1
|
Zhang S, Shao H, Shi W, Li KB, You N, Han DM, Mo J. Asymmetric Nanopore Sensor for Logic Detection of Dam and M.SssI Methyltransferases in Combination of DNA Walker and Autocatalytic Hybridization Reaction. Anal Chem 2024; 96:16415-16424. [PMID: 39358840 DOI: 10.1021/acs.analchem.4c04092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The detection of DNA methyltransferase (MTase) was crucial for understanding gene expression regulation, cancer mechanisms, and various biological processes, contributing significantly to disease diagnosis and drug development. Herein, a nanopore sensor based on cascaded signal amplification of DNA walker and autocatalytic hybridization reaction (AHR) was developed for the ultrasensitive determination of various MTases. In the presence of Dam MTase, the hairpin structure HD underwent methylation and cleavage by DpnI endonuclease, forming T-DNA fragments. These T-DNA fragments were used to activate the DNA walker, which moved across the surface of magnetic beads step by step, generating a large quantity of initiator I by cleaving the substrate. The initiator I subsequently activated the AHR. The AHR included a hybridization chain reaction (HCR) amplifier and a catalytic hairpin assembly (CHA) convertor. The HCR amplifier generated multiple novel CHA triggers, which activated the CHA convertor. This, in turn, stimulated the HCR amplifier, creating an AHR circuit that resulted in the formation of numerous DNA nanowires. These DNA nanowires were adsorbed onto the G4-PAMAM-modified nanopore surface under the influence of an electric field, thereby altering the surface charge of the nanopore and changing the ionic rectification curve. The detection limit of the Dam MTase nanopore sensor reached 0.0002 U/mL. By modification of the recognition sites of the probes, this nanopore system could also be used for the detection of M.SssI MTase. Moreover, a four-input parallel concatenated logic circuit (AND//INHIBIT-OR) had been constructed and applied for the multivariate detection of Dam MTase and M.SssI MTase, presenting a novel conceptual model for advancing the construction of nanopore logic gate systems and their applications in biosensing.
Collapse
Affiliation(s)
- Siqi Zhang
- Department of Hepatobiliary, Taizhou Central Hospital, Taizhou University, Taizhou, Zhejiang 318000, China
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Taizhou 318000, Zhejiang, China
| | - Huahao Shao
- Zhijiang College of Zhejiang University of Technology, Shaoxing, Zhejiang 312000, China
| | - Wei Shi
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Taizhou 318000, Zhejiang, China
| | - Kai-Bin Li
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Taizhou 318000, Zhejiang, China
| | - Nan You
- College of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - De-Man Han
- Department of Hepatobiliary, Taizhou Central Hospital, Taizhou University, Taizhou, Zhejiang 318000, China
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Taizhou 318000, Zhejiang, China
| | - Jinggang Mo
- Department of Hepatobiliary, Taizhou Central Hospital, Taizhou University, Taizhou, Zhejiang 318000, China
| |
Collapse
|
2
|
Wang T, Tan HS, Wang AJ, Li SS, Feng JJ. Fluorescent metal nanoclusters: From luminescence mechanism to applications in enzyme activity assays. Biosens Bioelectron 2024; 257:116323. [PMID: 38669842 DOI: 10.1016/j.bios.2024.116323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Metal nanoclusters (MNCs) have outstanding fluorescence property and biocompatibility, which show widespread applications in biological analysis. Particularly, evaluation of enzyme activity with the fluorescent MNCs has been developed rapidly within the past several years. In this review, we first introduced the fluorescent mechanism of mono- and bi-metallic nanoclusters, respectively, whose interesting luminescence properties are mainly resulted from electron transfer between the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels. Meanwhile, the charge migration within the structure occurs through ligand-metal charge transfer (LMCT) or ligand-metal-metal charge transfer (LMMCT). On such foundation, diverse enzyme activities were rigorously evaluated, including three transferases and nine hydrolases, in turn harvesting rapid research progresses within past 5 years. Finally, we summarized the design strategies for evaluating enzyme activity with the MNCs, presented the major issues and challenges remained in the relevant research, coupled by showing some improvement measures. This review will attract researchers dedicated to the studies of the MNCs and provide some constructive insights for their further applications in enzyme analysis.
Collapse
Affiliation(s)
- Tong Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Hong-Sheng Tan
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
3
|
Gao MH, Yang XH, Tang JH, Zhou XM, Lei YM, Zhuo Y. Selective Activation of Cascade Assembly Amplification for DNA Methyltransferase Detection Using a Double-Loop Interlocked DNA Circuit. Anal Chem 2024. [PMID: 39024185 DOI: 10.1021/acs.analchem.4c02498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Precise and reliable monitoring of DNA adenine methyltransferase (Dam) activity is essential for disease diagnosis and biological analysis. However, existing techniques for detecting Dam activity often rely on specific DNA recognition probes that are susceptible to DNA degradation and exhibit limited target sensitivity and specificity. In this study, we designed and engineered a stable and dynamic DNA nanodevice called the double-loop interlocked DNA circuit (DOOR) that enables the sensitive and selective monitoring of Dam activity in complex biological environments. The DOOR incorporates two interlocked specialized sequences: a palindromic sequence for Dam identification and an initiator sequence for signal amplification. In the presence of Dam, the DOOR is cleaved by double-stranded DNA phosphodiesterase I endonuclease, generating massive double-stranded DNA (dsDNA) units. These units can self-assemble into a long dsDNA scaffold, thereby enhancing the subsequent reaction kinetics. The dsDNA scaffold further triggers a hyperbranched hybrid chain reaction to produce a fluorescent 3D DNA nanonet, enabling more precise monitoring of the Dam activity. The DOOR device exhibits excellent sensitivity, specificity, and stability, rendering it a powerful tool for studying DNA methylation in various biological processes and diseases.
Collapse
Affiliation(s)
- Mao-Hua Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xiao-Hong Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Ave, Beibei, Chongqing 400714, China
| | - Jia-Hao Tang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xue-Mei Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yan-Mei Lei
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing 400715, P. R. China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
4
|
Li Y, Meng S, Dong N, Wei Y, Wang Y, Ren Y, Li X, Liu D, You T. Wavelength-Resolved Janus Biosensing Interface for Ratiometric Electrochemical Analysis. Anal Chem 2024; 96:2582-2589. [PMID: 38294965 DOI: 10.1021/acs.analchem.3c05063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The Janus interface, comprising multiple functional heterointerfaces with contrasting functionalities within a single interface, has recently garnered widespread research interest. Herein, a Janus biosensing interface is obtained via wavelength-resolved laser illumination. Deoxyribonucleic acid bridges the electrochemical probe of methylene blue (MB) and plasmonic gold nanoparticles (AuNPs), achieving a sensitive detection performance. MB shows differential electrochemical signals under front (I532front) and back (I650back) laser illumination at 532 and 650 nm, respectively, owing to the selective wavelength-resolved effect. Thus, the presence of a wavelength-resolved laser enabled the design of a biosensing interface with Janus properties. The change in the distance between MB and AuNPs induced by aflatoxin B1 (AFB1) indicates that a sensitive response of the Janus biosensing interface can be achieved. A ratiometric strategy is introduced to describe the electrochemical signals of the I532front and I650back for improved robustness. The obtained linear range is 0.0005-50 ng mL-1, with a detection limit of 0.175 pg mL-1. Our study demonstrated that the wavelength-resolved Janus interface enables an electrochemical biosensor with excellent sensitivity. This finding provides an efficient approach for improving biosensor performance.
Collapse
Affiliation(s)
- Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Na Dong
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ya Wei
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuan Wang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yue Ren
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
5
|
Gao L, Zhou Y, Cao L, Cao Y, Zhang H, Zhang M, Yin H, Ai S. Photoelectrochemical sensor for histone deacetylase Sirt1 detection based on Z-scheme heterojunction of CuS-BiVO 4 photoactive material and the cyclic etching of MnO 2 by NADH. Talanta 2024; 268:125307. [PMID: 37866306 DOI: 10.1016/j.talanta.2023.125307] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
A novel photoelectrochemical (PEC) biosensor was constructed for histone deacetylase Sirt1 detection based on the Z-Scheme heterojunction of CuS-BiVO4 and reduced nicotinamide adenine dinucleotide (NADH) induced cyclic etching of MnO2 triggered by Sirt1 enzyme catalytic histone deacetylation event. Based on the Z-Scheme heterojunction, the photoactivity of the CuS-BiVO4 was improved greatly due to the highly effective separation of the photogenerated electron-hole pairs. In the presence of MnO2 nanosheets on the CuS-BiVO4/ITO electrode surface, the photocurrent decreased due to the inhibition effect of MnO2. However, this inhibition effect was eliminated by the incubation of MnO2/CuS-BiVO4/ITO with NADH, where NADH was produced in the deacetylation process of acetylated peptide catalyzed by Sirt1 with NAD+. The formed NADH etched MnO2, resulting in an increased photocurrent. In this process, NADH was oxidized to produce NAD+, which further involved the deacetylation process. Based on this cycle, the photocurrent of the biosensor was improved greatly and the sensitive and selective detection of Sirt1 was achieved. The biosensor presented a wide linear range from 0.005 to 10 nM with the low detection limit of 3.38 pM (S/N = 3). In addition, the applicability of the developed method was evaluated by investigating the effect of sodium butyrate and perfluorohexane sulfonate on Sirt1 activity.
Collapse
Affiliation(s)
- Lanlan Gao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China.
| | - Lulu Cao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - Yaoyuan Cao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - Haowei Zhang
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - Miao Zhang
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - Huanshun Yin
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| | - Shiyun Ai
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, China
| |
Collapse
|
6
|
Gao L, Zhou Y, Cao L, Hu Z, Mao X, Zhang H, Zhang M, Yin H, Ai S. NAD + mediated photoelectrochemical biosensor for histone deacetylase Sirt1 detection based on CuO-BiVO 4-AgNCs heterojunction and hybridization chain reaction amplification. Anal Chim Acta 2023; 1284:341989. [PMID: 37996156 DOI: 10.1016/j.aca.2023.341989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Histone deacetylate Sirt1 has been involved in many important biological processes and is closely related to the occurrence and development of many diseases. Therefore, the accurate detection of Sirt1 is of great significance for the diagnosis and treatment of diseases caused by Sirt1 and the development of related drugs. RESULTS In this work, a photoelectrochemical biosensor was developed for Sirt1 detection based on the NAD + mediated Sirt1 recognition and E. Coli DNA ligase activity. CuO-BiVO4p-n heterojunction was employed as the photoactive material, rolling circle amplification (RCA), hybridization chain reaction (HCR) and AgNCs were used as triple signal amplifications. As a bifunctional cofactor, NAD+ played a crucial role for Sirt1 detection, where the peptide deacetylation catalyzed by Sirt1 consumed NAD+, and the decreased amount of NAD + inhibited the activity of E. Coli DNA ligase, leading to the failure on RCA reaction, and improving the HCR reaction. Finally, AgNCs were generated using C-rich DNA as carrier. The surface plasmon effect of AgNCs and its heterojunction with CuO and BiVO4 accelerated the transfer rate of photogenerated carriers and improved the photocurrent signal. When the detection range was 0.001-200 nM, the detection limit of the biosensor was 0.76 pM (S/N = 3). SIGNIFICANCE The applicability of the method was evaluated by studying the effects of known inhibitors nicotinamide and environmental pollutant halogenated carbazole on Sirt1 enzyme activity. The results showed that this method can be used as a new platform for screening Sirt1 enzyme inhibitors, and also provided a new biomarker for evaluating the ecotoxicological effects of environmental pollutants.
Collapse
Affiliation(s)
- Lanlan Gao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China.
| | - Lulu Cao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Zhenyong Hu
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Xinyue Mao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Haowei Zhang
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Miao Zhang
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Huanshun Yin
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China.
| | - Shiyun Ai
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| |
Collapse
|
7
|
Guo X, Wang M. Recent progress in optical and electrochemical aptasensor technologies for detection of aflatoxin B1. Crit Rev Food Sci Nutr 2023; 64:13093-13111. [PMID: 37778392 DOI: 10.1080/10408398.2023.2260508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
AFB1 (Aflatoxin B1) contamination is becoming a global concern issue due to its extraordinary occurrence, severe toxicity, as well as the great influence on the economic losses, food safety and environment. Therefore, it is desirable to develop novel analytical techniques for simple, rapid, accurate, and even point-of-care testing of AFB1. Fortunately, aptamer, considered as a new generation bioreceptor and even superior to classic antibody and enzyme, has been emerged remarkable application in food hazards detection. Correspondingly, aptasensors have been well-established toward AFB1 determination with outstanding performance. In this article, we first discuss and summarize the recent progress in optical and electrochemical aptasensors to monitor AFB1 over the past three years. In particular, the embedding of advanced nanomaterials for their improved analytical performance is highlighted. Furthermore, the critical analysis on various signal transduction strategies for aptasensors construction is discussed. Finally, we reveal the challenges and provide our opinion in future opportunities for aptasensor development.
Collapse
Affiliation(s)
- Xiaodong Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Liu S, Su J, Xie X, Huang R, Li H, Luo R, Li J, Liu X, He J, Huang Y, Wu P. Detection of methyltransferase activity and inhibitor screening based on rGO-mediated silver enhancement signal amplification strategy. Anal Biochem 2023:115207. [PMID: 37290576 DOI: 10.1016/j.ab.2023.115207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/20/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
DNA methylation refers to the chemical modification process of obtaining a methyl group by the covalent bonding of a specific base in DNA sequence with S-adenosyl methionine (SAM) as a methyl donor under the catalysis of methyltransferase (MTase), which is related to the occurrence of multiple diseases. Therefore, the detection of MTase activity is of great significance for disease diagnosis and drug screening. Because reduced graphene oxide (rGO) has a unique planar structure and remarkable catalytic performance, it is not clear whether rGO can rapidly catalyze silver deposition as an effective way of signal amplification. However, in this study, we were pleasantly surprised to find that using H2O2 as a reducing agent, rGO can rapidly catalyze silver deposition, and its catalytic efficiency of silver deposition is significantly better than that of GO. Therefore, based on further verifying the mechanism of catalytic properties of rGO, we constructed a novel electrochemical biosensor (rGO/silver biosensor) for the detection of dam MTase activity, which has high selectivity and sensitivity to MTase in the range of 0.1 U/mL to 10.0 U/mL, and the detection limit is as low as 0.07 U/mL. Besides, this study also used Gentamicin and 5-Fluorouracil as inhibitor models, confirming that the biosensor has a good application prospect in the high-throughput screening of dam MTase inhibitors.
Collapse
Affiliation(s)
- Shuyan Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China; State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jing Su
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China; College of Chemistry & Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Xixiang Xie
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Rongping Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Haiping Li
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Ruiyu Luo
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jinghua Li
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
9
|
Ultrasensitive photoelectrochemical biosensor for DNA 5-methylcytosine analysis based on co-sensitization strategy combined with bridged DNA nanoprobe. Talanta 2023; 254:124140. [PMID: 36463802 DOI: 10.1016/j.talanta.2022.124140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Altered DNA methylation in the form of 5-methylcytosine (5-mC) patterns is correlated with disease diagnosis, prognosis, and treatment response. Therefore, accurate analysis of 5-mC is of great significance for the diagnosis of diseases. Here, an efficient enhanced photoelectrochemical (PEC) biosensor was designed for the quantitative analysis of DNA 5-mC based on a cascaded energy level aligned co-sensitization strategy coupling with the bridged DNA nanoprobe (BDN). Firstly, Au nanoparticle/graphite phase carbon nitride/titanium dioxide (AuNPs/g-C3N4@TiO2) nanocomposite was synthesized through in situ growth of AuNPs on g-C3N4@TiO2 surface as a matrix to provide a stable background signal. Next, BDN with a high mass transfer rate synthesized from a pair of DNA tetrahedral as nanomechanical handles was used as a capture probe to bind to the target sequence. The polydopamine nanosphere was applied to load with CdTe QDs (PDANS-CdTe QDs) as a photocurrent label of 5-mC antibodies. When the 5-mC existed, a large number of PDANS-Ab-CdTe QDs were introduced to the electrode surface, the formed CdTe QDs/AuNPs/g-C3N4@TiO2 co-sensitive structure could effectively enhance the electron transfer capability and photocurrent response rate due to the effective cascade energy level arrangement, leading to a significantly enhanced photocurrent signal. The proposed PEC biosensor manifested a wide range from 10-17 M to 10-7 M and a detection limit of 2.2 aM. Meanwhile, the excellent performance indicated the practicability of the designed strategy, thus being capable of the clinical diagnosis of 5-mC.
Collapse
|
10
|
Sun H, Zhou S, Liu Y, Lu P, Qi N, Wang G, Yang M, Huo D, Hou C. A fluorescent biosensor based on exponential amplification reaction-initiated CRISPR/Cas12a (EIC) strategy for ultrasensitive DNA methyltransferase detection. Anal Chim Acta 2023; 1239:340732. [PMID: 36628729 DOI: 10.1016/j.aca.2022.340732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
DNA methyltransferase (DNA MTase) catalyzes the process of DNA methylation, and the aberrant DNA MTase activity is closely associated with cancer incidence and progression. Inspired by the exponential amplification reaction (EXPAR) characteristics, we developed an EXPAR-initiated CRISPR/Cas12a (EIC) strategy for sensitively detecting DNA MTase activity. A hairpin probe (HP) was designed with a palindromic sequence in the stem as substrate and NH2-modified 3' end to prevent nonspecific amplification. HP could be methylated by DNA adenine methyltransferase (Dam MTase) and then digested by DpnI to generate an oligonucleotide that can serve as an EXPAR primer. With the assistance of Nt.BstNBI nicking enzyme and Vent(exo-) polymerase, this primer bound to template and induced EXPAR. Interestingly, the product of Cycle 1 in EXPAR can function as primer to initiate Cycle 2. Both EXPAR products can further activate the collateral cleavage of CRISPR/Cas12a-crRNA, resulting in the fragmentation of fluorescence reporters and fluorescence recovery. Due to the highly efficient amplification (about 5 times signal-to-noise of SDA) and the robust trans-cleavage of CRISPR/Cas12a, the EIC system owned an extreme limit of detection (LOD) of 2 × 10-4 U/mL and a broad detection range from 2 × 10-4 to 10 U/mL for Dam MTase. In addition, this method has succeeded in inhibitor screening and evaluation, showing magnificent promise in drug discovery and cancer therapy.
Collapse
Affiliation(s)
- Human Sun
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China.
| | - Shiying Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Yin Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Peng Lu
- Chongqing University Three Gorges Hospital, Chongqing, 404000, PR China
| | - Na Qi
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China; National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
11
|
Gao Q, Lu S, Wang Y, He L, Wang M, Jia R, Chen S, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Mao S, Ou X, Sun D, Tian B, Cheng A. Bacterial DNA methyltransferase: A key to the epigenetic world with lessons learned from proteobacteria. Front Microbiol 2023; 14:1129437. [PMID: 37032876 PMCID: PMC10073500 DOI: 10.3389/fmicb.2023.1129437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Epigenetics modulates expression levels of various important genes in both prokaryotes and eukaryotes. These epigenetic traits are heritable without any change in genetic DNA sequences. DNA methylation is a universal mechanism of epigenetic regulation in all kingdoms of life. In bacteria, DNA methylation is the main form of epigenetic regulation and plays important roles in affecting clinically relevant phenotypes, such as virulence, host colonization, sporulation, biofilm formation et al. In this review, we survey bacterial epigenomic studies and focus on the recent developments in the structure, function, and mechanism of several highly conserved bacterial DNA methylases. These methyltransferases are relatively common in bacteria and participate in the regulation of gene expression and chromosomal DNA replication and repair control. Recent advances in sequencing techniques capable of detecting methylation signals have enabled the characterization of genome-wide epigenetic regulation. With their involvement in critical cellular processes, these highly conserved DNA methyltransferases may emerge as promising targets for developing novel epigenetic inhibitors for biomedical applications.
Collapse
Affiliation(s)
- Qun Gao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Shuwei Lu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuwei Wang
- Key Laboratory of Livestock and Poultry Provenance Disease Research in Mianyang, Sichuan, China
| | - Longgui He
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Huang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sai Mao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xumin Ou
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Di Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bin Tian
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Li M, Cheng J, Zheng H, Shi J, Shen Q. Label-free homogeneous electrochemical sensing strategy for microRNA detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Recent progress in homogeneous electrochemical sensors and their designs and applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Hou T, Xu N, Song X, Yang L, Li F. Label-free homogeneous photoelectrochemical aptasensing of VEGF165 based on DNA-regulated peroxidase-mimetic activity of metal-organic-frameworks. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Li Y, Liu D, Meng S, Dong N, Liu C, Wei Y, You T. Signal-enhanced strategy for ratiometric aptasensing of aflatoxin B1: Plasmon-modulated competition between photoelectrochemistry-driven and electrochemistry-driven redox of methylene blue. Biosens Bioelectron 2022; 218:114759. [DOI: 10.1016/j.bios.2022.114759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/31/2022] [Accepted: 09/24/2022] [Indexed: 11/02/2022]
|
16
|
Liu Y, Wang C, Zhang C, Chen R, Liu B, Zhang K. Nonenzymatic Multiamplified Electrochemical Detection of Medulloblastoma-Relevant MicroRNAs from Cerebrospinal Fluid. ACS Sens 2022; 7:2320-2327. [PMID: 35925869 DOI: 10.1021/acssensors.2c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The sensitive analysis of microRNAs (miRNAs) in cerebrospinal fluid (CSF) holds promise for the minimally invasive early diagnosis of brain cancers such as pediatric medulloblastoma but remains challenging due partially to a lack of facile yet sensitive sensing methods. Herein, an enzyme-free triple-signal amplification electrochemical assay for miRNA was developed by integrating the target-triggered cyclic strand-displacement reaction (TCSDR), hybridization chain reaction (HCR), and methylene blue (MB) intercalation. In this assay, the presence of target miRNA (miR-9) initiated the TCSDR and produced primers that triggered the subsequent HCR amplification to generate copious double-stranded DNAs (dsDNAs) on the electrode surface. Intercalation of a large number of MB reporters into the long nicked double helixes of dsDNAs yielded a more enhanced signal of differential pulse voltammetry. The enzyme-free multiple-amplification approach allowed for highly sensitive (detection limit: 6.5 fM) and sequence-specific (single-base mismatch resolution) detection of miR-9 from tumor cells and human CSF with minimal sample consumption (10 μL). Moreover, the clinical utilization of this method was documented by accurate discrimination of five medulloblastoma patients from the nontumoral controls. In light of its sensitivity, specificity, and convenience of use, this electrochemical method was expected to facilitate the early detection of malignant brain tumors.
Collapse
Affiliation(s)
- Yujie Liu
- Shanghai Institute of Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chen Wang
- Department of Pediatric Neurosurgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chenran Zhang
- Department of Pediatric Neurosurgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ruoping Chen
- Department of Pediatric Neurosurgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Institutes of Biomedical Sciences Fudan University, Shanghai 200438, China
| | - Kun Zhang
- Shanghai Institute of Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
17
|
Chen T, Li Y, Meng S, Liu C, Liu D, Dong D, You T. Temperature and pH tolerance ratiometric aptasensor: Efficiently self-calibrating electrochemical detection of aflatoxin B1. Talanta 2022; 242:123280. [DOI: 10.1016/j.talanta.2022.123280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
|
18
|
Zhang S, Shi W, Li KB, Han DM, Xu JJ. Ultrasensitive and Label-Free Detection of Multiple DNA Methyltransferases by Asymmetric Nanopore Biosensor. Anal Chem 2022; 94:4407-4416. [PMID: 35234450 DOI: 10.1021/acs.analchem.1c05332] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA methylation is catalyzed by a family of DNA methyltransferases that play crucial roles in various biological processes. Therefore, an ultrasensitive methyltransferase assay is highly desirable in biomedical research and clinical diagnosis. However, conventional assays for the detection of DNA methyltransferase activity often involve radioactive labeling, costly equipment, and laborious operation. In this study, an ultrasensitive and label-free method for detecting DNA adenine methyltransferase (Dam) and CpG methyltransferase (M.SssI) was developed using the nanopore technique coupled with DNA cascade signal amplification reactions. A hairpin DNA (HD) comprising of the methylation-responsive sequences was skillfully designed. In the presence of Dam methyltransferase, the corresponding recognition site of hairpin HD was methylated and specifically cleaved by DpnI endonuclease, thus forming a DNA fragment that induces the catalytic hairpin assembly and hybridization chain reaction (CHA-HCR). The generated products could be absorbed onto the Zr4+-coated nanopore, resulting in an ion current rectification signal change. Considering the high sensitivity of the nanopore and excellent specificity toward the recognition of methyltransferase/endonuclease, our developed method could detect both Dam and M.SssI methyltransferases in the same sensing platform. Furthermore, the designed nanopore sensor could realize the multiplex detection of Dam and M.SssI methyltransferases after integration with the cascaded INHIBIT-AND logic gate. This ultrasensitive methyltransferase assay holds great promise in the field of cancer diagnosis.
Collapse
Affiliation(s)
- Siqi Zhang
- School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Wei Shi
- School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Kai-Bin Li
- School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - De-Man Han
- School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
19
|
Wang W, Zhang C, Guo J, Li G, Ye B, Zou L. Sensitive electrochemical detection of oxytetracycline based on target triggered CHA and poly adenine assisted probe immobilization. Anal Chim Acta 2021; 1181:338895. [PMID: 34556208 DOI: 10.1016/j.aca.2021.338895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/18/2023]
Abstract
Here, we developed a homogeneous electrochemical biosensor for the sensitive determination of antibiotic by the CHA reaction and the consecutive adenine mediated probe fixation. The binding of target to the target recognition sequences in the triple-helix DNA can release the trigger. It can initiate the catalytic hairpin assembly (CHA) to generate lots of mimic targets, which were labeled with electroactive substance ferrocene (Fc). Because the generated mimic target has consecutive sequence of adenines (PolyA), they can be self-assembled on the AuNPs modified electrode and finally realize electrochemical detection. Under optimal conditions, this developed biosensor achieved a satisfactory limit of detection of 0.089 nM (S/N = 3) and a linear range from 0.1 nM to 100 nM for sensitive detection of oxytetracycline with good specificity. The whole process is carried out in homogeneous solution, not only realizes signal amplification, but also avoids the complex modification process of electrode surface. Compared with some reported electrochemical sensors, the method is easier to operate and has good precision.
Collapse
Affiliation(s)
- Weihang Wang
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Chi Zhang
- Department of Orthopedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jiaxin Guo
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Gaiping Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Baoxian Ye
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Lina Zou
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
20
|
Cai Y, Zhang Y, Wang H, Lin X, Yu K, Li C, Jie G. Cyclometalated Iridium(III) Complex-Sensitized NiO-Based-Cathodic Photoelectrochemical Platform for DNA Methyltransferase Assay. ACS APPLIED BIO MATERIALS 2021; 4:6103-6111. [PMID: 35006914 DOI: 10.1021/acsabm.1c00445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This work reports an efficient [(C6)2Ir(dppz)]+PF6- (C6 = coumarin 6 and dppz = dipyridophenazine)-sensitized NiO photocathode and its application in photoelectrochemical (PEC) bioanalysis field for the first time. This dye-sensitized NiO photocathode was found to exhibit a markedly enhanced cathodic photocurrent. A sensitive cathodic PEC platform was proposed integrating the as-prepared photocathode with enzyme-free cascaded amplification strategies of the catalytic hairpin assembly (CHA) and the hybridization chain reaction (HCR) for DNA methyltransferase (MTase) assay. A hairpin DNA(HDam) with specific recognition site of Dam MTase in its stem was designed. The site of HDam was methylated in the presence of Dam MTase and then cut by endonuclease DpnI. The released loop fragment, as an initiator, triggered the CHA circuit and the follow-up HCR circuit, resulting in long dsDNA concatemers on the ITO electrode. Numerous [(C6)2Ir(dppz)]+PF6- were intercalated into dsDNA, and highly efficient signal amplification was realized. Benefiting from the superior iridium(III) complex-sensitized NiO photocathode and effective amplification strategy, a detection limit of 0.0028 U/mL for the determination of Dam MTase was achieved. Moreover, this work further demonstrated that these proposed tactics could be applied to screen Dam MTase activity inhibitors.
Collapse
Affiliation(s)
- Yueyuan Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yingtao Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Huan Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiaojia Lin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Kunpeng Yu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Chunxiang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
21
|
Chen ZP, Zhang HM, Yang P, Yuan R, Li Y, Liang WB. No-nonspecific recognition-based amplification strategy for endonuclease activity screening with dual-color DNA nano-clew. Biosens Bioelectron 2021; 190:113446. [PMID: 34166945 DOI: 10.1016/j.bios.2021.113446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
The inevitable nonspecific recognition severely restricted widely used nucleic acid amplification strategies, which has become an urgent problem in current scientific research. Herein, we developed a novel no-nonspecific recognition-based amplification strategy to construct dual-color dye loaded nano-clew as ultrabright illuminant for screening endonuclease activity with Escherichia coliRY13 I (EcoR I) as a model, which overcame some major drawbacks such as nonspecific recognition and photobleaching. Typically, the target endonuclease induces cleavage of the customized dumbbell-shape substrate (DSS) to generate two same triggers that can initiate the rolling circle amplification (RCA) to prepare long single-strand DNA (lssDNA), which could self-assemble into irregular DNA nano-clew based on the electrostatic interactions with Mg2+ to furtherly capture the donor and accepter fluorophore proximately, constructing the dye loaded nano-clew with dual-color fluorescence (FL) emission to resist photobleaching. Importantly, in absence of EcoR I, even if the DSS could combine with circular template a little, the reaction system performed hardly RCA reaction due to no cohesive terminus, resulting an extremely low background fluorescence signal because of the prevention of nonspecific RCA reaction. As expected, the proposed sensing platform with a low limit of detection (LOD) of 3.4 × 10-7 U/μL was demonstrated to work well for endonuclease inhibitors screening also. Furthermore, the proposed no-nonspecific recognition strategy could be readily extended to various DNA or RNA enzymes such as DNA methyltransferase, DNA repair-related enzymes and polynucleotide kinase just by simply changing the recognition sequence in the DNA substrate, performing great potential of endonucleases-related clinical diagnosis and drugs discovery.
Collapse
Affiliation(s)
- Zhao-Peng Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Hao-Min Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Peng Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yan Li
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China.
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
22
|
Zhang Q, Yang T, Zheng G, Gao H, Yan C, Zheng X, Zhou X, Shao Y. Characterization of intermolecular G-quadruplex formation over intramolecular G-triplex for DNA containing three G-tracts. Analyst 2021; 145:4254-4259. [PMID: 32478785 DOI: 10.1039/d0an00791a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
G-triplex (G3) has been recognized as a popular intermediate during the folding of G-quadruplex (G4). This has raised interest to anticipate the ultimate formation of G3 by shortening the G4-forming oligonucleotides with the remaining three G-tracts. Some G3 structures have been validated and their stability has been found to be affected by the loop sequences similar to G4s. In this work, however, we first found that an intermolecular parallel G4 structure was preferred in K+ for the oligonucleotide 5'-TGGGTAGGGCGGG-3' (DZ3) containing only three G-tracts. We screened auramine O (AO) as the appropriate fluorophore with a molecular rotor feature to target this G4 structure. AO bound with DZ3 in a 1 : 4 ratio, as confirmed by isothermal titration calorimetry experiments, suggesting the formation of a tetramolecular G4 structure (4erG4). The excimer emission from the labelled pyrene and the DNA melting behavior at various pHs in the presence of Ag+ proved the formation of the 4erG4 structure rather than the prevalent intramolecular G3 folding. This work demonstrates that one should be cautious while putatively predicting a G3 structure from an oligonucleotide containing three G-tracts.
Collapse
Affiliation(s)
- Qingqing Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| | - Tong Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| | - Guoxiang Zheng
- Undergraduate Teaching Department, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Heng Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| | - Chenxiao Yan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| | - Xiong Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| |
Collapse
|
23
|
A novel miniaturized homogeneous label-free electrochemical biosensing platform combining integrated microelectrode and functional nucleic acids. Anal Chim Acta 2021; 1158:338415. [PMID: 33863408 DOI: 10.1016/j.aca.2021.338415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
A miniaturized platform combining integrated microelectrode (IME) and functional nucleic acids was developed for homogeneous label-free electrochemical biosensing. IME was constructed with a carbon fiber microelectrode and a platinum wire in a θ type glass tube as a two-electrode system for electrochemical monitoring at microliter level. A newly reported G-triplex/methylene blue (G3/MB) complex was used as the signal generator in the homogeneous label-free electrochemical biosensor. G3 has strong affinity with MB and it can cause significant decrease of the diffusion current of MB after binding. Melamine was chosen as the model target. Since melamine can interact with nucleobase thymine (T) to form T-melamine-T structure through complementary hydrogen bonds, a single-strand functional DNA hairpin structure with poly T and G3 elaborately blocked via base pairing was designed. The presence of melamine can trigger the conformation switching of the DNA hairpin to release the G3. The released G3 combined with MB could therefore change the diffusion current, leading to a simple and rapid detection of melamine. The combination of functional DNA hairpin as target recognition element, G3/MB as signal generator, and IME as transducer provided a "Mix and Measure" miniaturized platform for the construction of homogeneous label-free electrochemical biosensors.
Collapse
|
24
|
Liu X, Zhao Y, Li F. Nucleic acid-functionalized metal-organic framework for ultrasensitive immobilization-free photoelectrochemical biosensing. Biosens Bioelectron 2021; 173:112832. [DOI: 10.1016/j.bios.2020.112832] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022]
|
25
|
Zhou Y, Yin H, Zhao WW, Ai S. Electrochemical, electrochemiluminescent and photoelectrochemical bioanalysis of epigenetic modifiers: A comprehensive review. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213519] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Yan XL, Xue XX, Deng XM, Jian YT, Luo J, Jiang MM, Zheng XJ. Chemiluminescence strategy induced by HRP-sandwich structure based on strand displacement for sensitive detection of DNA methyltransferase. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Photoelectrochemical immunosensor for methylated RNA detection based on WS 2 and poly(U) polymerase-triggered signal amplification. Mikrochim Acta 2020; 187:596. [PMID: 33033870 DOI: 10.1007/s00604-020-04572-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
A novel photoelectrochemical immunosensor has been constructed for the determination of methylated RNA. MoS2 nanosheets with large specific area were employed as photoactive material, gold nanoparticles were used as signal amplification unit and immobilization matrix of 4-mercaptophenylboronic acid, anti-m6A antibody was adopted as methylated RNA recognition reagent, and poly(U) polymerase-mediated RNA chain extension and Ru(NH3)63+ were used as assisted signal amplification unit. With the sensitization effect of Ru(NH3)63+, the photoactivity of WS2 nanosheets was improved greatly, which also improved the sensitivity. Using visible-light excitation and ascorbic acid as electron donor, the sensitive determination of methylated RNA was achieved by monitoring the photocurrent change with different concentrations of methylated RNA. This photoelectrochemical immunosensor has a wide linear relationship with methylated RNA concentration from 0.05 to 35 nM under optimal experimental conditions. The low detection limit of 14.5 pM was realized based on 3σ criterion. In addition to the good selectivity, this sensor also presents high reproducibility with a relative standard deviation of 1.4% for the photocurrent of seven electrodes. The applicability of the developed method was also investigated by detecting the level of methylated RNA in corn seedling leaves with and without sulfadiazine treatment. Graphical abstract A novel photoelectrochemical immunosensor was developed for methylated RNA detection using the photoactive material of MoS2 and poly(U) polymerase-mediated RNA chain extension.
Collapse
|
28
|
Chen X, Cao G, Wang X, Ji Z, Xu F, Huo D, Luo X, Hou C. Terminal deoxynucleotidyl transferase induced activators to unlock the trans-cleavage of CRISPR/Cpf 1 (TdT-IU- CRISPR/Cpf 1): An ultrasensitive biosensor for Dam MTase activity detection. Biosens Bioelectron 2020; 163:112271. [DOI: 10.1016/j.bios.2020.112271] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/13/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022]
|
29
|
Dadmehr M, Karimi MA, Korouzhdehi B. A signal-on fluorescence based biosensing platform for highly sensitive detection of DNA methyltransferase enzyme activity and inhibition. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117731. [PMID: 31753656 DOI: 10.1016/j.saa.2019.117731] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
DNA methylation mediated by DNA methyltransferase (MTase) enzyme is internal cell mechanism which regulate the expression or suppression of crucial genes involve in cancer early diagnosis. Herein, highly sensitive fluorescence biosensing platform was developed for monitoring of DNA Dam MTase enzyme activity and inhibition based on fluorescence signal on mechanism. The specific Au NP functionalized oligonucleotide probe with overhang end as a template for the synthesis of fluorescent silver nanoclusters (Ag NCs) was designed to provide the FRET occurrence. Following, methylation and cleavage processes by Dam MTAse and DpnI enzymes respectively at specific probe recognition site could resulted to release of AgNCs synthesizer DNA fragment and returned the platform to fluorescence signal-on state through interrupting in FRET. Subsequently, amplified fluorescence emission signals of Ag NCs showed increasing linear relationship with amount of Dam MTase enzyme at the range of 0.1-20 U/mL and the detection limit was estimated at 0.05 U/mL. Superior selectivity of experiment was illustrated among other tested MTase and restriction enzymes due to the specific recognition of MTase toward its substrate. Furthermore, the inhibition effect of applied Dam MTase drug inhibitors screened and evaluated with satisfactory results which would be helpful for discovery of antimicrobial drugs. The real sample assay also showed the applicability of proposed method in human serum condition. This novel strategy presented an efficient and cost effective platform for sensitive monitoring of DNA MTase activity and inhibition which illustrated its great potential for further application in medical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Mehdi Dadmehr
- Department of Biology, Payame Noor University, Tehran, Iran.
| | | | | |
Collapse
|
30
|
Gao X, Li X, Sun X, Zhang J, Zhao Y, Liu X, Li F. DNA Tetrahedra-Cross-linked Hydrogel Functionalized Paper for Onsite Analysis of DNA Methyltransferase Activity Using a Personal Glucose Meter. Anal Chem 2020; 92:4592-4599. [DOI: 10.1021/acs.analchem.0c00018] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xin Gao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Xiuyuan Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Xinzhi Sun
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Jingyan Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yuecan Zhao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Xiaojuan Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| |
Collapse
|
31
|
Meng L, Xiao K, Zhang X, Du C, Chen J. A novel signal-off photoelectrochemical biosensor for M.SssI MTase activity assay based on GQDs@ZIF-8 polyhedra as signal quencher. Biosens Bioelectron 2020; 150:111861. [DOI: 10.1016/j.bios.2019.111861] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 01/16/2023]
|
32
|
Song X, Hou T, Lu F, Wang Y, Liu J, Li F. Homogeneous photoelectrochemical biosensing via synergy of G-quadruplex/hemin catalysed reactions and the inner filter effect. Chem Commun (Camb) 2020; 56:1811-1814. [DOI: 10.1039/c9cc09280c] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We develop a label-free homogeneous photoelectrochemical biosensing strategy for microRNA quantification based on the synergy of G-quadruplex/hemin catalyzed electron donor consumption and the inner filter effect.
Collapse
Affiliation(s)
- Xin Song
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| | - Ting Hou
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| | - Fangfang Lu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| | - Yuze Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| | - Junjie Liu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| |
Collapse
|
33
|
Fu Y, Ding F, Chen J, Liu M, Zhang X, Du C, Si S. Label-free and near-zero-background-noise photoelectrochemical assay of methyltransferase activity based on a Bi2S3/Ti3C2 Schottky junction. Chem Commun (Camb) 2020; 56:5799-5802. [DOI: 10.1039/d0cc01835j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Based on Bi2S3/Ti3C2 nanosheets, a label-free photoelectrochemical sensing platform with near-zero background noise was developed for M.SssI methyltransferase activity assay.
Collapse
Affiliation(s)
- Yamin Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Feng Ding
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Mengyue Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Cuicui Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Shihui Si
- College of Chemistry and Chemical Engineering, Central South University
- Changsha 410083
- P. R. China
| |
Collapse
|
34
|
Du YC, Wang SY, Li XY, Wang YX, Tang AN, Kong DM. Terminal deoxynucleotidyl transferase-activated nicking enzyme amplification reaction for specific and sensitive detection of DNA methyltransferase and polynucleotide kinase. Biosens Bioelectron 2019; 145:111700. [DOI: 10.1016/j.bios.2019.111700] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/28/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022]
|
35
|
Li MJ, Wang HJ, Yuan R, Chai YQ. A zirconium-based metal-organic framework sensitized by thioflavin-T for sensitive photoelectrochemical detection of C-reactive protein. Chem Commun (Camb) 2019; 55:10772-10775. [PMID: 31432820 DOI: 10.1039/c9cc05086h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein, a novel photoelectrochemical (PEC) assay was developed for the sensitive detection of C-reactive protein (CRP) based on a zirconium-based metal-organic framework (PCN-777) as the photoelectric material and thioflavin-T (Th-T) as the effective signal sensitizer coupled with rolling circle amplification (RCA).
Collapse
Affiliation(s)
- Meng-Jie Li
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | | | | | | |
Collapse
|
36
|
Zhu MH, Mu XM, Deng HM, Zhong X, Yuan R, Yuan YL. Ultrasensitive photoelectrochemical biosensor for MiRNA-21 assay based on target-catalyzed hairpin assembly coupled with distance-controllable multiple signal amplification. Chem Commun (Camb) 2019; 55:9622-9625. [PMID: 31342017 DOI: 10.1039/c9cc04987h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Here, with the target-catalyzed hairpin assembly generated dsDNA (HP1-HP2) to synchronously control the departure of quencher ferrocene and approach of sensitizer methylene blue, a distance-controllable multiple signal amplification based photoelectrochemical biosensor was proposed for MiRNA-21 assay.
Collapse
Affiliation(s)
- Ming-Hui Zhu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Xiao-Mei Mu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Han-Mei Deng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Xia Zhong
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Ya-Li Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|