1
|
Rafiee Z, Rezaie M, Choi S. Rapid and sensitive antimicrobial susceptibility testing of biofilm-forming bacteria using scalable paper-based organic transistors. iScience 2025; 28:112312. [PMID: 40264793 PMCID: PMC12013490 DOI: 10.1016/j.isci.2025.112312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/24/2025] [Accepted: 03/25/2025] [Indexed: 04/24/2025] Open
Abstract
A scalable, cost-effective paper-based organic field-effect transistor platform has been developed for rapid antimicrobial susceptibility testing (AST) of biofilm-forming pathogens. Traditional AST methods are costly, labor-intensive, and slow, with a lack of standardized biofilm models. This system directly tracks protons generated by biofilms, which serve as key indicators of bacterial metabolism under antibiotic exposure. A proton-sensitive PEDOT:PSS channel is employed, where metabolic proton activity de-dopes the transistor, reducing conductivity. The engineered paper substrate facilitates rapid, high-quality biofilm formation, improving assay reliability. The platform was validated on three clinically significant pathogens against frontline antibiotics, providing real-time, quantitative antibiotic efficacy profiles. Integrated with a microcontroller and machine learning algorithm, results are displayed on a liquid crystal display (LCD), classifying antibiotic concentration relative to the minimum inhibitory concentration with over 85% accuracy. This clinically translatable system offers a high-throughput, point-of-care solution for efficient infection management and antibiotic stewardship.
Collapse
Affiliation(s)
- Zahra Rafiee
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Maryam Rezaie
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Seokheun Choi
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, NY 13902, USA
- Center for Research in Advanced Sensing Technologies & Environmental Sustainability, State University of New York at Binghamton, Binghamton, NY 13902, USA
| |
Collapse
|
2
|
Tokunou Y, Yamazaki T, Fujikawa T, Okamoto A. Decoding in-cell respiratory enzyme dynamics by label-free in situ electrochemistry. Proc Natl Acad Sci U S A 2025; 122:e2418926122. [PMID: 40117313 PMCID: PMC11962448 DOI: 10.1073/pnas.2418926122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/07/2025] [Indexed: 03/23/2025] Open
Abstract
Deciphering metabolic enzyme catalysis in living cells remains a formidable challenge due to the limitations of in vivo assays, which focus on enzymes isolated from respiration. This study introduces an innovative whole-cell electrochemical assay to reveal the Michaelis-Menten landscape of respiratory enzymes amid complex molecular interactions. We controlled the microbial current generation's rate-limiting step, extracting in vivo kinetic parameters (Km, Ki, and kcat) for the periplasmic nitrite (NrfA) and fumarate (FccA) reductases. Notably, while NrfA kinetics mirrored those of its purified form, FccA exhibited unique kinetic behavior. Further exploration using a mutant strain lacking CymA, a periplasmic hub protein, revealed its crucial role in modulating FccA's kinetics, challenging the prevailing view that molecular crowding is the main cause of discrepancies between in vivo and in vitro enzyme kinetics. This platform offers a groundbreaking approach to studying cellular respiratory enzymatic kinetics, paving the way for future research in bioenergetics and medicine.
Collapse
Affiliation(s)
- Yoshihide Tokunou
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki305-8572, Japan
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki305-0047, Japan
| | - Tomohiko Yamazaki
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki305-0047, Japan
- School of Life Science, Hokkaido University, Sapporo, Hokkaido060-0808, Japan
| | - Takashi Fujikawa
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki305-0047, Japan
| | - Akihiro Okamoto
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki305-8572, Japan
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki305-0047, Japan
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki305-0044, Japan
- School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido060-8628, Japan
- Research Center for Autonomous Systems Materialogy, Institute of Integrated Research, Institute of Science Tokyo (Science Tokyo), Yokohama, Kanagawa226-8503, Japan
| |
Collapse
|
3
|
Kongkaew S, Thipwimonmas Y, Hayeeabu M, Limbut W. Fabrication of a 96-electrode array using carbon dioxide laser ablation. Talanta 2024; 274:125912. [PMID: 38547843 DOI: 10.1016/j.talanta.2024.125912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 05/04/2024]
Abstract
The 96 laser-induced multigraphene electrode (96L-MGE) integrated microwell plate (96 L-MGE-MP) is described. Each cell includes separate working, auxiliary, and reference electrodes, and the array sits on a poly-methyl methacrylate (PMMA) well. The 96 electrochemical cells were fabricated by laser ablation of polyimide adhesive tape, which created laser-induced graphene electrodes (L-GE). The microwell was produced using laser ablation of the PMMA sheet as well. The morphology and electrochemical characterization of L-GE were controlled by tuning the laser processing. L-GE fabricated at laser power-laser speed ratios of 0.008-0.02 W s mm-1displayed good electrochemical behaviors. Under the optimal condition of L-GE fabrication, the measured L-GE surface roughness was 475.47 nm. The 96 L-MGE can be fabricated in 24.2 min and is compatible with various analytes. 10 benchmark redox compounds were shown as electrocatalytic examples. The performance of each analyte was investigated by voltammetry. As proof of concept, 96 L-MGE-MP was connected to a 96× connector for multichannel detection. The RSD of the 96 L-MGE-MPwas below 5.3%, which demonstrated good fabrication reproducibility.
Collapse
Affiliation(s)
- Supatinee Kongkaew
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Yudtapum Thipwimonmas
- Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Mareeyam Hayeeabu
- Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
4
|
Rafiee Z, Rezaie M, Choi S. Combined electrical-electrochemical phenotypic profiling of antibiotic susceptibility of in vitro biofilm models. Analyst 2024; 149:3224-3235. [PMID: 38686667 DOI: 10.1039/d4an00393d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
More than 65% of bacterial infections are caused by biofilms. However, standard biofilm susceptibility tests are not available for clinical use. All conventional biofilm models suffer from a long formation time and fail to mimic in vivo microbial biofilm conditions. Moreover, biofilms make it difficult to monitor the effectiveness of antibiotics. This work creates a powerful yet simple method to form a target biofilm and develops an innovative approach to monitoring the antibiotic's efficacy against a biofilm-associated infection. A paper-based culture platform can provide a new strategy for rapid microbial biofilm formation through capillary action. A combined electrical-electrochemical technique monitors bacterial metabolism rapidly and reliably by measuring microbial extracellular electron transfer (EET) and using electrochemical impedance spectroscopy (EIS) across a microbe-electrode interface. Three representative pathogens, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus, form their biofilms controllably within an hour. Within another hour their susceptibilities to three frontline antibiotics with different action modes (gentamicin, ciprofloxacin, and ceftazidime) are examined. Our antibiotic susceptibility testing (AST) technique provides a quantifiable minimum inhibitory concentration (MIC) of those antibiotics against the in vitro biofilm models and characterizes their action mechanisms. The results will have an important positive effect because they provide immediately actionable healthcare information at a reduced cost, revolutionizing public healthcare.
Collapse
Affiliation(s)
- Zahra Rafiee
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, New York, 13902, USA.
| | - Maryam Rezaie
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, New York, 13902, USA.
| | - Seokheun Choi
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, New York, 13902, USA.
- Center for Research in Advanced Sensing Technologies & Environmental Sustainability, State University of New York at Binghamton, Binghamton, New York, 13902, USA
| |
Collapse
|
5
|
Nguyen HTT, Le GTH, Park SG, Jadhav DA, Le TTQ, Kim H, Vinayak V, Lee G, Yoo K, Song YC, Chae KJ. Optimizing electrochemically active microorganisms as a key player in the bioelectrochemical system: Identification methods and pathways to large-scale implementation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169766. [PMID: 38181955 DOI: 10.1016/j.scitotenv.2023.169766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
The rapid global economic growth driven by industrialization and population expansion has resulted in significant issues, including reliance on fossil fuels, energy scarcity, water crises, and environmental emissions. To address these issues, bioelectrochemical systems (BES) have emerged as a dual-purpose solution, harnessing electrochemical processes and the capabilities of electrochemically active microorganisms (EAM) to simultaneously recover energy and treat wastewater. This review examines critical performance factors in BES, including inoculum selection, pretreatment methods, electrodes, and operational conditions. Further, authors explore innovative approaches to suppress methanogens and simultaneously enhance the EAM in mixed cultures. Additionally, advanced techniques for detecting EAM are discussed. The rapid detection of EAM facilitates the selection of suitable inoculum sources and optimization of enrichment strategies in BESs. This optimization is essential for facilitating the successful scaling up of BES applications, contributing substantially to the realization of clean energy and sustainable wastewater treatment. This analysis introduces a novel viewpoint by amalgamating contemporary research on the selective enrichment of EAM in mixed cultures. It encompasses identification and detection techniques, along with methodologies tailored for the selective enrichment of EAM, geared explicitly toward upscaling applications in BES.
Collapse
Affiliation(s)
- Ha T T Nguyen
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School (OST), Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Giang T H Le
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Sung-Gwan Park
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Dipak A Jadhav
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Trang T Q Le
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Hyunsu Kim
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Hari Singh Gour Central University, Sagar, MP 470003, India
| | - Gihan Lee
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Keunje Yoo
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Young-Chae Song
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| | - Kyu-Jung Chae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| |
Collapse
|
6
|
Song Y, Wang L, Xu T, Zhang G, Zhang X. Emerging open-channel droplet arrays for biosensing. Natl Sci Rev 2023; 10:nwad106. [PMID: 38027246 PMCID: PMC10662666 DOI: 10.1093/nsr/nwad106] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/01/2023] Open
Abstract
Open-channel droplet arrays have attracted much attention in the fields of biochemical analysis, biofluid monitoring, biomarker recognition and cell interactions, as they have advantages with regard to miniaturization, parallelization, high-throughput, simplicity and accessibility. Such droplet arrays not only improve the sensitivity and accuracy of a biosensor, but also do not require sophisticated equipment or tedious processes, showing great potential in next-generation miniaturized sensing platforms. This review summarizes typical examples of open-channel microdroplet arrays and focuses on diversified biosensing integrated with multiple signal-output approaches (fluorescence, colorimetric, surface-enhanced Raman scattering (SERS), electrochemical, etc.). The limitations and development prospects of open-channel droplet arrays in biosensing are also discussed with regard to the increasing demand for biosensors.
Collapse
Affiliation(s)
- Yongchao Song
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Lirong Wang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Guangyao Zhang
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
7
|
Rafiee Z, Choi S. All-electrical antibiotic susceptibility and resistance profiling of electrogenic Pseudomonas aeruginosa. Analyst 2023; 148:2501-2510. [PMID: 37184222 DOI: 10.1039/d3an00401e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
There is a pressing need for evidence-based, non-surgical therapy guidance for biofilm-based infections. Conventional phenotypic or genotypic or emerging antibiotic susceptibility testing (AST) techniques cannot provide clinically relevant guidelines and widely adaptable stewardship for effective biofilm treatment because they are mainly limited to planktonic bacteria and suffer from many technical and operational challenges. Here, we created an all-electrical, reliable, rapid AST device to monitor antibiotic efficacy in bacterial biofilms that can be practically translatable to clinical settings and industrial antibiotic developments. The electrons metabolically produced by a Pseudomonas aeruginosa biofilm provided a strong signal for monitoring bacterial growth and treatment efficacy while a 3-D paper-based culturing platform provided a new strategy for rapid biofilm formation through capillary action. When antibiotics are effective against the pathogenic biofilm, their metabolic activities are inhibited, decreasing their electron transfer reactions. The changes in electrical outputs can be measured to assess the treatment effectiveness against pathogenic biofilms. Within 100 minutes, our six-well AST device successfully distinguished antibiotic-susceptible and -resistant P. aeruginosa biofilms, provided a quantifiable minimum inhibitory concentration (MIC) of antibiotics, and characterized the bacterial antibiotic action mechanisms.
Collapse
Affiliation(s)
- Zahra Rafiee
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, New York, 13902, USA.
| | - Seokheun Choi
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, New York, 13902, USA.
- Center for Research in Advanced Sensing Technologies & Environmental Sustainability, State University of New York at Binghamton, Binghamton, New York, 13902, USA
| |
Collapse
|
8
|
Zhang B, Shi S, Tang R, Qiao C, Yang M, You Z, Shao S, Wu D, Yu H, Zhang J, Cao Y, Li F, Song H. Recent advances in enrichment, isolation, and bio-electrochemical activity evaluation of exoelectrogenic microorganisms. Biotechnol Adv 2023; 66:108175. [PMID: 37187358 DOI: 10.1016/j.biotechadv.2023.108175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
Exoelectrogenic microorganisms (EEMs) catalyzed the conversion of chemical energy to electrical energy via extracellular electron transfer (EET) mechanisms, which underlay diverse bio-electrochemical systems (BES) applications in clean energy development, environment and health monitoring, wearable/implantable devices powering, and sustainable chemicals production, thereby attracting increasing attentions from academic and industrial communities in the recent decades. However, knowledge of EEMs is still in its infancy as only ~100 EEMs of bacteria, archaea, and eukaryotes have been identified, motivating the screening and capture of new EEMs. This review presents a systematic summarization on EEM screening technologies in terms of enrichment, isolation, and bio-electrochemical activity evaluation. We first generalize the distribution characteristics of known EEMs, which provide a basis for EEM screening. Then, we summarize EET mechanisms and the principles underlying various technological approaches to the enrichment, isolation, and bio-electrochemical activity of EEMs, in which a comprehensive analysis of the applicability, accuracy, and efficiency of each technology is reviewed. Finally, we provide a future perspective on EEM screening and bio-electrochemical activity evaluation by focusing on (i) novel EET mechanisms for developing the next-generation EEM screening technologies, and (ii) integration of meta-omics approaches and bioinformatics analyses to explore nonculturable EEMs. This review promotes the development of advanced technologies to capture new EEMs.
Collapse
Affiliation(s)
- Baocai Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Sicheng Shi
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Rui Tang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chunxiao Qiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Meiyi Yang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zixuan You
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shulin Shao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Deguang Wu
- Department of Brewing Engineering, Moutai Institute, Luban Ave, Renhuai 564507, Guizhou, PR China
| | - Huan Yu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Junqi Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
9
|
Miran W, Huang W, Long X, Imamura G, Okamoto A. Multivariate landscapes constructed by Bayesian estimation over five hundred microbial electrochemical time profiles. PATTERNS (NEW YORK, N.Y.) 2022; 3:100610. [PMID: 36419444 PMCID: PMC9676538 DOI: 10.1016/j.patter.2022.100610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/24/2022] [Accepted: 09/21/2022] [Indexed: 11/07/2022]
Abstract
Data science emerges as a promising approach for studying and optimizing complex multivariable phenomena, such as the interaction between microorganisms and electrodes. However, there have been limited reports on a bioelectrochemical system that can produce a reliable database until date. Herein, we developed a high-throughput platform with low deviation to apply two-dimensional (2D) Bayesian estimation for electrode potential and redox-active additive concentration to optimize microbial current production (I c ). A 96-channel potentiostat represents <10% SD for maximum I c . 576 time-I c profiles were obtained in 120 different electrolyte and potentiostatic conditions with two model electrogenic bacteria, Shewanella and Geobacter. Acquisition functions showed the highest performance per concentration for riboflavin over a wide potential range in Shewanella. The underlying mechanism was validated by electrochemical analysis with mutant strains lacking outer-membrane redox enzymes. We anticipate that the combination of data science and high-throughput electrochemistry will greatly accelerate a breakthrough for bioelectrochemical technologies.
Collapse
Affiliation(s)
- Waheed Miran
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Wenyuan Huang
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Xizi Long
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Gaku Imamura
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Information Science and Technology, Osaka University, 1-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
10
|
Fei S, Ren H. Determining the Dose-Response Curve of Exoelectrogens: A Microscale Microbial Fuel Cell Biosensor for Water Toxicity Monitoring. MICROMACHINES 2022; 13:1560. [PMID: 36295913 PMCID: PMC9609928 DOI: 10.3390/mi13101560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
Nowadays, the development of real-time water quality monitoring sensors is critical. However, traditional water monitoring technologies, such as enzyme-linked immunosorbent assay (ELISA), liquid chromatography, mass spectroscopy, luminescence screening, surface plasma resonance (SPR), and analysis of living bioindicators, are either time consuming or require expensive equipment and special laboratories. Because of the low cost, self-sustainability, direct current output and real-time response, microbial fuel cells (MFCs) have been implemented as biosensors for water toxicity monitoring. In this paper, we report a microscale MFC biosensor to study the dose-response curve of exoelectrogen to toxic compounds in water. The microscale MFC biosensor has an anode chamber volume of 200 μL, which requires less sample consumption for water toxicity monitoring compared with macroscale or mesoscale MFC biosensors. For the first time, the MFC biosensor is exposed to a large formaldehyde concentration range of more than 3 orders of magnitudes, from a low concentration of 1 × 10-6 g/L to a high concentration of 3 × 10-3 g/L in water, while prior studies investigated limited formaldehyde concentration ranges, such as a small concentration range of 1 × 10-4 g/L to 2 × 10-3 g/L or only one high concentration of 0.1 g/L. As a result, for the first time, a sigmoid dose-response relationship of normalized dose-response versus formaldehyde concentration in water is observed, in agreement with traditional toxicology dose-response curve obtained by other measurement techniques. The biosensor has potential applications in determining dose-response curves for toxic compounds and detecting toxic compounds in water.
Collapse
|
11
|
Szydlowski L, Ehlich J, Szczerbiak P, Shibata N, Goryanin I. Novel species identification and deep functional annotation of electrogenic biofilms, selectively enriched in a microbial fuel cell array. Front Microbiol 2022; 13:951044. [PMID: 36188001 PMCID: PMC9517587 DOI: 10.3389/fmicb.2022.951044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, electrogenic microbial communities originating from a single source were multiplied using our custom-made, 96-well-plate-based microbial fuel cell (MFC) array. Developed communities operated under different pH conditions and produced currents up to 19.4 A/m3 (0.6 A/m2) within 2 days of inoculation. Microscopic observations [combined scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS)] revealed that some species present in the anodic biofilm adsorbed copper on their surface because of the bioleaching of the printed circuit board (PCB), yielding Cu2 + ions up to 600 mg/L. Beta- diversity indicates taxonomic divergence among all communities, but functional clustering is based on reactor pH. Annotated metagenomes showed the high presence of multicopper oxidases and Cu-resistance genes, as well as genes encoding aliphatic and aromatic hydrocarbon-degrading enzymes, corresponding to PCB bioleaching. Metagenome analysis revealed a high abundance of Dietzia spp., previously characterized in MFCs, which did not grow at pH 4. Binning metagenomes allowed us to identify novel species, one belonging to Actinotalea, not yet associated with electrogenicity and enriched only in the pH 7 anode. Furthermore, we identified 854 unique protein-coding genes in Actinotalea that lacked sequence homology with other metagenomes. The function of some genes was predicted with high accuracy through deep functional residue identification (DeepFRI), with several of these genes potentially related to electrogenic capacity. Our results demonstrate the feasibility of using MFC arrays for the enrichment of functional electrogenic microbial consortia and data mining for the comparative analysis of either consortia or their members.
Collapse
Affiliation(s)
- Lukasz Szydlowski
- Biological Systems Unit, Okinawa Institute of Science and Technology, Onna, Japan
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- *Correspondence: Lukasz Szydlowski,
| | - Jiri Ehlich
- Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| | - Pawel Szczerbiak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Noriko Shibata
- Biological Systems Unit, Okinawa Institute of Science and Technology, Onna, Japan
| | - Igor Goryanin
- Biological Systems Unit, Okinawa Institute of Science and Technology, Onna, Japan
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
- Tianjin Institute of Industrial Biotechnology, Tianjin, China
| |
Collapse
|
12
|
Accelerated antibiotic susceptibility testing of pseudomonas aeruginosa by monitoring extracellular electron transfer on a 3-D paper-based cell culture platform. Biosens Bioelectron 2022; 216:114604. [DOI: 10.1016/j.bios.2022.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022]
|
13
|
Borja-Maldonado F, López Zavala MÁ. Contribution of configurations, electrode and membrane materials, electron transfer mechanisms, and cost of components on the current and future development of microbial fuel cells. Heliyon 2022; 8:e09849. [PMID: 35855980 PMCID: PMC9287189 DOI: 10.1016/j.heliyon.2022.e09849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/01/2022] [Accepted: 06/28/2022] [Indexed: 10/25/2022] Open
Abstract
Microbial fuel cells (MFCs) are a technology that can be applied to both the wastewater treatment and bioenergy generation. This work discusses the contribution of improvements regarding the configurations, electrode materials, membrane materials, electron transfer mechanisms, and materials cost on the current and future development of MFCs. Analysis of the most recent scientific publications on the field denotes that dual-chamber MFCs configuration offers the greatest potential due to the excellent ability to be adapted to different operating environments. Carbon-based materials show the best performance, biocompatibility of carbon-brush anode favors the formation of the biofilm in a mixed consortium and in wastewater as a substrate resembles the conditions of real scenarios. Carbon-cloth cathode modified with nanotechnology favors the conductive properties of the electrode. Ceramic clay membranes emerge as an interesting low-cost membrane with a proton conductivity of 0.0817 S cm-1, close to that obtained with the Nafion membrane. The use of nanotechnology in the electrodes also enhances electron transfer in MFCs. It increases the active sites at the anode and improves the interface with microorganisms. At the cathode, it favors its catalytic properties and the oxygen reduction reaction. These features together favor MFCs performance through energy production and substrate degradation with values above 2.0 W m-2 and 90% respectively. All the recent advances in MFCs are gradually contributing to enable technological alternatives that, in addition to wastewater treatment, generate energy in a sustainable manner. It is important to continue the research efforts worldwide to make MFCs an available and affordable technology for industry and society.
Collapse
Affiliation(s)
- Fátima Borja-Maldonado
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, N.L., Mexico
| | - Miguel Ángel López Zavala
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, N.L., Mexico
| |
Collapse
|
14
|
Shruti S, Afreen J, Rutuja A, Yasmin M. Development of miniaturized agar based assays in 96-well microplates applicable to high-throughput screening of industrially valuable microorganisms. METHODS IN MICROBIOLOGY 2022; 199:106526. [PMID: 35738492 DOI: 10.1016/j.mimet.2022.106526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022]
Abstract
High-throughput screening (HTS) is a present-day approach for assaying thousands of cultures in parallel. This miniaturization allows rapid screening of large number of microorganims capable of producing bio-based materials thereby meeting the demands of the ever evolving food, pharmaceutical and cosmetic industry. In this study, agar-based assays for phosphate solubilization, cellulose degradation and lactic acid production were developed in 96-well microplates using Biomek FXP Automated Liquid Handling system. Techno-economic analysis from this study reveals the lower overall cost per assay using HTS as compared to conventional Petri plate assays. Though automated liquid handling workstations have been used to perform liquid-based assays, there are very few studies which report their use for agar-based microplate assays. These findings thus corroborate the establishment of rapid and efficient miniaturized, qualitative agar-based screening methods for identifying microorganisms with potential for commercial application.
Collapse
Affiliation(s)
- Sinha Shruti
- Praj-Matrix - R&D Centre (Division of Praj Industries Limited), 402/403/1098, Urawade, Pirangut, Mulshi, Pune 412 115, Maharashtra, India; Department of Technology, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, Maharashtra, India.
| | - Jikare Afreen
- Praj-Matrix - R&D Centre (Division of Praj Industries Limited), 402/403/1098, Urawade, Pirangut, Mulshi, Pune 412 115, Maharashtra, India
| | - Ankulkar Rutuja
- Praj-Matrix - R&D Centre (Division of Praj Industries Limited), 402/403/1098, Urawade, Pirangut, Mulshi, Pune 412 115, Maharashtra, India
| | - Mirza Yasmin
- Praj-Matrix - R&D Centre (Division of Praj Industries Limited), 402/403/1098, Urawade, Pirangut, Mulshi, Pune 412 115, Maharashtra, India
| |
Collapse
|
15
|
A sweat-activated, wearable microbial fuel cell for long-term, on-demand power generation. Biosens Bioelectron 2022; 205:114128. [DOI: 10.1016/j.bios.2022.114128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022]
|
16
|
Choi S. Electrogenic Bacteria Promise New Opportunities for Powering, Sensing, and Synthesizing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107902. [PMID: 35119203 DOI: 10.1002/smll.202107902] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Considerable research efforts into the promises of electrogenic bacteria and the commercial opportunities they present are attempting to identify potential feasible applications. Metabolic electrons from the bacteria enable electricity generation sufficient to power portable or small-scale applications, while the quantifiable electric signal in a miniaturized device platform can be sensitive enough to monitor and respond to changes in environmental conditions. Nanomaterials produced by the electrogenic bacteria can offer an innovative bottom-up biosynthetic approach to synergize bacterial electron transfer and create an effective coupling at the cell-electrode interface. Furthermore, electrogenic bacteria can revolutionize the field of bioelectronics by effectively interfacing electronics with microbes through extracellular electron transfer. Here, these new directions for the electrogenic bacteria and their recent integration with micro- and nanosystems are comprehensively discussed with specific attention toward distinct applications in the field of powering, sensing, and synthesizing. Furthermore, challenges of individual applications and strategies toward potential solutions are provided to offer valuable guidelines for practical implementation. Finally, the perspective and view on how the use of electrogenic bacteria can hold immeasurable promise for the development of future electronics and their applications are presented.
Collapse
Affiliation(s)
- Seokheun Choi
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, NY, 13902, USA
- Center for Research in Advanced Sensing Technologies & Environmental Sustainability, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| |
Collapse
|
17
|
Kuchenbuch A, Frank R, Ramos JV, Jahnke HG, Harnisch F. Electrochemical Microwell Plate to Study Electroactive Microorganisms in Parallel and Real-Time. Front Bioeng Biotechnol 2022; 9:821734. [PMID: 35242754 PMCID: PMC8887713 DOI: 10.3389/fbioe.2021.821734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/28/2021] [Indexed: 11/26/2022] Open
Abstract
Microbial resource mining of electroactive microorganism (EAM) is currently methodically hampered due to unavailable electrochemical screening tools. Here, we introduce an electrochemical microwell plate (ec-MP) composed of a 96 electrochemical deepwell plate and a recently developed 96-channel multipotentiostat. Using the ec-MP we investigated the electrochemical and metabolic properties of the EAM models Shewanella oneidensis and Geobacter sulfurreducens with acetate and lactate as electron donor combined with an individual genetic analysis of each well. Electrochemical cultivation of pure cultures achieved maximum current densities (j max) and coulombic efficiencies (CE) that were well in line with literature data. The co-cultivation of S. oneidensis and G. sulfurreducens led to an increased current density of j max of 88.57 ± 14.04 µA cm-2 (lactate) and j max of 99.36 ± 19.12 µA cm-2 (lactate and acetate). Further, a decreased time period of reaching j max and biphasic current production was revealed and the microbial electrochemical performance could be linked to the shift in the relative abundance.
Collapse
Affiliation(s)
- Anne Kuchenbuch
- Department of Environmental Microbiology, UFZ—Helmholtz-Centre for Environmental Research GmbH, Leipzig, Germany
| | - Ronny Frank
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, Leipzig, Germany
| | - José Vazquez Ramos
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, Leipzig, Germany
| | - Heinz-Georg Jahnke
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, Leipzig, Germany
| | - Falk Harnisch
- Department of Environmental Microbiology, UFZ—Helmholtz-Centre for Environmental Research GmbH, Leipzig, Germany
| |
Collapse
|
18
|
Dwivedi KA, Huang SJ, Wang CT, Kumar S. Fundamental understanding of microbial fuel cell technology: Recent development and challenges. CHEMOSPHERE 2022; 288:132446. [PMID: 34653488 DOI: 10.1016/j.chemosphere.2021.132446] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/07/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
The research on microbial fuel cells (MFCs) is rising tremendously but its commercialization is restricted by several microbiological, material, and economic constraints. Hence, a systematic assessment of the research articles published previously focusing on potential upcoming directions in this field is necessary. A detailed multi-perspective analysis of various techniques for enhancing the efficiency of MFC in terms of electric power production is presented in this paper. A brief discussion on the central aspects of different issues are preceded by an extensive analysis of the strategies that can be introduced to optimize power generation and reduce energy losses. Various applications of MFCs in a broad spectrum ranging from biomedical to underwater monitoring rather than electricity production and wastewater treatment are also presented followed by relevant possible case studies. Mathematical modeling is used to understand the concepts that cannot be understood experimentally. These methods relate electrode geometries to microbiological reactions occurring inside the MFC chamber, which explains the system's behavior and can be improved. Finally, directions for future research in the field of MFCs have been suggested. This article can be beneficial for engineers and researchers concerned about the challenges faced in the application of MFC.
Collapse
Affiliation(s)
- Kavya Arun Dwivedi
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Song-Jeng Huang
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chin-Tsan Wang
- Department of Mechanical and Electromechanical Engineering, National I Lan University, I Lan, 26047, Taiwan; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, India.
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India.
| |
Collapse
|
19
|
Liu M, Yang J, Wang J, Liu Z, Hu C. Light-Addressable Paper-Based Photoelectrochemical Analytical Device with Tunable Detection Throughput for On-Site Biosensing. Anal Chem 2022; 94:583-587. [DOI: 10.1021/acs.analchem.1c04907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Min Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Jia Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Juan Wang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhihong Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chengguo Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
20
|
Abel AJ, Hilzinger JM, Arkin AP, Clark DS. Systems-informed genome mining for electroautotrophic microbial production. Bioelectrochemistry 2022; 145:108054. [DOI: 10.1016/j.bioelechem.2022.108054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 01/09/2023]
|
21
|
Miran W, Naradasu D, Okamoto A. Pathogens electrogenicity as a tool for in-situ metabolic activity monitoring and drug assessment in biofilms. iScience 2021; 24:102068. [PMID: 33554070 PMCID: PMC7859304 DOI: 10.1016/j.isci.2021.102068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Concerns regarding increased antibiotic resistance arising from the emergent properties of biofilms have spurred interest in the discovery of novel antibiotic agents and techniques to directly estimate metabolic activity in biofilms. Although a number of methods have been developed to quantify biofilm formation, real-time quantitative assessment of metabolic activity in label-free biofilms remains a challenge. Production of electrical current via extracellular electron transport (EET) has recently been found in pathogens and appears to correlate with their metabolic activity. Accordingly, monitoring the production of electrical currents as an indicator of cellular metabolic activity in biofilms represents a new direction for research aiming to assess and screen the effects of antimicrobials on biofilm activity. In this article, we reviewed EET-capable pathogens and the methods to monitor biofilm activity to discuss advantages of using the capability of pathogens to produce electrical currents and effective combination of these methods. Moreover, we discussed EET mechanisms by pathogenic and environmental bacteria and open questions for the physiological roles of EET in pathogen's biofilm. The present limitations and possible future directions of in situ biofilm metabolic activity assessment for large-scale screening of antimicrobials are also discussed.
Collapse
Affiliation(s)
- Waheed Miran
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Divya Naradasu
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
22
|
Chen Y, Wang D, Liu Y, Gao G, Zhi J. Redox activity of single bacteria revealed by electrochemical collision technique. Biosens Bioelectron 2020; 176:112914. [PMID: 33353760 DOI: 10.1016/j.bios.2020.112914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022]
Abstract
This paper reports on an innovative strategy based on the electrochemical collision technique to quantify the redox activity of two bacterial species: the Gram-negative Escherichia coli and the Gram-positive Bacillus subtilis. Thionine (TH), as a redox mediator, was electrostatically adsorbed on bacterial surface and formed the bacterium-TH complexes. TH can receive electrons from bacterial metabolic pathways and be reduced. When a single bacterium-TH complex collides on the ultramicroelectrode, the reduced TH will be re-oxidized at certain potential and generate current spike. The frequency of the spikes is linearly proportional to the living bacteria concentration, and the redox activity of individual bacterium can be quantified by the charges enclosed in the current spike. The redox ability of Gram-negative E.coli to the TH mediator was 6.79 ± 0.26 × 10-18 mol per bacterial cell in 30 min, which is relatively more reactive than B. subtilis (3.52 ± 0.31 × 10-18 mol per cell). The spike signals, fitted by 3D COMSOL Multiphysics simulation, revealed that there is inherent redox ability difference of two bacterial strains besides the difference in bacterial size and collision position. This work successfully quantified the bacterial redox activity to mediator in single cells level, which is of great significance to improve understanding of heterogeneous electron transfer process and build foundations to the microorganism selection in the design of microbial electrochemical devices.
Collapse
Affiliation(s)
- Yafei Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yanran Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Guanyue Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jinfang Zhi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
23
|
Tahernia M, Plotkin-Kaye E, Mohammadifar M, Gao Y, Oefelein MR, Cook LC, Choi S. Characterization of Electrogenic Gut Bacteria. ACS OMEGA 2020; 5:29439-29446. [PMID: 33225175 PMCID: PMC7676329 DOI: 10.1021/acsomega.0c04362] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/29/2020] [Indexed: 05/13/2023]
Abstract
While electrogenic, or electricity-producing, Gram-negative bacteria predominantly found in anaerobic habitats have been intensively explored, the potential of Gram-positive microbial electrogenic capability residing in a similar anoxic environment has not been considered. Because Gram-positive bacteria contain a thick non-conductive cell wall, they were previously believed to be very weak exoelectrogens. However, with the recent discovery of electrogenicity by Gram-positive pathogens and elucidation of their electron-transfer pathways, significant and accelerated attention has been given to the discovery and characterization of these pathways in the members of gut microbiota. The discovery of electrogenic bacteria present in the human gut and the understanding of their electrogenic capacity opens up possibilities of bacterial powered implantable batteries and provide a novel biosensing platform to monitor human gastrointestinal health. In this work, we characterized microbial extracellular electron-transfer capabilities and capacities of five gut bacteria: Staphylococcus aureus, Enterococcus faecalis, Streptococcus agalactiae, Lactobacillus reuteri, and Lactobacillus rhamnosus. A 21-well paper-based microbial fuel cell array with enhanced sensitivity was developed as a powerful yet simple screening method to accurately and simultaneously characterize bacterial electrogenicity. S. aureus, E. faecalis, and S. agalactiae exhibited distinct electrogenic capabilities, and their power generations were comparable to that of the well-known Gram-negative exoelectrogen, Shewanella oneidensis. Importantly, this system was used to begin a large-scale transposon screen to examine the genes involved in electrogenicity by the human pathobiont S. aureus.
Collapse
Affiliation(s)
- Mehdi Tahernia
- Bioelectronics
& Microsystems Laboratory, Department of Electrical & Computer
Engineering, State University of New York-Binghamton, Binghamton, New York 13902-6000, United States
| | - Ellie Plotkin-Kaye
- Department
of Biological Science, State University
of New York-Binghamton, Binghamton, New York 13902-6000, United States
| | - Maedeh Mohammadifar
- Bioelectronics
& Microsystems Laboratory, Department of Electrical & Computer
Engineering, State University of New York-Binghamton, Binghamton, New York 13902-6000, United States
| | - Yang Gao
- Bioelectronics
& Microsystems Laboratory, Department of Electrical & Computer
Engineering, State University of New York-Binghamton, Binghamton, New York 13902-6000, United States
| | - Melissa R. Oefelein
- Department
of Biological Science, State University
of New York-Binghamton, Binghamton, New York 13902-6000, United States
| | - Laura C. Cook
- Department
of Biological Science, State University
of New York-Binghamton, Binghamton, New York 13902-6000, United States
| | - Seokheun Choi
- Bioelectronics
& Microsystems Laboratory, Department of Electrical & Computer
Engineering, State University of New York-Binghamton, Binghamton, New York 13902-6000, United States
| |
Collapse
|
24
|
Tahernia M, Mohammadifar M, Liu L, Choi S. A Disposable, Papertronic Three-Electrode Potentiostat for Monitoring Bacterial Electrochemical Activity. ACS OMEGA 2020; 5:24717-24723. [PMID: 33015489 PMCID: PMC7528304 DOI: 10.1021/acsomega.0c03299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/11/2020] [Indexed: 05/28/2023]
Abstract
Bacterial electrochemical activities can promote sustainable energy and environmental engineering applications. Characterizing their ability is critical for effectively adopting these technologies. Conventional studies of the electroactive bacteria are limited to insensitive, time-consuming, and labor-intensive two-electrode microbial fuel cell (MFC) techniques. Even the latest miniaturized MFC array is limited by irreproducibility and uncontrollability. In this work, we created a 4-well electrochemical sensing array with an integrated, custom-made three-electrode potentiostat to provide a controllable analytic capability without unwanted perturbations. A simple potentiostat circuit used two operational amplifiers and one resistor, allowing chronoamperometric and staircase voltammetric analyses of three well-known electroactive bacteria species: Shewanella oneidensis MR1, Pseudomonas aeruginosa PAO1, and Bacillus subtilis. Portability and disposability were emphasized by integrating all the functions into a paper substrate, which makes analyses possible at the point-of-use and in resource-limited settings without a bulky and expensive benchtop potentiostat. After use, the papertronic system was disposed of safely by incineration without posing any bacterial cytotoxic risks. This novel sensing platform creates an inexpensive, scalable, time-saving, high-performance, and user-friendly platform that facilitates the study of fundamental electrocatalytic activities of bacteria.
Collapse
|