 6, Czech Republic
| | - Dan-Dan Zhang
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Urban Johanson
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-223 62, Lund, Sweden
| | | | | |
Collapse
|
29
|
Wicher D, Miazzi F. Functional properties of insect olfactory receptors: ionotropic receptors and odorant receptors. Cell Tissue Res 2021; 383:7-19. [PMID: 33502604 PMCID: PMC7873100 DOI: 10.1007/s00441-020-03363-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/19/2020] [Indexed: 10/27/2022]
Abstract
The majority of insect olfactory receptors belong to two distinct protein families, the ionotropic receptors (IRs), which are related to the ionotropic glutamate receptor family, and the odorant receptors (ORs), which evolved from the gustatory receptor family. Both receptor types assemble to heteromeric ligand-gated cation channels composed of odor-specific receptor proteins and co-receptor proteins. We here present in short the current view on evolution, function, and regulation of IRs and ORs. Special attention is given on how their functional properties can meet the environmental and ecological challenges an insect has to face.
Collapse
Affiliation(s)
- Dieter Wicher
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany.
| | - Fabio Miazzi
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| |
Collapse
|
30
|
Rodríguez-Torres M, Altuzar V, Mendoza-Barrera C, Beltrán-Pérez G, Castillo-Mixcóatl J, Muñoz-Aguirre S. Discrimination Improvement of a Gas Sensors' Array Using High-Frequency Quartz Crystal Microbalance Coated with Polymeric Films. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20236972. [PMID: 33291314 PMCID: PMC7730943 DOI: 10.3390/s20236972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
The discrimination improvement of an array of four highly sensitive 30 MHz gas quartz crystal microbalance (QCM) sensors was performed and compared to a similar system based on a 12-MHz QCM. The sensing polymeric films were ethyl cellulose (EC), poly-methyl methacrylate (PMMA), Apiezon L (ApL), and Apiezon T (ApT) and they were coated over the AT-cut QCM devices by the drop casting technique. All the sensors had almost the same film thickness (0.2 μm). The fabricated QCM sensor arrays were exposed to three different concentrations, corresponding to 5, 10, and 15 μL, of ethanol, ethyl acetate, and heptane vapors. The steady state sensor responses were measured in a static system at a temperature of 20 °C and relative humidity of 22%. Our results showed that the 30-MHz sensors have a higher sensitivity than 12-MHz ones (around 5.73 times), independently of the sensing film and measured sample. On the other hand, principal component analysis and discriminant analysis were performed using the raw data of the responses. An improvement of the classification percentage between 12 MHz and 30 MHz sensors was found. However, it was not sufficient, especially for low concentrations. Furthermore, using partition coefficient and discriminant analysis (DA), an improvement of 100% classification of the three samples was achieved for the case of the 30-MHz sensor array.
Collapse
|
31
|
Brito NF, Oliveira DS, Santos TC, Moreira MF, Melo ACA. Current and potential biotechnological applications of odorant-binding proteins. Appl Microbiol Biotechnol 2020; 104:8631-8648. [PMID: 32888038 DOI: 10.1007/s00253-020-10860-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
Odorant-binding proteins (OBPs) are small soluble proteins whose biological function is believed to be facilitating olfaction by assisting the transport of volatile chemicals in both vertebrate and insect sensory organs, where they are secreted. Their capability to interact with a broad range of hydrophobic compounds combined with interesting features such as being small, stable, and easy to produce and modify, makes them suitable targets for applied research in various industrial segments, including textile, cosmetic, pesticide, and pharmaceutical, as well as for military, environmental, health, and security field applications. In addition to reviewing already established biotechnological applications of OBPs, this paper also discusses their potential use in prospecting of new technologies. The development of new products for insect population management is currently the most prevailing use for OBPs, followed by biosensor technology, an area that has recently seen a significant increase in studies evaluating their incorporation into sensing devices. Finally, less typical approaches include applications in anchorage systems and analytical tools. KEY POINTS: • Odorant-binding proteins (OBPs) present desired characteristics for applied research. • OBPs are mainly used for developing new products for insect population control. • Incorporation of OBPs into chemosensory devices is a growing area of study. • Less conventional uses for OBPs include anchorage systems and analytical purposes. Graphical Abstract.
Collapse
Affiliation(s)
- Nathália F Brito
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Daniele S Oliveira
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Thaisa C Santos
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Monica F Moreira
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Claudia A Melo
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
32
|
Szunerits S, Boukherroub R, Vasilescu A. Electrochemical biosensing with odorant binding proteins. Methods Enzymol 2020; 642:345-369. [PMID: 32828260 DOI: 10.1016/bs.mie.2020.04.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The development of sensors that mimic the natural smell sensing mechanism and selectively recognizes the odorants remains highly challenging. Electrochemical based sensing approaches aiming at monitoring molecular recognition events between surface receptors and analytes in solution or in the gas phase, are one possible transduction platforms among others for the construction of an artificial nose. The principle of electrochemical detection lies on the shift of the potential/current during the recognition event, which is proportional to the concentration of the analyte, in our case the odorant. A tremendous amount of efforts has been put into making electrochemical sensors sensitive and selective to the analyte of interest through the use of nanomaterials, development of different detection schemes and application of innovative receptor ligands for selective detection of the analyte. There have been significant advances in electrochemical based odorant sensing by using odorant binding proteins (OBP) as surface receptors, small soluble proteins present in nasal mucus at millimolar concentrations where the hydrophobic binding pocket gives the ability to reversibly bind odorant molecules. As OBPs are robust and easy to produce receptors, they are good candidates for the design of biosensors. In this chapter, we focus on the progress made on the detection of odorant molecules using OBPs as a bioreceptor and electrochemistry as a transduction method.
Collapse
Affiliation(s)
- Sabine Szunerits
- University of Lille, CNRS, Centrale Lille, Université Polytechnique Hauts-de-France, UMR 8520-IEMN, Lille, France.
| | - Rabah Boukherroub
- University of Lille, CNRS, Centrale Lille, Université Polytechnique Hauts-de-France, UMR 8520-IEMN, Lille, France
| | | |
Collapse
|
33
|
Khadka R, Carraher C, Hamiaux C, Travas-Sejdic J, Kralicek A. Synergistic improvement in the performance of insect odorant receptor based biosensors in the presence of Orco. Biosens Bioelectron 2020; 153:112040. [DOI: 10.1016/j.bios.2020.112040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 11/30/2022]
|
34
|
Bio-Inspired Strategies for Improving the Selectivity and Sensitivity of Artificial Noses: A Review. SENSORS 2020; 20:s20061803. [PMID: 32214038 PMCID: PMC7146165 DOI: 10.3390/s20061803] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 12/20/2022]
Abstract
Artificial noses are broad-spectrum multisensors dedicated to the detection of volatile organic compounds (VOCs). Despite great recent progress, they still suffer from a lack of sensitivity and selectivity. We will review, in a systemic way, the biomimetic strategies for improving these performance criteria, including the design of sensing materials, their immobilization on the sensing surface, the sampling of VOCs, the choice of a transduction method, and the data processing. This reflection could help address new applications in domains where high-performance artificial noses are required such as public security and safety, environment, industry, or healthcare.
Collapse
|
35
|
The Emergence of Insect Odorant Receptor-Based Biosensors. BIOSENSORS-BASEL 2020; 10:bios10030026. [PMID: 32192133 PMCID: PMC7146604 DOI: 10.3390/bios10030026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/28/2022]
Abstract
The olfactory receptor neurons of insects and vertebrates are gated by odorant receptor (OR) proteins of which several members have been shown to exhibit remarkable sensitivity and selectivity towards volatile organic compounds of significant importance in the fields of medicine, agriculture and public health. Insect ORs offer intrinsic amplification where a single binding event is transduced into a measurable ionic current. Consequently, insect ORs have great potential as biorecognition elements in many sensor configurations. However, integrating these sensing components onto electronic transducers for the development of biosensors has been marginal due to several drawbacks, including their lipophilic nature, signal transduction mechanism and the limited number of known cognate receptor-ligand pairs. We review the current state of research in this emerging field and highlight the use of a group of indole-sensitive ORs (indolORs) from unexpected sources for the development of biosensors.
Collapse
|
36
|
Jodat YA, Kiaee K, Vela Jarquin D, De la Garza Hernández RL, Wang T, Joshi S, Rezaei Z, de Melo BAG, Ge D, Mannoor MS, Shin SR. A 3D-Printed Hybrid Nasal Cartilage with Functional Electronic Olfaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901878. [PMID: 32154068 PMCID: PMC7055567 DOI: 10.1002/advs.201901878] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/18/2019] [Indexed: 05/05/2023]
Abstract
Advances in biomanufacturing techniques have opened the doors to recapitulate human sensory organs such as the nose and ear in vitro with adequate levels of functionality. Such advancements have enabled simultaneous targeting of two challenges in engineered sensory organs, especially the nose: i) mechanically robust reconstruction of the nasal cartilage with high precision and ii) replication of the nose functionality: odor perception. Hybrid nasal organs can be equipped with remarkable capabilities such as augmented olfactory perception. Herein, a proof-of-concept for an odor-perceptive nose-like hybrid, which is composed of a mechanically robust cartilage-like construct and a biocompatible biosensing platform, is proposed. Specifically, 3D cartilage-like tissue constructs are created by multi-material 3D bioprinting using mechanically tunable chondrocyte-laden bioinks. In addition, by optimizing the composition of stiff and soft bioinks in macro-scale printed constructs, the competence of this system in providing improved viability and recapitulation of chondrocyte cell behavior in mechanically robust 3D constructs is demonstrated. Furthermore, the engineered cartilage-like tissue construct is integrated with an electrochemical biosensing system to bring functional olfactory sensations toward multiple specific airway disease biomarkers, explosives, and toxins under biocompatible conditions. Proposed hybrid constructs can lay the groundwork for functional bionic interfaces and humanoid cyborgs.
Collapse
Affiliation(s)
- Yasamin A. Jodat
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical SchoolBrigham and Women's HospitalCambridgeMA02139USA
- Department of Mechanical EngineeringStevens Institute of TechnologyHobokenNJ07030USA
| | - Kiavash Kiaee
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical SchoolBrigham and Women's HospitalCambridgeMA02139USA
- Department of Mechanical EngineeringStevens Institute of TechnologyHobokenNJ07030USA
| | - Daniel Vela Jarquin
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical SchoolBrigham and Women's HospitalCambridgeMA02139USA
- Instituto Tecnológico y de Estudios Superiores de MonterreyCalle del Puente #222 Col. Ejidos de Huipulco, Tlalpan C.P.14380MéxicoD.F.Mexico
| | - Rosakaren Ludivina De la Garza Hernández
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical SchoolBrigham and Women's HospitalCambridgeMA02139USA
- Instituto Tecnológico y de Estudios Superiores de MonterreyAv. Eugenio Garza Sada 2501 Sur, Tecnológico64849MonterreyN.L.Mexico
| | - Ting Wang
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical SchoolBrigham and Women's HospitalCambridgeMA02139USA
- School of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| | - Sudeep Joshi
- Department of Mechanical EngineeringStevens Institute of TechnologyHobokenNJ07030USA
| | - Zahra Rezaei
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical SchoolBrigham and Women's HospitalCambridgeMA02139USA
- Department of Chemical and Petroleum EngineeringSharif University of TechnologyAzadi Ave11365‐11155TehranIran
| | - Bruna Alice Gomes de Melo
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical SchoolBrigham and Women's HospitalCambridgeMA02139USA
- Department of Engineering of Materials and BioprocessesSchool of Chemical EngineeringUniversity of CampinasCampinasSão Paulo13083‐852Brazil
| | - David Ge
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical SchoolBrigham and Women's HospitalCambridgeMA02139USA
| | - Manu S. Mannoor
- Department of Mechanical EngineeringStevens Institute of TechnologyHobokenNJ07030USA
| | - Su Ryon Shin
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical SchoolBrigham and Women's HospitalCambridgeMA02139USA
| |
Collapse
|
37
|
Zhou J, Cheng K, Chen X, Yang R, Lu M, Ming L, Chen Y, Lin Z, Chen D. Determination of soluble CD44 in serum by using a label-free aptamer based electrochemical impedance biosensor. Analyst 2019; 145:460-465. [PMID: 31781712 DOI: 10.1039/c9an01764j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD44 is a promising biomarker in the diagnosis and prognosis of malignancies. The serum CD44 level is closely related to disease progression and metastasis of malignancies. It is of great clinical significance for the detection of serum soluble CD44. In this study, a facile, label-free aptamer based electrochemical impedance sensor for serum CD44 has been proposed. The aptamer showing high affinity to CD44 was immobilized on the gold electrodes through Au-S interaction. The interaction between target CD44 and the immobilized aptamer will cause a complex structure change of the aptamer, which makes the diffusion of [Fe(CN)6]3-/4- toward the electrode surface easy, thus resulting in the decrease of the impedance of the system. The decreased degree of the impedance had a good linear relationship with the logarithm of the CD44 concentration in the range of 0.1-1000 ng mL-1 with a detection limit of 0.087 ng mL-1 (S/N = 3). The developed biosensor has been applied to detect CD44 in serum samples with satisfactory results.
Collapse
Affiliation(s)
- Jie Zhou
- Department of central laboratory, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, China.
| | - Kai Cheng
- Department of central laboratory, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, China.
| | - Xuan Chen
- Kangda college of Nanjing medical university, Lianyungang, Jiangsu 222000, China
| | - Rui Yang
- Department of central laboratory, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, China.
| | - Mudan Lu
- Department of central laboratory, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, China.
| | - Lan Ming
- Department of central laboratory, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, China.
| | - Yu Chen
- Department of central laboratory, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, China.
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Daozhen Chen
- Department of central laboratory, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, China.
| |
Collapse
|
38
|
Devaraj H, Aw KC, McDaid AJ. Review of functional materials for potential use as wearable infection sensors in limb prostheses. Biomed Eng Lett 2019; 10:43-61. [PMID: 32175129 DOI: 10.1007/s13534-019-00132-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/30/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022] Open
Abstract
The fundamental goal of prosthesis is to achieve optimal levels of performance and enhance the quality of life of amputees. Socket type prostheses have been widely employed despite their known drawbacks. More recently, the advent of osseointegrated prostheses have demonstrated potential to be a better alternative to socket prosthesis eliminating most of the drawbacks of the latter. However, both socket and osseointegrated limb prostheses are prone to superficial infections during use. Infection prone skin lesions from frictional rubbing of the socket against the soft tissue are a known problem of socket type prosthesis. Osseointegration, on the other hand, results in an open wound at the implant-stump interface. The integration of infection sensors in prostheses to detect and prevent infections is proposed to enhance quality of life of amputees. Pathogenic volatiles having been identified to be a potent stimulus, this paper reviews the current techniques in the field of infection sensing, specifically focusing on identifying portable and flexible sensors with potential to be integrated into prosthesis designs. Various sensor architectures including but not limited to sensors fabricated from conducting polymers, carbon polymer composites, metal oxide semiconductors, metal organic frameworks, hydrogels and synthetic oligomers are reviewed. The challenges and their potential integration pathways that can enhance the possibilities of integrating these sensors into prosthesis designs are analysed.
Collapse
Affiliation(s)
- Harish Devaraj
- Department of Mechanical Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
| | - Kean C Aw
- Department of Mechanical Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
| | - Andrew J McDaid
- Department of Mechanical Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
39
|
Wasilewski T, Szulczyński B, Wojciechowski M, Kamysz W, Gębicki J. A Highly Selective Biosensor Based on Peptide Directly Derived from the HarmOBP7 Aldehyde Binding Site. SENSORS 2019; 19:s19194284. [PMID: 31623308 PMCID: PMC6806164 DOI: 10.3390/s19194284] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 01/15/2023]
Abstract
This paper presents the results of research on determining the optimal length of a peptide chain to effectively bind octanal molecules. Peptides that map the aldehyde binding site in HarmOBP7 were immobilized on piezoelectric transducers. Based on computational studies, four Odorant Binding Protein-derived Peptides (OBPPs) with different sequences were selected. Molecular modelling results of ligand docking with selected peptides were correlated with experimental results. The use of low-molecular synthetic peptides, instead of the whole protein, enabled the construction OBPPs-based biosensors. This work aims at developing a biomimetic piezoelectric OBPPs sensor for selective detection of octanal. Moreover, the research is concerned with the ligand binding affinity depending on different peptides’ chain lengths. The authors believe that the chain length can have a substantial influence on the type and effectiveness of peptide–ligand interaction. A confirmation of in silico investigation results is the correlation with the experimental results, which shows that the highest affinity to octanal is exhibited by the longest peptide (OBPP4 – KLLFDSLTDLKKKMSEC-NH2). We hypothesized that the binding of long chain aldehydes to the peptide, mimicking the binding site of HarmOBP7, induced a conformational change in the peptide deposited on a selected transducer. The constructed OBPP4-based biosensors were able to selectively bind octanal in the gas phase. It was also shown that the sensors were characterized by high selectivity with respect to octanal, as well as to acetaldehyde and benzaldehyde. The results indicate that the OBPP4 peptide, mimicking the binding domain in the Odorant Binding Protein, can provide new opportunities for the development of biomimicking materials in the field of odor biosensors.
Collapse
Affiliation(s)
- Tomasz Wasilewski
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdansk, Poland.
| | - Bartosz Szulczyński
- Department of Process Engineering and Chemical Technology, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Marek Wojciechowski
- Department of Pharmaceutical Technology and Biochemistry, Chemical Faculty, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdansk, Poland.
| | - Jacek Gębicki
- Department of Process Engineering and Chemical Technology, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
40
|
Murugathas T, Zheng HY, Colbert D, Kralicek AV, Carraher C, Plank NOV. Biosensing with Insect Odorant Receptor Nanodiscs and Carbon Nanotube Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9530-9538. [PMID: 30740970 DOI: 10.1021/acsami.8b19433] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Insect odorant receptors have been reconstituted into lipid nanodiscs and tethered to carbon nanotube field-effect transistors to function as a biosensor. Here, four different insect odorant receptors (ORs) from Drosophila melanogaster (DmelOR10a, DmelOR22a, DmelOR35a, and DmelOR71a) were expressed in Sf9 cells, purified, and reconstituted into lipid nanodiscs. We have demonstrated that each of these ORs produce a selective and highly sensitive electrical response to their respective positive ligands, methyl salicylate, methyl hexanoate, trans-2-hexen-1-al, and 4-ethylguaiacol, with limits of detection in the low femtomolar range. No detection was observed for each OR against control ligands, and empty nanodiscs showed no specific sensor signal for any of the odorant molecules. Our results are the first evidence that insect ORs can be integrated into lipid nanodiscs and used as primary sensing elements for bioelectronic nose technologies.
Collapse
Affiliation(s)
- Thanihaichelvan Murugathas
- School of Chemical and Physical Sciences , Victoria University of Wellington , Wellington 6021 , New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology , Wellington 6021 , New Zealand
- Department of Physics , University of Jaffna , Jaffna 40000 , Sri Lanka
| | - Han Yue Zheng
- School of Chemical and Physical Sciences , Victoria University of Wellington , Wellington 6021 , New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology , Wellington 6021 , New Zealand
| | - Damon Colbert
- The New Zealand Institute for Plant & Food Research Ltd. , Auckland 1142 , New Zealand
| | - Andrew V Kralicek
- The New Zealand Institute for Plant & Food Research Ltd. , Auckland 1142 , New Zealand
| | - Colm Carraher
- The New Zealand Institute for Plant & Food Research Ltd. , Auckland 1142 , New Zealand
| | - Natalie O V Plank
- School of Chemical and Physical Sciences , Victoria University of Wellington , Wellington 6021 , New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology , Wellington 6021 , New Zealand
| |
Collapse
|
41
|
Khadka R, Aydemir N, Carraher C, Hamiaux C, Baek P, Cheema J, Kralicek A, Travas‐Sejdic J. Investigating Electrochemical Stability and Reliability of Gold Electrode‐electrolyte Systems to Develop Bioelectronic Nose Using Insect Olfactory Receptor. ELECTROANAL 2019. [DOI: 10.1002/elan.201800733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Roshan Khadka
- Polymer Electronic Research Centre, School of Chemical SciencesUniversity of Auckland Auckland New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Kelburn Parade Wellington 6140 New Zealand
| | - Nihan Aydemir
- Polymer Electronic Research Centre, School of Chemical SciencesUniversity of Auckland Auckland New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Kelburn Parade Wellington 6140 New Zealand
| | - Colm Carraher
- The New Zealand Institute for Plant & Food Research Limited Private Bag 92169 Auckland 1142 New Zealand
| | - Cyril Hamiaux
- The New Zealand Institute for Plant & Food Research Limited Private Bag 92169 Auckland 1142 New Zealand
| | - Paul Baek
- Polymer Electronic Research Centre, School of Chemical SciencesUniversity of Auckland Auckland New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Kelburn Parade Wellington 6140 New Zealand
| | - Jamal Cheema
- Polymer Electronic Research Centre, School of Chemical SciencesUniversity of Auckland Auckland New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Kelburn Parade Wellington 6140 New Zealand
| | - Andrew Kralicek
- The New Zealand Institute for Plant & Food Research Limited Private Bag 92169 Auckland 1142 New Zealand
| | - Jadranka Travas‐Sejdic
- Polymer Electronic Research Centre, School of Chemical SciencesUniversity of Auckland Auckland New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Kelburn Parade Wellington 6140 New Zealand
| |
Collapse
|
42
|
Khadka R, Aydemir N, Carraher C, Hamiaux C, Colbert D, Cheema J, Malmström J, Kralicek A, Travas-Sejdic J. Data on preparation and characterization of an insect odorant receptor based biosensor. Data Brief 2018; 21:2142-2148. [PMID: 30533465 PMCID: PMC6265521 DOI: 10.1016/j.dib.2018.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 11/16/2022] Open
Abstract
Insect Odorant receptors (OrXs) can be used as the recognition element in a biosensor as they demonstrate high levels of sensitivity and selectivity towards volatile organic compounds. Herein, we describe a method to express and purify insect odorant receptors and reconstitute them into artificial lipid bilayers (liposomes). These OrX/liposomes were covalently attached to a gold surface and characterized using quartz crystal microbalance with dissipation monitoring (QCM-D). The interaction of OrX/liposomes immobilized on a gold surface to positive and negative odorants were studied by means of electrochemical impedance spectroscopy (EIS) and QCM-D. The data presented in this article are related to the research article titled "An ultrasensitive electrochemical impedance-based biosensor using insect odorant receptors to detect odorants" [1].
Collapse
Affiliation(s)
- Roshan Khadka
- Polymer Electronic Research Centre, School of Chemical Sciences, University of Auckland, Auckland 1023, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Nihan Aydemir
- Polymer Electronic Research Centre, School of Chemical Sciences, University of Auckland, Auckland 1023, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Colm Carraher
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Cyril Hamiaux
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Damon Colbert
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Jamal Cheema
- Polymer Electronic Research Centre, School of Chemical Sciences, University of Auckland, Auckland 1023, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Jenny Malmström
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand.,Department of Chemical and Materials Engineering, University of Auckland, Auckland 1023, New Zealand
| | - Andrew Kralicek
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Jadranka Travas-Sejdic
- Polymer Electronic Research Centre, School of Chemical Sciences, University of Auckland, Auckland 1023, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|