1
|
Bruckschlegel C, Fleischmann V, Gajovic-Eichelmann N, Wongkaew N. Non-enzymatic electrochemical sensors for point-of-care testing: Current status, challenges, and future prospects. Talanta 2025; 291:127850. [PMID: 40049001 DOI: 10.1016/j.talanta.2025.127850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/30/2025] [Accepted: 02/26/2025] [Indexed: 03/24/2025]
Abstract
Current electrochemical sensors in point-of-care (POC) testing devices rely mainly on enzyme-based sensors owing to superior sensitivity and selectivity. Nevertheless, the poor stability, high reagent cost, complex fabrication methods and requirement of specific operational conditions make their adaptability in real-world applications unfavorable. Non-enzymatic electrochemical sensors are thus developed as they are more robust and cost-effective strategies. The advancement in material science and nanotechnology enables the development of novel non-enzymatic electrodes with favorable analytical performance. However, the developments are yet far from being adopted as viable products. This review therefore aims to gain insight into the field and evaluate the current progress and challenges to eventually propose future research directions. Here, fabrication strategies based on traditional and emerging technology are discussed in the light of analytical performance and cost-effectiveness. Moreover, the discussion is given on the pros and cons of non-enzymatic sensors when they are employed with various kinds of sample matrices, i.e., clinical and non-clinical samples, which must be taken into consideration for sensor development. Furthermore, molecular imprinting technology in tackling the selectivity issue is introduced and current progress is provided. Finally, the promising strategies from literature for solving the remaining challenges are included which could facilitate further development of robust POC testing devices based non-enzymatic sensors. We believe that once researchers and technology developers have reached the point where most problems are solved, the non-enzymatic sensors are going to be the robust choice for POC testing in clinical diagnostic, ensuring food safety, monitoring contaminants in environment, and bioprocess control.
Collapse
Affiliation(s)
- Christoph Bruckschlegel
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
| | - Vivien Fleischmann
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
| | - Nenad Gajovic-Eichelmann
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam, Germany
| | - Nongnoot Wongkaew
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany.
| |
Collapse
|
2
|
Kalkozova ZK, Gritsenko LV, Balgimbayeva UA, Gabdullin MT, Wen D, Abdullin KA. New cobalt hydroxycarbonate-based material for highly sensitive enzyme-free glucose sensors. Sci Rep 2025; 15:17154. [PMID: 40382361 DOI: 10.1038/s41598-025-01164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 05/05/2025] [Indexed: 05/20/2025] Open
Abstract
Health monitoring with glucose sensors is essential for preventing various diseases and maintaining overall well-being. Among the numerous analytical methods used to measure glucose levels, electrochemical enzyme-free methods show high practical potential. Developing new materials for highly sensitive and stable enzyme-free sensors is of significant importance. This study presents hydroxycarbonates as a new class of materials for creating enzyme-free glucose sensors and demonstrates, for the first time, that nanostructured cobalt hydroxycarbonate is a promising candidate for effective sensor applications. Prepared using a simple one-step hydrothermal method, this material exhibited a sensitivity of 1950 µA cm-2 mM-1 with a detection limit (LOD) of approximately 30 µM and a linear range up to 3 mM glucose. In addition, the sensitivity of the sensor synthesized in a 0.1 M cobalt nitrate solution was found to increase by more than 3 times up to 6745 µA cm-2 mM-1 when only 2 mol% of zinc nitrate was added to the growth solution containing cobalt nitrate and urea during synthesis. This adjustment also significantly affects the lattice vibration spectrum and material morphology, reducing the average nanoparticle size from 30 nm to 7-8 nm. The sensors demonstrated high long-term stability when stored under normal conditions. These results highlight the significant potential of the new sensor material for the quantitative detection of glucose.
Collapse
Affiliation(s)
- Zh K Kalkozova
- Institute of Applied Science & Information Technology, Shashkin Str. 40-48, 050040, Almaty, Kazakhstan
- National Nanotechnology Laboratory of Open Type of Al-Farabi Kazakh National University, Al-Farabi Ave., 71, 050040, Almaty, Kazakhstan
| | - L V Gritsenko
- Institute of Applied Science & Information Technology, Shashkin Str. 40-48, 050040, Almaty, Kazakhstan.
- Satbayev University, Satpaev St., 22, 050013, Almaty, Kazakhstan.
| | - U A Balgimbayeva
- Kazakh-British Technical University, Tole Bi Street, 59, 050000, Almaty, Kazakhstan
| | - M T Gabdullin
- Kazakh-British Technical University, Tole Bi Street, 59, 050000, Almaty, Kazakhstan
| | - Dan Wen
- School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, People's Republic of China
| | - Kh A Abdullin
- Institute of Applied Science & Information Technology, Shashkin Str. 40-48, 050040, Almaty, Kazakhstan.
- National Nanotechnology Laboratory of Open Type of Al-Farabi Kazakh National University, Al-Farabi Ave., 71, 050040, Almaty, Kazakhstan.
| |
Collapse
|
3
|
Gouyon J, Ehinger C, Brites Helu MA, Walcarius A. Electrochemical pH modulator coupled with Ni-based electrode for glucose sensing. Talanta 2025; 287:127596. [PMID: 39862520 DOI: 10.1016/j.talanta.2025.127596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/05/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
The non-enzymatic electrochemical detection of glucose by direct oxidation using electrodes modified with suitable electrocatalysts is now well-established. However, it most often requires highly alkaline media, limiting dramatically the use of such electrodes at neutral pH. This is notably the case of Ni-based electrodes. Here, we propose a new concept to overcome this limitation. It implies the use of an additional stainless-steel grid electrode positioned parallel and close (0.6 mm) to the working Ni-based electrode. In such configuration, applying a suitable cathodic potential (-1.2 V) to the grid enables the solvent reduction, generating OH- species that contribute to increasing the pH in the vicinity of the Ni-based electrode, thereby enabling effective electrochemical detection of glucose without the need for any alkaline additives in the medium. The present manuscript presents a proof-of-concept for the proposed approach based on a 3D-printed prototype. Under optimized conditions for both preparation of the nickel electrode (electrodeposition from 0.4 M NiCl2 for 120 s at a current density of -354 mA cm-2) and for the operation of the electrochemical pH modulator (at -1.2 V for 400 s), the amperometric detection of glucose at an applied potential of +0.55 V exhibited linearly over the concentration range from 0.1 to 1 mM, with a limit of detection estimated to 73 μM. The method offers promising perspectives for enzyme-less, non-invasive electrochemical detection of glucose in real media.
Collapse
Affiliation(s)
- Jérémie Gouyon
- Université de Lorraine, CNRS, Laboratoire de Chimie Physique et Microbiologie pour Les Matériaux et L'Environnement (LCPME), Nancy F-54000, France.
| | - Clara Ehinger
- Université de Lorraine, CNRS, Laboratoire de Chimie Physique et Microbiologie pour Les Matériaux et L'Environnement (LCPME), Nancy F-54000, France; Washington State University, School of Chemical Engineering and Bioengineering, 1505 Stadium Way, Pullman, WA, 99164-6515, USA
| | - Mariela Alicia Brites Helu
- Université de Lorraine, CNRS, Laboratoire de Chimie Physique et Microbiologie pour Les Matériaux et L'Environnement (LCPME), Nancy F-54000, France
| | - Alain Walcarius
- Université de Lorraine, CNRS, Laboratoire de Chimie Physique et Microbiologie pour Les Matériaux et L'Environnement (LCPME), Nancy F-54000, France
| |
Collapse
|
4
|
Liu J, Niu J, Wu W, Zhang Z, Ning Y, Zheng Q. Recent advances in the detection of microplastics in the aqueous environment by electrochemical sensors: A review. MARINE POLLUTION BULLETIN 2025; 214:117695. [PMID: 39987756 DOI: 10.1016/j.marpolbul.2025.117695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/14/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025]
Abstract
Microplastics (MPs), as an emerging contaminant, have become a serious threat to marine ecosystems due to their small size, widespread distribution and easy ingestion by organisms. Therefore, it is necessary to develop various analytical techniques to detect MPs in real water environment. Among these detection techniques, the advantages of electrochemical sensors, such as easy operation, high sensitivity and low cost, provide the possibility of online real-time detection of MPs in real water environment. The aim of this article is to analyze and compare the advantages and disadvantages of different MPs detection techniques. Compilation of various electrochemical sensors, we compiled various electrochemical sensors, evaluated the recent advances in carbon materials, metals and their oxides, biomass materials, composite materials, and microfluidic chips in electrochemical sensors for detecting MPs, and in-depth investigated their detection mechanisms and sensing performances, proposed hotspot nanomaterials for electrochemical sensors that could be used to detecting MPs and gave an outlook on the last years of electrochemical sensors in the area of microplastic detection. Finally, the challenges of electrochemical sensors for the detection of MPs are discussed and perspectives for this area are presented.
Collapse
Affiliation(s)
- Jinhui Liu
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China
| | - Jiaqi Niu
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China
| | - Wanqing Wu
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China; Engineering Technology Center for Ship Safety and Pollution Control, Liaoning Province, Dalian 116026, PR China.
| | - Ziyang Zhang
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China
| | - Ye Ning
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China
| | - Qinggong Zheng
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China; Engineering Technology Center for Ship Safety and Pollution Control, Liaoning Province, Dalian 116026, PR China
| |
Collapse
|
5
|
Hassanpour E, Nasehi M, Meymandinezhad A, Witthauer L. A low-power approach to optical glucose sensing via polarisation switching. Sci Rep 2025; 15:14200. [PMID: 40269078 PMCID: PMC12019186 DOI: 10.1038/s41598-025-99367-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025] Open
Abstract
High-precision polarimetry is crucial for sensing and imaging applications, particularly for glucose monitoring within the physiological range of 50 to 400 mg/dl. Traditional approaches often rely on polarisation modulation using magneto-optic or liquid crystal modulators, which require high voltages or currents, limiting their practicality for wearable or implantable devices. In this work, we propose a polarisation-switching technique that alternates between two discrete polarisation states, offering a low-power alternative with miniaturisation potential. Using this method, we achieved a Mean Absolute Relative Difference of 7.7% and a Standard Error of Prediction of 9.6 mg/dl across the physiological glucose range, comparable to commercial continuous glucose monitors. Our approach demonstrates a limit of detection of approximately 40 mg/dl, with measurements performed in phosphate-buffered saline spiked with glucose. This work establishes polarisation switching as a viable alternative for glucose sensing, providing a foundation for future development of wearable and implantable glucose monitoring systems. By eliminating power-intensive components, our approach addresses key limitations of traditional polarimetric methods, paving the way for more accessible and energy-efficient diabetes management technologies.
Collapse
Affiliation(s)
- Ehsan Hassanpour
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Diabetes Center Berne, Bern, Switzerland
| | - Mahsa Nasehi
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Diabetes Center Berne, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Amir Meymandinezhad
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Diabetes Center Berne, Bern, Switzerland
| | - Lilian Witthauer
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Diabetes Center Berne, Bern, Switzerland.
| |
Collapse
|
6
|
Zhu Z, Zhao Y, Ruan Y, Weng X, Milcovich G. Dendritic Gold Nanoparticles Loaded on 3D Graphene-like Surface and Layer-by-Layer Assembly for Enhanced Glucose Biosensing. BIOSENSORS 2025; 15:246. [PMID: 40277559 PMCID: PMC12024719 DOI: 10.3390/bios15040246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND/OBJECTIVES In this study, AuDNs/EPLE composite electrodes with hierarchical dendritic nanogold structures were fabricated using the in situ electrodeposition of gold nanoparticles through the i-t method. METHODS A conductive polymer composite membrane, PEDOT, was synthesized via the electropolymerization of EDOT and the negatively charged PSS-. The negatively charged SO3- groups on the surface of the PEDOT membrane were electrostatically adsorbed with the glucose oxidase (GOD) enzyme and a positively charged chitosan co-solution (GOD/chit+). Using a layer-by-layer self-assembly approach, GOD was incorporated into the multilayers of the composite electrode to create the composite GOD/chit+/PEDOT/AuDNs/EPLE. RESULTS Electrochemical analysis revealed a GOD surface coverage of 8.5 × 10-10 mol cm-2 and an electron transfer rate of 1.394 ± 0.02 s-1. The composite electrode exhibited a linear response to glucose in the concentration range of 6.923 × 10-2 mM to 1.54 mM, with an apparent Michaelis constant of 0.352 ± 0.02 mM. Furthermore, the GOD/chit+/PEDOT/AuDNs/EPLE also showed good accuracy of glucose determination in human serum samples. CONCLUSIONS These findings highlight the potential of the GOD/chit+/PEDOT/AuDNs/EPLE composite electrode in the development of efficient enzymatic biofuel cells for glucose sensing and energy harvesting applications.
Collapse
Affiliation(s)
- Zifeng Zhu
- College of Chemistry and Materials Science, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China; (Z.Z.); (Y.Z.)
| | - Yiming Zhao
- College of Chemistry and Materials Science, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China; (Z.Z.); (Y.Z.)
| | - Yongming Ruan
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China;
| | - Xuexiang Weng
- College of Chemistry and Materials Science, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China; (Z.Z.); (Y.Z.)
| | - Gesmi Milcovich
- Department of Life Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| |
Collapse
|
7
|
Yan M, Xiong C, Han X, Xue Z, Wu Y. Single-atom catalysts enabled electrochemical sensing for glucose. Biosens Bioelectron 2025; 273:117144. [PMID: 39827745 DOI: 10.1016/j.bios.2025.117144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Accurate and rapid monitoring of the glucose concentration in blood is essential for the prevention and treatment of diabetes. However, existing glucose sensors still have room for improvement in terms of sensitivity, selectivity, and stability. Benefiting from the fully exposed metal sites and uniform coordination environment, single-atom catalysts (SACs) have exhibited unique electrochemical sensing performances and received extensive attention in blood glucose detection. A growing number of researches have focused on the close connection between structural regulation of SACs and high efficiency glucose sensing. In this review, we start from the development of sensing devices, function materials related to glucose detection and electrochemical glucose sensing mechanisms. Then, the superiorities of SACs and a variety of SACs-based glucose sensors are proposed. The interact models between the single-atom active species and the reactants (including enzymatic and non-enzymatic environment) will be highlighted. Finally, the precise and large-scale synthesis, followed by the exploration of sensing mechanism, and concluding with opportunities and challenges of SACs in electrochemical glucose detection are outlined.
Collapse
Affiliation(s)
- Muyu Yan
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Can Xiong
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xiao Han
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Zhenggang Xue
- NEST Laboratory, Department of Physics, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China.
| | - Yuen Wu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China; Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, 230026, China; Key Laboratory of Precision and Intelligent Chemistry/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
8
|
Verkhovnikova EN, Timoshenko RV, Vaneev AN, Tikhonova TN, Fadeev VV, Gorelkin PV, Erofeev AS. Recent advances in development of glucose nanosensors for cellular analysis and other applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1949-1961. [PMID: 39962963 DOI: 10.1039/d4ay02235a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Diabetes mellitus is a disease that affects a large number of people around the world. There are no effective methods to completely cure diabetes, and patients have to constantly monitor their blood sugar levels, so there is still a need for improved sensors. In addition to diabetes, quantitative values of glucose levels affect the development of some endocrine diseases and problems with nervous tissue. In this review, we will describe existing developments, the principles of glucose measurement, sensor designs, the materials they are made of, and how nanotechnology is improving the sensors under development by increasing sensitivity and surface area and improving catalytic properties.
Collapse
Affiliation(s)
- Ekaterina N Verkhovnikova
- Research Laboratory of Biophysics, National University of Science and Technology "MISiS", 119049 Moscow, Russia.
| | - Roman V Timoshenko
- Research Laboratory of Biophysics, National University of Science and Technology "MISiS", 119049 Moscow, Russia.
| | - Alexander N Vaneev
- Research Laboratory of Biophysics, National University of Science and Technology "MISiS", 119049 Moscow, Russia.
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Tatiana N Tikhonova
- Department of Physics, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Victor V Fadeev
- Department of Physics, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Peter V Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology "MISiS", 119049 Moscow, Russia.
| | - Alexander S Erofeev
- Research Laboratory of Biophysics, National University of Science and Technology "MISiS", 119049 Moscow, Russia.
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
9
|
Ju Z, Wang M, Chen Y, Wang Z, Yang M, Meng F, Lv R. An Optoelectronic Sensing Real-Time Glucose Detection Film Using Photonic Crystal Enhanced Rare Earth Fluorescence and Additive Manufacturing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409725. [PMID: 39744761 DOI: 10.1002/smll.202409725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/29/2024] [Indexed: 02/26/2025]
Abstract
In this research, a novel detection method employing rare-earth upconversion nanoparticle (UCNP) as the core, coated with MnO2 nanosheets is designed, which formed a color and fluorescence dual-responsive UCNP composite material, MnO2-modified NaYF4:Yb,Tm@NaYF4. By enabling both colorimetric and fluorescence methods simultaneously, this composite material allows for the detection of glucose concentration under different conditions, while exhibiting strong resistance to environmental interference, chemical stability, and accuracy. To further enhance the sensitivity of the detection method, a photonic crystals (PCs)-PDMS array where polymethyl methacrylate PCs are deposited onto a substrate composed of PDMS-glass slice with hydrophobic surfaces is developed. This array can serve as a substrate that specifically reflected blue light while allowing other colors of light to pass through, which effectively reduced background signal interference and improved detection sensitivity (1.2 µm) with a wider linear range (20-800 µm). Finally, a portable fluorescence intensity detection device is designed to enhance the portability of the platform. Numerous experimental results demonstrated that this research significantly improved the sensitivity of glucose detection, providing new research directions for the field of fluid biomarker detectio.
Collapse
Affiliation(s)
- Ziyue Ju
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, School of Mechano-Electronic Engineering, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Min Wang
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, School of Mechano-Electronic Engineering, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Yitong Chen
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, School of Mechano-Electronic Engineering, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Ziqi Wang
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, School of Mechano-Electronic Engineering, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Mingming Yang
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, School of Mechano-Electronic Engineering, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Fanbo Meng
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, School of Mechano-Electronic Engineering, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Ruichan Lv
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, School of Mechano-Electronic Engineering, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| |
Collapse
|
10
|
Song R, Cho S, Khan S, Park I, Gao W. Lighting the Path to Precision Healthcare: Advances and Applications of Wearable Photonic Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2419161. [PMID: 39865847 DOI: 10.1002/adma.202419161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/13/2025] [Indexed: 01/28/2025]
Abstract
Recent advancements in wearable photonic sensors have marked a transformative era in healthcare, enabling non-invasive, real-time, portable, and personalized medical monitoring. These sensors leverage the unique properties of light toward high-performance sensing in form factors optimized for real-world use. Their ability to offer solutions to a broad spectrum of medical challenges - from routine health monitoring to managing chronic conditions, inspires a rapidly growing translational market. This review explores the design and development of wearable photonic sensors toward various healthcare applications. The photonic sensing strategies that power these technologies are first presented, alongside a discussion of the factors that define optimal use-cases for each approach. The means by which these mechanisms are integrated into wearable formats are then discussed, with considerations toward material selection for comfort and functionality, component fabrication, and power management. Recent developments in the space are detailed, accounting for both physical and chemical stimuli detection through various non-invasive biofluids. Finally, a comprehensive situational overview identifies critical challenges toward translation, alongside promising solutions. Associated future outlooks detail emerging trends and mechanisms that stand to enable the integration of these technologies into mainstream healthcare practice, toward advancing personalized medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Ruihao Song
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Seokjoo Cho
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Shadman Khan
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
11
|
Huang X, Liang B, Huang S, Liu Z, Yao C, Zheng S, Zhang T, Liu Z, Wang Y, Wu Y, Yang J, Liu J, Chen HJ, Xie X. Vertical Graphene-Based Multiparametric Sensing Array for Integration of Smart Catheter to Electrochemically Monitor Peritoneal Dialysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412302. [PMID: 39568287 DOI: 10.1002/adma.202412302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/10/2024] [Indexed: 11/22/2024]
Abstract
Renal failure is typical chronic kidney disease that required peritoneal dialysis as the primary treatment, but current catheter devices lack functionality to monitor changes in chemical analytes during peritoneal dialysis. Fabrication of miniatured sensing modules with good electrochemical performance in tiny catheter devices is the key to realize the smart monitoring of peritoneal dialysis. In this work, a vertical graphene-based multiparametric sensing array (VG-MSA) is developed to continuously measure fluctuations of various analyte concentrations for peritoneal dialysis monitoring. Vertical graphene (VG) electrode with good electrochemical properties serves as the core module in VG-MSA, allowing the development of miniatured sensing modules with sufficient electrochemical performance. The VG-MSA enables sensitive and multiplexed measurement of dialysate components like metabolites (reactive oxygen species, uric acid, and glucose) and ions (K+, Ca2+, and H+). The VG-MSA is demonstrated to effectively detect biochemical signals in peritoneal dialysate in vivo on rat models. The VG-MSA catheter can be inserted into abdominal cavity, allowing full contact with dialysate for in situ, real-time, and continuous collection of biochemical information during peritoneal dialysis. The VG-MSA catheter device offers a valuable tool for monitoring dialysis quality and facilitating treatment adjustments, potentially as a promising platform for high-quality therapy of renal failure.
Collapse
Affiliation(s)
- Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Baoming Liang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shuang Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chuanjie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shantao Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Tao Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhibo Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yunuo Wang
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| | - Jingbo Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jing Liu
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
12
|
Yadav S, Bukke SPN, Prajapati S, Singh AP, Chettupalli AK, Nicholas B. Nanobiosensors in neurodegenerative disease diagnosis: A promising pathway for early detection. Digit Health 2025; 11:20552076251342457. [PMID: 40376568 PMCID: PMC12078979 DOI: 10.1177/20552076251342457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/28/2025] [Indexed: 05/18/2025] Open
Abstract
Neurodegenerative diseases, including Alzheimer's and Parkinson's, are characterized by progressive neuronal loss, leading to cognitive and motor impairments. Early diagnosis remains a challenge due to the slow progression of symptoms and the limitations of current diagnostic methods. Nanobiosensors, leveraging the high sensitivity and specificity of nanotechnology, offer a promising, noninvasive, and cost-effective approach for detecting disease biomarkers at ultra-low concentrations. This review highlights recent advancements in nanobiosensor technology, including the integration of gold nanoparticles, quantum dots, and carbon nanotubes, which have significantly enhanced biomarker detection precision. Furthermore, it examines the advantages of nanobiosensors over traditional diagnostic techniques, such as improved sensitivity, rapid detection, and minimal invasiveness. The potential of these innovative sensors to revolutionize early disease detection and improve patient outcomes is discussed, along with existing challenges in clinical translation, including stability, reproducibility, and regulatory considerations. Addressing these limitations will be crucial for integrating nanobiosensors into routine clinical practice and advancing personalized medicine for neurodegenerative disorders.
Collapse
Affiliation(s)
- Shikha Yadav
- Department of Pharmaceutical Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Sarad Pawar Naik Bukke
- Department of Pharmaceutics and Pharmaceutical Technology, Kampala International University, Ishaka-Bushenyi, Uganda
| | | | - Ajay Pal Singh
- School of Pharmacy, Lingaya's Vidyapeeth, Faridabad, Haryana, India
| | - Ananda Kumar Chettupalli
- Department of Pharmaceutical Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Buyinza Nicholas
- Department of Pharmaceutics and Pharmaceutical Technology, Kampala International University, Ishaka-Bushenyi, Uganda
| |
Collapse
|
13
|
Jia W, Ouyang Y, Zhang S, Zhang P, Huang S. Nanopore Identification of L-, D-Lactic Acids, D-Glucose and Gluconic Acid in the Serum of Human and Animals. SMALL METHODS 2025; 9:e2400664. [PMID: 38864527 DOI: 10.1002/smtd.202400664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/30/2024] [Indexed: 06/13/2024]
Abstract
DL-Lactic acid and D-glucose are important human health indicators. Their aberrant levels in body fluids may indicate a variety of human pathological conditions, suggesting an urgent need of daily monitoring. However, simultaneous and rapid analysis of DL-lactic acid and D-glucose using a sole but simple sensing system has never been reported. Here, an engineered Mycobacterium smegmatis porin A (MspA) nanopore is used to simultaneously identify DL-lactic acid and D-glucose. Highly distinguishable nanopore event features are reported. Assisted with a custom machine learning algorithm, direct identification of DL-lactic acid and D-glucose is performed with human serum, demonstrating its sensing reliability against complex and heterogeneous samples. This sensing strategy is further applied in the analysis of different animal serum samples, according to which gluconic acid is further identified. The serum samples from different animals report distinguishable levels of DL-lactic acid, D-glucose and gluconic acid, suggesting its potential applications in agricultural science and breeding industry. This sensing strategy is generally direct, rapid, economic and requires only ≈µL of input serum, suitable for point of care testing (POCT) applications.
Collapse
Affiliation(s)
- Wendong Jia
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yusheng Ouyang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
14
|
Huang Y, You J, Ding Y, Xie Y, Wang T, Zhu F, Gong W, Zhao Z. A Hierarchical Core-Shell Structure of NiO@Cu 2O-CF for Effective Non-Enzymatic Electrochemical Glucose Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 15:47. [PMID: 39791806 PMCID: PMC11723071 DOI: 10.3390/nano15010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/03/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
Non-enzymatic glucose detection is an effective strategy to control the blood glucose level of diabetic patients. A novel hierarchical core-shell structure of nickel hydroxide shell coated copper hydroxide core based on copper foam (Ni(OH)2@Cu(OH)2-CF) was fabricated and derived from NiO@Cu2O-CF for glucose sensing. Cyclic voltammetry and amperometry experiments have demonstrated the efficient electrochemical catalysis of glucose under alkaline conditions. The measurement displays that the fabricated sensor exhibits a detection scale of 0.005-4.5 mM with a detection sensitivity of 4.67 µA/µM/cm2. It has remarkable response/recovery times in respect of 750 μM glucose (1.0 s/3.5 s). Moreover, the NiO@Cu2O-CF shows significant selectivity, reliable reproducibility and long-term stability for glucose determination, suggesting it is a suitable candidate for further applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhenting Zhao
- Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, China; (Y.H.); (J.Y.); (Y.D.); (Y.X.); (T.W.); (F.Z.); (W.G.)
| |
Collapse
|
15
|
Ghosh N, Verma S. Technological advancements in glucose monitoring and artificial pancreas systems for shaping diabetes care. Curr Med Res Opin 2024; 40:2095-2107. [PMID: 39466337 DOI: 10.1080/03007995.2024.2422005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 10/30/2024]
Abstract
The management of diabetes mellitus has undergone remarkable progress with the introduction of cutting-edge technologies in glucose monitoring and artificial pancreas systems. These innovations have revolutionized diabetes care, offering patients more precise, convenient, and personalized management solutions that significantly improve their quality of life. This review aims to provide a comprehensive overview of recent technological advancements in glucose monitoring devices and artificial pancreas systems, focusing on their transformative impact on diabetes care. A detailed review of the literature was conducted to examine the evolution of glucose monitoring technologies, from traditional invasive methods to more advanced systems. The review explores minimally invasive techniques such as continuous glucose monitoring (CGM) systems and flash glucose monitoring (FGM) systems, which have already been proven to enhance glycemic control and reduce the risk of hypoglycemia. In addition, emerging non-invasive glucose monitoring technologies, including optical, electrochemical, and electro-mechanical methods, were evaluated. These techniques are paving the way for more patient-friendly options that eliminate the need for frequent finger-prick tests, thereby improving adherence and ease of use. Advancements in closed-loop artificial pancreas systems, which integrate CGM with automated insulin delivery, were also examined. These systems, often referred to as "hybrid closed-loop" or "automated insulin delivery" systems, represent a significant leap forward in diabetes care by automating the process of insulin dosing. Such advancements aim to mimic the natural function of the pancreas, allowing for better glucose regulation without the constant need for manual interventions by the patient. Technological breakthroughs in glucose monitoring and artificial pancreas systems have had a profound impact on diabetes management, providing patients with more accurate, reliable, and individualized treatment options. These innovations hold the potential to significantly improve glycemic control, reduce the incidence of diabetes-related complications, and ultimately enhance the quality of life for individuals living with diabetes. Researchers are continually exploring novel methods to measure glucose more effectively and with greater convenience, further refining the future of diabetes care. Researchers are also investigating the integration of artificial intelligence and machine learning algorithms to further enhance the precision and predictive capabilities of glucose monitoring and insulin delivery systems. With ongoing advancements in sensor technology, connectivity, and data analytics, the future of diabetes care promises to deliver even more seamless, real-time management, empowering patients with greater autonomy and improved health outcomes.
Collapse
Affiliation(s)
- Neha Ghosh
- Centre for Industrial Pharmacy and Drugs Regulatory Affairs, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Saurabh Verma
- Centre for Industrial Pharmacy and Drugs Regulatory Affairs, Amity Institute of Pharmacy, Amity University, Noida, India
| |
Collapse
|
16
|
Dao QK, Mai TQ, Van Pham T, Ngac AB, Hoang CH, Janssens E, Mai HH. ZnO nanorods grown on Cu wire mesh provide a high sensitivity non-enzymatic absorbance glucose sensor. Mikrochim Acta 2024; 191:753. [PMID: 39567380 DOI: 10.1007/s00604-024-06845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
A highly sensitive non-enzymatic absorption-based glucose sensor is introduced that combines ZnO nanorods with the ferrous oxidation-xylenol orange (FOX) assay. ZnO nanorods were successfully synthesized on the surface of a copper wire mesh, exhibiting high crystallinity, purity, and a large surface area. The glucose sensor displays a high sensitivity of 0.394 mM-1 in a wide linear detection range (0 - 6 mM), along with a low limit of detection of 0.25 mM. The proposed assay has an excellent selectivity towards glucose compared with other sugars such as sucrose, maltose, and fructose. The potential use of the non-enzymatic absorbance sensor for diabetes monitoring is demonstrated by measuring the glucose concentration in human blood serum, obtaining values that are consistent with clinical analysis.
Collapse
Affiliation(s)
- Quang Khai Dao
- Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Hanoi, 100000, Vietnam
- Soft Matter and Biological Physics Center, Center for High Technology Research and Development, Vietnam, Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 100000, Vietnam
| | - Thuy Quynh Mai
- Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Hanoi, 100000, Vietnam
- Soft Matter and Biological Physics Center, Center for High Technology Research and Development, Vietnam, Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 100000, Vietnam
| | - Thanh Van Pham
- Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Hanoi, 100000, Vietnam
- Soft Matter and Biological Physics Center, Center for High Technology Research and Development, Vietnam, Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 100000, Vietnam
| | - An Bang Ngac
- Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Hanoi, 100000, Vietnam
| | - Chi Hieu Hoang
- Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Hanoi, 100000, Vietnam
| | - Ewald Janssens
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001, Louvain, Belgium
| | - Hanh Hong Mai
- Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Hanoi, 100000, Vietnam.
| |
Collapse
|
17
|
Garg S, Singla P, Kaur S, Crapnell RD, Banks CE, Seyedin S, Peeters M. Electroactive Molecularly Imprinted Polymer Nanoparticles (eMIPs) for Label-free Detection of Glucose: Toward Wearable Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403320. [PMID: 39113348 DOI: 10.1002/smll.202403320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/22/2024] [Indexed: 11/21/2024]
Abstract
The diagnosis of diabetes mellitus (DM) affecting 537 million adults worldwide relies on invasive and costly enzymatic methods that have limited stability. Electroactive polypyrrole (PPy)-based molecularly imprinted polymer nanoparticles (eMIPs) have been developed that rival the affinity of enzymes whilst being low-cost, highly robust, and facile to produce. By drop-casting eMIPs onto low-cost disposable screen-printed electrodes (SPEs), sensors have been manufactured that can electrochemically detect glucose in a wide dynamic range (1 µm-10 mm) with a limit of detection (LOD) of 26 nm. The eMIPs sensors exhibit no cross reactivity to similar compounds and negligible glucose binding to non-imprinted polymeric nanoparticles (eNIPs). Measurements of serum samples of diabetic patients demonstrate excellent correlation (>0.93) between these eMIPs sensor and the current gold standard Roche blood analyzer test. Finally, the eMIPs sensors are highly durable and reproducible (storage >12 months), showcasing excellent robustness and thermal and chemical stability. Proof-of-application is provided via measuring glucose using these eMIPs sensor in a two-electrode configuration in spiked artificial interstitial fluid (AISF), highlighting its potential for non-invasive wearable monitoring. Due to the versatility of the eMIPs that can be adapted to virtually any target, this platform technology holds high promise for sustainable healthcare applications via providing rapid detection, low-cost, and inherent robustness.
Collapse
Affiliation(s)
- Saweta Garg
- Department of Chemical Engineering, The University of Manchester, Engineering building A, East Booth Street, Oxford Road, Manchester, M13 9PL, UK
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Pankaj Singla
- Department of Chemical Engineering, The University of Manchester, Engineering building A, East Booth Street, Oxford Road, Manchester, M13 9PL, UK
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Sarbjeet Kaur
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Shayan Seyedin
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Marloes Peeters
- Department of Chemical Engineering, The University of Manchester, Engineering building A, East Booth Street, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
18
|
Chen Y, Sun Y, Li Y, Wen Z, Peng X, He Y, Hou Y, Fan J, Zang G, Zhang Y. A wearable non-enzymatic sensor for continuous monitoring of glucose in human sweat. Talanta 2024; 278:126499. [PMID: 38968652 DOI: 10.1016/j.talanta.2024.126499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024]
Abstract
To enhance personalized diabetes management, there is a critical need for non-invasive wearable electrochemical sensors made from flexible materials to enable continuous monitoring of sweat glucose levels. The main challenge lies in developing glucose sensors with superior electrochemical characteristics and high adaptability. Herein, we present a wearable sensor for non-enzymatic electrochemical glucose analysis. The sensor was synthesized using hydrothermal and one-pot preparation methods, incorporating gold nanoparticles (AuNPs) functionalized onto aminated multi-walled carbon nanotubes (AMWCNTs) as an efficient catalyst, and crosslinked with carboxylated styrene butadiene rubber (XSBR) and PEDOT:PSS. The sensors were then integrated onto screen-printed electrodes (SPEs) to create flexible glucose sensors (XSBR-PEDOT:PSS-AMWCNTs/AuNPs/SPE). Operating under neutral conditions, the sensor exhibits a linear range of 50 μmol/L to 600 μmol/L, with a limit of detection limit of 3.2 μmol/L (S/N = 3), enabling the detection of minute glucose concentrations. The flexible glucose sensor maintains functionality after 500 repetitions of bending at a 180° angle, without significant degradation in performance. Furthermore, the sensor exhibits exceptional stability, repeatability, and resistance to interference. Importantly, we successfully monitored changes in sweat glucose levels by applying screen-printed electrodes to human skin, with results consistent with normal physiological blood glucose fluctuations. This study details the fabrication of a wearable sensor characterized by ease of manufacture, remarkable flexibility, high sensitivity, and adaptability for non-invasive blood glucose monitoring through non-enzymatic electrochemical analysis. Thus, this streamlined fabrication process presents a novel approach for non-invasive, real-time blood glucose level monitoring.
Collapse
Affiliation(s)
- Yuhua Chen
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Laboratory Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yanghan Sun
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Laboratory Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yi Li
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Laboratory Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Zhuo Wen
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Laboratory Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyu Peng
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Laboratory Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yuanke He
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Laboratory Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yuanfang Hou
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China.
| | - Jingchuan Fan
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Laboratory Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
| | - Guangchao Zang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Life Science, and Laboratory of Tissue and Cell Biology, Laboratory Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
| | - Yuchan Zhang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Laboratory Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
19
|
Sun T, Liu J, Chen CJ. Calibration algorithms for continuous glucose monitoring systems based on interstitial fluid sensing. Biosens Bioelectron 2024; 260:116450. [PMID: 38843770 DOI: 10.1016/j.bios.2024.116450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Continuous glucose monitoring (CGM) is of great importance to the treatment and prevention of diabetes. As a proven commercial technology, electrochemical glucose sensor based on interstitial fluid (ISF) sensing has high sensitivity and wide detection range. Therefore, it has good promotion prospects in noninvasive or minimally-invasive CGM system. However, since there are concentration differences and time lag between glucose in plasma and ISF, the accuracy of this type of sensors are still limited. Typical calibration algorithms rely on simple linear regression which do not account for the variability of the sensitivity of sensors. To enhance the accuracy and stability of CGM based on ISF, optimization of calibration algorithm for sensors is indispensable. While there have been considerable researches on improving calibration algorithms for CGM, they have still received less attention. This article reviews the problem of typical calibration and presents the outstanding calibration algorithms in recent years. Finally, combined with existing research and emerging sensing technologies, this paper makes an outlook on the future calibration algorithms for CGM sensors.
Collapse
Affiliation(s)
- Tianyi Sun
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Jentsai Liu
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China.
| | - Ching Jung Chen
- 3 Research Center for Materials Science and Opti-Electronic Technology, School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
20
|
Guan PC, Qi QJ, Wang YQ, Lin JS, Zhang YJ, Li JF. Development of a 3D Hydrogel SERS Chip for Noninvasive, Real-Time pH and Glucose Monitoring in Sweat. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48139-48146. [PMID: 39197856 DOI: 10.1021/acsami.4c10817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
Traditional diagnostic methods, such as blood tests, are invasive and time-consuming, while sweat biomarkers offer a rapid physiological assessment. Surface-enhanced Raman spectroscopy (SERS) has garnered significant attention in sweat analysis because of its high sensitivity, label-free nature, and nondestructive properties. However, challenges related to substrate reproducibility and interference from the biological matrix persist with SERS. This study developed a novel ratio-based 3D hydrogel SERS chip, providing a noninvasive solution for real-time monitoring of pH and glucose levels in sweat. Encapsulating the probe molecule (4-MBN) in nanoscale gaps to form gold nanoflower-like nanotags with internal standards and integrating them into an agarose hydrogel to create a 3D flexible SERS substrate significantly enhances the reproducibility and stability of sweat analysis. Gap-Au nanopetals modified with probe molecules are uniformly dispersed throughout the porous hydrogel structure, facilitating the effective detection of the pH and glucose in sweat. The 3D hydrogel SERS chip demonstrates a strong linear relationship in pH and glucose detection, with a pH response range of 5.5-8.0 and a glucose detection range of 0.01-5 mM, with R2 values of 0.9973 and 0.9923, respectively. In actual sweat samples, the maximum error in pH detection accuracy is only 1.13%, with a lower glucose detection limit of 0.25 mM. This study suggests that the ratio-based 3D hydrogel SERS chip provides convenient, reliable, and rapid detection capabilities with substantial application potential for analyzing body fluid pH and glucose.
Collapse
Affiliation(s)
- Peng-Cheng Guan
- College of Materials, College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qian-Jiao Qi
- College of Materials, College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu-Qing Wang
- College of Materials, College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jia-Sheng Lin
- College of Materials, College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yue-Jiao Zhang
- College of Materials, College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- College of Materials, College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Scientific Research Foundation of State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen 361005, China
| |
Collapse
|
21
|
Wang Z, Liu S, Shi Z, Lu D, Li Z, Zhu Z. Electrochemical biosensor based on RNA aptamer and ferrocenecarboxylic acid signal probe for C-reactive protein detection. Talanta 2024; 277:126318. [PMID: 38810381 DOI: 10.1016/j.talanta.2024.126318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Monitoring health-related biomarkers using fast and facile detection techniques provides key physicochemical information for disease diagnosis or reflects body health status. Among them, electrochemical detection of various bio-macromolecules, e.g., the C-reactive protein (CRP), is of great interest in offering potential diagnosis for acute inflammation caused by infections, heart diseases, etc. Herein, a novel electrochemical aptamer biosensor was constructed from Ti3C2Tx MXene and in-situ reduced Au NPs for thiolated-RNA aptamer immobilization and CRP protein detection using Fc(COOH) as the signal probe. The sensory performances for CRP detection were optimized based on working conditions, including the incubation times and the pH. The large surface area offered by Ti3C2Tx MXene and high electrical conductivity originating from Au NPs endowed the as-fabricated aptamer biosensor with a decent sensitivity for CRP in a wide linear range of 0.05-80.0 ng/mL, good selectivity over interfering substances, and a low detection limit of 0.026 ng/mL. Such aptamer biosensors also detected CRP in serum samples using the spike & recovery method with reasonable recovery rates. The results demonstrated the potential of the as-fabricated electrochemical aptamer biosensor for fast and facile CRP detection in practical applications.
Collapse
Affiliation(s)
- Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Shuyuan Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhuo Shi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Dingxi Lu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China.
| |
Collapse
|
22
|
Baziak A, Kusior A. Comparative Study of Polymer-Modified Copper Oxide Electrochemical Sensors: Stability and Performance Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:5290. [PMID: 39204984 PMCID: PMC11359257 DOI: 10.3390/s24165290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
The effectiveness of copper oxide-modified electrochemical sensors using different polymers is being studied. The commercial powder was sonicated in an isopropyl alcohol solution and distilled water with 5 wt% polymers (chitosan, Nafion, PVP, HPC, α-terpineol). It was observed that the chitosan and Nafion caused degradation of CuO, but Nafion formed a stable mixture when diluted. The modified electrodes were drop-casted and analyzed using cyclic voltammetry in 0.1 M KCl + 3 mM [Fe(CN)6]3-/4- solution to determine the electrochemically active surface area (EASA). The results showed that α-terpineol formed agglomerates, while HPC created uneven distributions, resulting in poor stability. On the other hand, Nafion and PVP formed homogeneous layers, with PVP showing the highest EASA of 0.317 cm2. In phosphate-buffered saline (PBS), HPC and PVP demonstrated stable signals. Nafion remained the most stable in various electrolytes, making it suitable for sensing applications. Testing in 0.1 M NaOH revealed HPC instability, partial dissolution of PVP, and Cu ion reduction. The type of polymer used significantly impacts the performance of CuO sensors. Nafion and PVP show the most promise due to their stability and effective dispersion of CuO. Further optimization of polymer-CuO combinations is necessary for enhanced sensor functionality.
Collapse
Affiliation(s)
- Andrzej Baziak
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland;
| | - Anna Kusior
- Faculty of Materials Sciences and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
23
|
Ren T, Yan L, Zhao Y. Acetate-assisted in situ electrodeposited β-MnO 2 for the fabrication of nano-architectonics for non-enzymatic glucose detection. RSC Adv 2024; 14:22359-22367. [PMID: 39010910 PMCID: PMC11247433 DOI: 10.1039/d4ra03930k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024] Open
Abstract
Highly sensitive and low-cost electrocatalytic materials are of great importance for the commercial application of non-enzymatic glucose sensors. Herein, we fabricated a novel one-pot enzyme- and indicator-free method for the colorimetric sensing of blood glucose levels based on the direct redox reaction of β-MnO2/glucose. Owing to the introduction of ammonium acetate and the enhanced oxygen evolution reaction, the higher conductive β-MnO2 nanosheets with the larger surface area were directly grown in situ on the conductive substrate by a linear sweep voltammetry (LSV) electrodeposition method. Besides, owing to the unique tunnel-type pyrolusite MnO2, the electrolyte diffusion was facilitated and reduced the response time in the glucose detection process. Hence, the acetate-assisted MnO2 electrode exhibited a high sensitivity of 461.87 μA M-1 cm-2 toward glucose, a wide detection range from 1.0 μM to 1 mM, and a low detection limit of 0.47 μM while the electrode also maintained excellent selectivity and stability. These results clearly indicate that the new strategy we developed has great potential for practical applications.
Collapse
Affiliation(s)
- Tianbao Ren
- School of Business, Heze University Heze 274015
| | - Lijun Yan
- Department of Interior and Environmental Design, Pusan National University Pusan 46241 South Korea
| | - Yang Zhao
- Department of Urban and Regional Development, Hanyang University Seoul 04763 South Korea
| |
Collapse
|
24
|
Shi G, Si L, Cai J, Jiang H, Liu Y, Luo W, Ma H, Guan J. Photonic Nanochains for Continuous Glucose Monitoring in Physiological Environment. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:964. [PMID: 38869588 PMCID: PMC11174108 DOI: 10.3390/nano14110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Diabetes is a common disease that seriously endangers human health. Continuous glucose monitoring (CGM) is important for the prevention and treatment of diabetes. Glucose-sensing photonic nanochains (PNCs) have the advantages of naked-eye colorimetric readouts, short response time and noninvasive detection of diabetes, showing immense potential in CGM systems. However, the developed PNCs cannot disperse in physiological environment at the pH of 7.4 because of their poor hydrophilicity. In this study, we report a new kind of PNCs that can continuously and reversibly detect the concentration of glucose (Cg) in physiological environment at the pH of 7.4. Polyacrylic acid (PAA) added to the preparation of PNCs forms hydrogen bonds with polyvinylpyrrolidone (PVP) in Fe3O4@PVP colloidal nanoparticles and the hydrophilic monomer N-2-hydroxyethyl acrylamide (HEAAm), which increases the content of PHEAAm in the polymer shell of prepared PNCs. Moreover, 4-(2-acrylamidoethylcarbamoyl)-3-fluorophenylboronic acid (AFPBA), with a relatively low pKa value, is used as the glucose-sensing monomer to further improve the hydrophilicity and glucose-sensing performances of PNCs. The obtained Fe3O4@(PVP-PAA)@poly(AFPBA-co-HEAAm) PNCs disperse in artificial serum and change color from yellow-green to red when Cg increases from 3.9 mM to 11.4 mM, showing application potential for straightforward CGM.
Collapse
Affiliation(s)
- Gongpu Shi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (G.S.); (L.S.); (H.J.); (Y.L.); (J.G.)
| | - Luying Si
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (G.S.); (L.S.); (H.J.); (Y.L.); (J.G.)
| | - Jinyang Cai
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China;
| | - Hao Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (G.S.); (L.S.); (H.J.); (Y.L.); (J.G.)
| | - Yun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (G.S.); (L.S.); (H.J.); (Y.L.); (J.G.)
| | - Wei Luo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China;
| | - Huiru Ma
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (G.S.); (L.S.); (H.J.); (Y.L.); (J.G.)
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, China
| |
Collapse
|
25
|
Li Y, Kong Y, Hu Y, Li Y, Asrosa R, Zhang W, Deka Boruah B, Yetisen AK, Davenport A, Lee TC, Li B. A paper-based dual functional biosensor for safe and user-friendly point-of-care urine analysis. LAB ON A CHIP 2024; 24:2454-2467. [PMID: 38644805 PMCID: PMC11060138 DOI: 10.1039/d4lc00163j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
Safe, accurate, and reliable analysis of urinary biomarkers is clinically important for early detection and monitoring of the progression of chronic kidney disease (CKD), as it has become one of the world's most prevalent non-communicable diseases. However, current technologies for measuring urinary biomarkers are either time-consuming and limited to well-equipped hospitals or lack the necessary sensitivity for quantitative analysis and post a health risk to frontline practitioners. Here we report a robust paper-based dual functional biosensor, which is integrated with the clinical urine sampling vial, for the simultaneous and quantitative analysis of pH and glucose in urine. The pH sensor was fabricated by electrochemically depositing IrOx onto a paper substrate using optimised parameters, which enabled an ultrahigh sensitivity of 71.58 mV pH-1. Glucose oxidase (GOx) was used in combination with an electrochemically deposited Prussian blue layer for the detection of glucose, and its performance was enhanced by gold nanoparticles (AuNPs), chitosan, and graphite composites, achieving a sensitivity of 1.5 μA mM-1. This dual function biosensor was validated using clinical urine samples, where a correlation coefficient of 0.96 for pH and 0.98 for glucose detection was achieved with commercial methods as references. More importantly, the urine sampling vial was kept sealed throughout the sample-to-result process, which minimised the health risk to frontline practitioners and simplified the diagnostic procedures. This diagnostic platform, therefore, holds high promise as a rapid, accurate, safe, and user-friendly point-of-care (POC) technology for the analysis of urinary biomarkers in frontline clinical settings.
Collapse
Affiliation(s)
- Yujia Li
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
- Department of Chemistry, University College London, London, WC1E 7JE, UK
| | - Yingqi Kong
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
- Department of Chemistry, University College London, London, WC1E 7JE, UK
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Yixuan Li
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
- Department of Chemistry, University College London, London, WC1E 7JE, UK
| | - Rica Asrosa
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
- Department of Chemistry, University College London, London, WC1E 7JE, UK
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Sumatera Utara, Medan 20155, Sumatera Utara, Indonesia
| | - Wenyu Zhang
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - Buddha Deka Boruah
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Andrew Davenport
- UCL Department of Renal Medicine, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | - Tung-Chun Lee
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
| | - Bing Li
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
| |
Collapse
|
26
|
Zhao Z, Wang P, Lu Y. Copper-cobalt dual-site on N-doped carbon nanotube with dual-promoted synergy for glucose electrochemical detection. Anal Chim Acta 2024; 1298:342405. [PMID: 38462349 DOI: 10.1016/j.aca.2024.342405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
Doping specific active sites and accelerating the decisive step of glucose catalysis to construct highly active glucose sensing electrochemical catalysts remains a major challenge for glucose sensing. Herein, we report the detailed design of Cu-Co dual active site N-doped carbon nanotube (CuCo-NCNTs) obtained by electrodeposition modification, programmed warming and calcination for electrochemical glucose detection. In the CuCo-NCNTs material system, Cu serves as the main active site for glucose sensing. Co with good adsorption of hydroxyl groups acts as the site providing hydroxyl groups to provide oxygen source for Cu oxidized glucose sensing. The synergistic effect between the two active sites in the Cu-Co system and the abundant micro-reactive sites exposed by carbon nanotubes greatly ensure the excellent electrocatalytic performance of glucose oxidation reaction. Therefore, CuCo-NCNTs have good electrocatalytic performance with a sensitivity of 0.84 mA mM-1 cm-2 and a detection limit of 1 μM, and also have excellent stability and specificity. DFT calculations elucidate the decisive steps of H-atom removal in the oxidation of glucose by Cu active site N-doped carbon nanotube (Cu-NCNTs) and Co active site N-doped carbon nanotube (CuCo-NCNTs) materials, illustrating the role of oxygen source provided by hydroxyl group adsorption in the electrochemical sensing process of glucose, thus demonstrating that the electrochemical sensing signal of glucose can be effectively enhanced when cobalt species that readily adsorb hydroxyl groups are introduced into the materials.
Collapse
Affiliation(s)
- Zhenlu Zhao
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China; State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
| | - Peihan Wang
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Yizhong Lu
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| |
Collapse
|
27
|
Ren H, Yang F, Cao M, Shan B, Chen R. Seamless integration of a nickel-based metal-organic framework with three-dimensional substrates for nonenzymatic glucose sensing. Dalton Trans 2024; 53:6300-6310. [PMID: 38482906 DOI: 10.1039/d4dt00335g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The effective integration of nanomaterials with underlying current collectors is a key factor affecting the performance of nonenzymatic glucose sensors, where an inappropriate integration structure often leads to poor electron transport and instability. In this work, a seamless integrated electrode was constructed by the in situ immobilizing of a nickel-based metal-organic framework (Ni-MOF) on a three-dimensional (3D) conductive nickel foam (NF) for highly sensitive and durable glucose sensing. Facilitated by a rapid microwave-assisted reaction, a robust interfacial interaction between the Ni-MOF and the substrate was established through in situ conversion from nickel oxide (NiO). The fabricated Ni-MOF/NF electrode exhibits an excellent limit of detection (LOD) of 2.65 μM and an impressive sensitivity (14.31 mA cm-2 mM-1) within the linear range (4-576 μM), which is significantly boosted compared with that of an electrode prepared by a typical drop-casting method (3.56 mA cm-2 mM-1 in 4-1836 μM). Characterization and electrochemical tests reveal that this integrated structure on the one hand contributes to fast electron transport and thus has enhanced sensitivity and on the other hand leads to exceptional durability with its structural integrity maintained under bending, shaking, and ultrasonication. Moreover, this seamless integration method was also employed to immobilize the Ni-MOF converted from the pre-chemically deposited NiO layer on another type of substrate, 3D carbon paper (CP), demonstrating the versatility of this facile strategy in creating diverse electrochemical electrodes for applications beyond glucose sensing.
Collapse
Affiliation(s)
- Haonan Ren
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.
| | - Fan Yang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.
| | - Meng Cao
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.
| | - Bin Shan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Rong Chen
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.
| |
Collapse
|
28
|
Guette-Marquet S, Saunier V, Pilloux L, Roques C, Bergel A. Electrochemical assay of mammalian cell viability. Bioelectrochemistry 2024; 156:108625. [PMID: 38086275 DOI: 10.1016/j.bioelechem.2023.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024]
Abstract
We present the first use of amperometric detection to assess the viability of mammalian cells in continuous mode, directly in the cell culture medium. Vero or HeLa cells were injected into electrochemical sensors equipped with a 3-electrode system and containing DCIP 50 µM used as the redox mediator. DCIP was reduced by the viable cells and the reduced form was detected amperometrically at 300 mV vs silver pseudo-reference. The continuous regeneration of the oxidized form of the mediator ensured a stable redox state of the cell environment, allowing the cells to survive during the measurement time. The electrochemical response was related to cell metabolism (no response with dead cells or lysed cells) and depended on both mediator concentration and cell density. The protocol was applied to both cells in suspension and adhered cells. It was also adapted to detect trans-plasma membrane electron transfer (tPMET) by replacing DCIP by ferricyanide 500 µM and using linear scan voltammetry (2 mV/s). The pioneering results described here pave the way to the development of routine electrochemical assays for cell viability and for designing a cell-based analytical platform.
Collapse
Affiliation(s)
- Simon Guette-Marquet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Faculté des Sciences Pharmaceutiques, Toulouse, France
| | - Valentin Saunier
- INSERM, UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires I2MC, Equipe 1, Toulouse, France
| | - Ludovic Pilloux
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Faculté des Sciences Pharmaceutiques, Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Faculté des Sciences Pharmaceutiques, Toulouse, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| |
Collapse
|
29
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
30
|
Huang X, Yao C, Huang S, Zheng S, Liu Z, Liu J, Wang J, Chen HJ, Xie X. Technological Advances of Wearable Device for Continuous Monitoring of In Vivo Glucose. ACS Sens 2024; 9:1065-1088. [PMID: 38427378 DOI: 10.1021/acssensors.3c01947] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Managing diabetes is a chronic challenge today, requiring monitoring and timely insulin injections to maintain stable blood glucose levels. Traditional clinical testing relies on fingertip or venous blood collection, which has facilitated the emergence of continuous glucose monitoring (CGM) technology to address data limitations. Continuous glucose monitoring technology is recognized for tracking long-term blood glucose fluctuations, and its development, particularly in wearable devices, has given rise to compact and portable continuous glucose monitoring devices, which facilitates the measurement of blood glucose and adjustment of medication. This review introduces the development of wearable CGM-based technologies, including noninvasive methods using body fluids and invasive methods using implantable electrodes. The advantages and disadvantages of these approaches are discussed as well as the use of microneedle arrays in minimally invasive CGM. Microneedle arrays allow for painless transdermal puncture and are expected to facilitate the development of wearable CGM devices. Finally, we discuss the challenges and opportunities and look forward to the biomedical applications and future directions of wearable CGM-based technologies in biological research.
Collapse
Affiliation(s)
- Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chuanjie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shantao Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jing Liu
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
31
|
Boucheta H, Zouaoui E, Ferkous H, Madaci A, Yadav KK, Benguerba Y. Advancing Diabetes Management: The Future of Enzyme-Less Nanoparticle-Based Glucose Sensors-A Review. J Diabetes Sci Technol 2024:19322968241236211. [PMID: 38506487 PMCID: PMC11571395 DOI: 10.1177/19322968241236211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
BACKGROUND Glucose is vital for biological processes, requiring blood sugar levels to be maintained between 3.88 and 6.1 mmol/L, especially during fasting. Elevated levels signal diabetes, a global concern affecting 537 million people, necessitating effective glucose-monitoring devices. METHOD Enzyme-based sensors, though selective, are sensitive to environmental factors. Nonenzymatic sensors, especially those with nanoparticles, offer stability, high surface area, and cost-effectiveness. Existing literature supports their immediate glucose oxidation, showcasing exceptional sensitivity. RESULTS This review details nonenzymatic sensors, highlighting materials, detection limits, and the promise of nanoparticle-based designs, which exhibit enhanced sensitivity and selectivity in glucose detection. CONCLUSION Nanoparticle-based sensors, as reviewed, show potential for glucose monitoring, overcoming enzyme-based limitations. The conclusion suggests future directions for advancing these sensors, emphasizing ongoing innovation in this critical research area.
Collapse
Affiliation(s)
- Hana Boucheta
- Laboratory of Physico-Chemistry Research on Surfaces and Interfaces, University of 20 August 1955, Skikda, Algeria
- Department of Process Engineering, Faculty of Technology, University of 20 August 1955, Skikda, Algeria
- Laboratory of Catalysis, Bio-Process and Environment, Department of Process Engineering, University of 20 August 1955, Skikda, Algeria
| | - Emna Zouaoui
- Department of Process Engineering, Faculty of Technology, University of 20 August 1955, Skikda, Algeria
- Laboratory of Catalysis, Bio-Process and Environment, Department of Process Engineering, University of 20 August 1955, Skikda, Algeria
| | - Hana Ferkous
- Laboratory of Mechanical Engineering and Materials, Faculty of Technology, University of 20 August 1955, Skikda, Algeria
| | - Anis Madaci
- Institute of Analytical Sciences, University of Lyon, Villeurbanne, France
- Laboratory of Materials and Electronics Systems, University El-Bachir El-Ibrahimi Bordj Bou Arreridj, Bordj Bou Arreridj, Algeria
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Bhopal, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah, Iraq
| | - Yacine Benguerba
- Laboratoire de Biopharmacie et Pharmacotechnie, Université Ferhat Abbas Sétif-1, Sétif, Algeria
| |
Collapse
|
32
|
Zhang F, Liu J, Chen Z, Wang E, Li C, Cheng J, Shen J, Xu Z. Multienzyme cascades analysis of α-glucosidase by oxygen deficient MoO 3-x. Anal Chim Acta 2024; 1293:342271. [PMID: 38331555 DOI: 10.1016/j.aca.2024.342271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/19/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Recently, the enzymatic cascade reactions during the cellular process are widely used for fabricating robust biosensors and they have attracted extensive attention in analyzing various clinical biomarkers. The enzymatic cascades analysis is commonly based on the peroxidase (POD)/oxidase coupled system. However, the requirement of harsh acidic environment, poor stability and interference from the oxidase further limit their analytical practicability. Herein, novel chromogenic nanomaterials with H2O2 sensitive features are urgently required to replace the POD nanozyme in enzymatic cascades based bioanalysis. RESULTS Herein, oxygen deficient MoO3-x with H2O2 sensitive features and near-infrared (NIR) absorption band have been ultra-fast synthesized and utilized for the enzymatic cascades analysis of α-Glucosidase's activity, and inhibitors screening. With the addition of 4-nitrophenyl-α-d-glucopyranoside, the simultaneous presence of α-Glucosidase and glucose oxidase (GOx) would fade their dark blue color and decrease the NIR absorption. The α-Glucosidase's activity can be analyzed by the absorption at 770 nm, and their limit of detection is 8 × 10-5 U/mL, indicating the superior performance of the proposed colorimetric assay. Moreover, this proposed α-Glucosidase assay is further utilized for inhibitors screening. Moreover, the activity of α-Glucosidase can also be analyzed by the smartphone and microplate reader through the agarose-based colorimetric portable kit. SIGNIFICANCE This MoO3-x involved enzymatic cascades assay would facilitate for the development of bio-analysis related to H2O2 generation or consumption. Moreover, this bio-analysis strategy will contribute to the development of other H2O2 sensitive chromogenic nanomaterials for the analysis of certain biomolecules and biological enzymes.
Collapse
Affiliation(s)
- Fengxian Zhang
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, PR China
| | - Jiawei Liu
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, PR China
| | - Zhi Chen
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, PR China
| | - Erjing Wang
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, PR China
| | - Cao Li
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, PR China
| | - Jiaji Cheng
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, PR China.
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China.
| | - Ziqiang Xu
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
33
|
Zhang C, Liu X, Hu J, Han H. Enhancing surface sensing performance of cascaded high contrast gratings using bound states in the continuum. OPTICS EXPRESS 2024; 32:6644-6657. [PMID: 38439363 DOI: 10.1364/oe.515816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/28/2024] [Indexed: 03/06/2024]
Abstract
We proposed the cascaded high contrast grating (CHCG) structure to enhance surface sensing capabilities through bound states in the continuum (BICs). Utilizing the finite element method (FEM) and rigorous coupled-wave analysis (RCWA), we studied the dispersion relations, far-field contribution CHCGs, and near-field distributions of BICs corresponding to resonance peaks at different wavelengths. Results demonstrate the ability to precisely control symmetry-protected BIC (SP-BIC) and Friedrich-Wintgen BIC (FW-BIC) resonance peaks by altering incident angles and structural parameters, enhancing structure robustness and tunability. Significantly, modes 1 and 2 have demonstrated substantial enhancement in surface refractive index sensing, achieving highest sensitivities at 51 nm/RIU and the figure of merit reaching 490.8 RIU-1, indicating notable advancement in detecting subtle surface changes. In contrast, mode 3 has shown robust performance in bulk refractive index sensing, achieving a sensitivity of 602 nm/RIU and a figure of merit of 5189.65 RIU-1. These findings underscore the significant potential of the structure as a high-performance integrated sensor, particularly for precise environmental and biological monitoring in surface refractive index sensing.
Collapse
|
34
|
Horta-Velázquez A, Mota-Morales JD, Morales-Narváez E. Next-generation of smart dressings: Integrating multiplexed sensors and theranostic functions. Int J Biol Macromol 2024; 254:127737. [PMID: 38287589 DOI: 10.1016/j.ijbiomac.2023.127737] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
Non-healing wounds represent a significant burden for healthcare systems and society, giving rise to severe economic and human issues. Currently, the use of dressings and visual assessment represent the primary and standard care for wounds. Conventional dressings, like cotton gauze, provide only passive physical protection. Besides, they end up paradoxically hampering the wound-healing process by producing tissue damage and pain when removed during routine check-ups. In response to these limitations, researchers, engineers, and technologists are developing innovative dressings that incorporate advanced diagnostic and therapeutic functionalities, coined as "smart dressings". Now, the maturation of smart dressing is bringing them closer to real-life applications, leading to an exciting new generation of these devices. The next generation of smart dressings is capable of monitoring in real-time multiple biomarkers while including pro-healing capabilities in a single platform. Such multiplexed and theranostic smart dressings are expected to offer a timely biomarker-directed diagnosis of non-healing wounds while enabling rapid, automated, and personalized treatments of infection and chronicity. Herein, we provide an insightful overview of these advantageous devices, delving into the diverse spectrum of possible engineering strategies. This encompasses the use of electrochemical and optical platforms with diverse multiplexing architectures, such as multi-zone sensing arrays and multi-layered devices. Open or closed-loop theranostic mechanisms using various stimuli-responsive materials that could be internally or externally controlled are also included. Finally, a critical discussion on the main challenges and future directions of smart dressings is also offered.
Collapse
Affiliation(s)
| | - Josué D Mota-Morales
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, Mexico
| | - Eden Morales-Narváez
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, Mexico.
| |
Collapse
|
35
|
Wang X, Hao L, Du R, Wang H, Dong J, Zhang Y. Synthesis of unique three-dimensional CoMn 2O 4@Ni(OH) 2 nanocages via Kirkendall effect for non-enzymatic glucose sensing. J Colloid Interface Sci 2024; 653:730-740. [PMID: 37742432 DOI: 10.1016/j.jcis.2023.09.098] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/15/2023] [Indexed: 09/26/2023]
Abstract
Transition metal oxides / hydroxides, which have the advantages of wide distribution, low price, low toxicity, and stable chemical properties, have attracted much attention from researchers. Therefore, this work reports the construction of the unique CoMn2O4 nanocages assisted by the Kirkendall effect, and worm-like Ni(OH)2 nanoparticles were grown on the surface via hydrothermal method, the final product CoMn2O4@Ni(OH)2 nanocages were applied to construct efficient and sensitive non-enzymatic glucose electrochemical sensing. The stable three-dimensional hollow CoMn2O4 nanocages structure, not only can provide a wider specific surface area and more abundant active sites, its porous structure also can effectively inhibit the aggregation of nanoparticles, increase the ion diffusion path, shorten the electron transport distance, and improve the electrical conductivity. Loading Ni(OH)2 nanoparticles on the CoMn2O4 nanocages can increase catalytic sites, and further strengthen the electrocatalytic performance. Due to the good synergistic effect between CoMn2O4 and Ni(OH)2, CoMn2O4@Ni(OH)2 nanocages electrochemical sensor can achieve sensitive and rapid detection of trace glucose, with excellent linear range (8.5-1830.5 μM), low limit of detection (0.264 μM), high sensitivity of 0.00646 μA mM-1 cm-2, and outstanding repeatability. More importantly, the sensor has been successfully applied to the determination of blood glucose in human serum with good recoveries (95.64-104.3 %). This work provides a novel scheme for blood glucose detection and expands the application of transition metal oxides / hydroxides in the field of electrochemical sensing.
Collapse
Affiliation(s)
- Xiaokun Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China
| | - Lin Hao
- College of Science, Hebei Agricultural University, 071001 Baoding, PR China
| | - Ruixuan Du
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China
| | - Huan Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China.
| | - Jiangxue Dong
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China.
| | - Yufan Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China.
| |
Collapse
|
36
|
Jiang D, Liu T, Chu Z, Wang Y. Advances in nanostructured material-based non-enzymatic electrochemical glucose sensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6344-6361. [PMID: 37971394 DOI: 10.1039/d3ay01664a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Non-enzymatic electrochemical sensors that use functional materials to directly catalyze glucose have shown great promise in diabetes management, food control, and bioprocess inspection owing to the advantages of high sensitivity, long-term stability, and low cost. Recently, in order to produce enhanced electrochemical behavior, significant efforts have been devoted to the preparation of functional materials with regular nanostructure, as it provides high specific surface area and well-defined strong active sites for electrochemical sensing. However, the structure-performance correlation in this field has not been reviewed thoroughly in the literature. This review aims to present a comprehensive report on advanced zero- to three-dimensional nanostructures based on the geometric feature and to discuss in depth their structural effects on enzyme-free electrochemical detection of glucose. It starts by illustrating the sensing principles of nanostructured materials, followed by a detailed discussion on the structural effects related to the features of each dimension. The structure-performance correlation is explored by comparing the performance derived from diverse dimensional architectures, which is beneficial for the better design of regular nanostructure to achieve efficient enzyme-free sensing of glucose. Finally, future directions of non-enzymatic electrochemical glucose sensors to solve emerging challenges and further improve the sensing performance are also proposed.
Collapse
Affiliation(s)
- Danfeng Jiang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, PR China.
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China.
| | - Tao Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, PR China.
| | - Zhenyu Chu
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, PR China.
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, PR China.
| | - Yi Wang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, PR China.
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325001, PR China
| |
Collapse
|
37
|
Yasir M, Peinetti F, Savi P. Correlation of Transmission Properties with Glucose Concentration in a Graphene-Based Microwave Resonator. MICROMACHINES 2023; 14:2163. [PMID: 38138332 PMCID: PMC10745533 DOI: 10.3390/mi14122163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023]
Abstract
Carbon-based materials, such as graphene, exhibit interesting physical properties and have been recently investigated in sensing applications. In this paper, a novel technique for glucose concentration correlation with the resonant frequency of a microwave resonator is performed. The resonator exploits the variation of the electrical properties of graphene at radio frequency (RF). The described approach is based on the variation in transmission coefficient resonating frequency of a microstrip ring resonator modified with a graphene film. The graphene film is doctor-bladed on the ring resonator and functionalised in order to detect glucose. When a drop with a given concentration is deposited on the graphene film, the resonance peak is shifted. The graphene film is modelled with a lumped element analysis. Several prototypes are realised on Rogers Kappa substrate and their transmission coefficient measured for different concentrations of glucose. Results show a good correlation between the frequency shift and the concentration applied on the film.
Collapse
Affiliation(s)
- Muhammad Yasir
- Division of Microrobotics and Control Engineering, Department of Computing Science, University of Oldenburg, 26129 Oldenburg, Germany
| | - Fabio Peinetti
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy; (F.P.); (P.S.)
| | - Patrizia Savi
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy; (F.P.); (P.S.)
| |
Collapse
|
38
|
Di Filippo D, Sunstrum FN, Khan JU, Welsh AW. Non-Invasive Glucose Sensing Technologies and Products: A Comprehensive Review for Researchers and Clinicians. SENSORS (BASEL, SWITZERLAND) 2023; 23:9130. [PMID: 38005523 PMCID: PMC10674292 DOI: 10.3390/s23229130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Diabetes Mellitus incidence and its negative outcomes have dramatically increased worldwide and are expected to further increase in the future due to a combination of environmental and social factors. Several methods of measuring glucose concentration in various body compartments have been described in the literature over the years. Continuous advances in technology open the road to novel measuring methods and innovative measurement sites. The aim of this comprehensive review is to report all the methods and products for non-invasive glucose measurement described in the literature over the past five years that have been tested on both human subjects/samples and tissue models. A literature review was performed in the MDPI database, with 243 articles reviewed and 124 included in a narrative summary. Different comparisons of techniques focused on the mechanism of action, measurement site, and machine learning application, outlining the main advantages and disadvantages described/expected so far. This review represents a comprehensive guide for clinicians and industrial designers to sum the most recent results in non-invasive glucose sensing techniques' research and production to aid the progress in this promising field.
Collapse
Affiliation(s)
- Daria Di Filippo
- Discipline of Women’s Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Frédérique N. Sunstrum
- Product Design, School of Design, Faculty of Design, Architecture and Built Environment, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Jawairia U. Khan
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Alec W. Welsh
- Discipline of Women’s Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia;
- Department of Maternal-Fetal Medicine, Royal Hospital for Women, Randwick, NSW 2031, Australia
| |
Collapse
|
39
|
Han JH, Kim CR, Min CH, Kim MJ, Kim SN, Ji HB, Yoon SB, Lee C, Choy YB. Microneedles coated with composites of phenylboronic acid-containing polymer and carbon nanotubes for glucose measurements in interstitial fluids. Biosens Bioelectron 2023; 238:115571. [PMID: 37562343 DOI: 10.1016/j.bios.2023.115571] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
A microneedle (MN) sensor coated with a sensing composite material was proposed for measuring glucose concentrations in interstitial fluid (ISF). The sensing composite material was prepared by blending a polymer containing glucose-responsive phenylboronic acid (PBA) moieties (i.e., polystyrene-block-poly(acrylic acid-co-acrylamidophenylboronic acid)) with conductive carbon nanotubes (CNTs). The polymer exhibited reversible swelling behavior in response to glucose concentrations, which influenced the distribution of the embedded CNTs, resulting in sensitive variations in electrical percolation, even when coated onto a confined surface of the MN in the sensor. We varied the ratio of PBA moieties and the loading amount of CNTs in the sensing composite material of the MN sensor and tested them in vitro using an ISF-mimicking gel with physiological glucose concentrations to determine the optimal sensitivity conditions. When tested in animal models with varying blood glucose concentrations, the MN sensor coated with the selected sensing material exhibited a strong correlation between the measured electrical currents and blood glucose concentrations, showing accuracy comparable to that of a glucometer in clinical use.
Collapse
Affiliation(s)
- Jae Hoon Han
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Cho Rim Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang Hee Min
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Ji Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Se-Na Kim
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Han Bi Ji
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo Bin Yoon
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Young Bin Choy
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea; Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea; Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul 03122, Republic of Korea; ToBIOs Inc, 214 Yulgok-ro, Jongno-gu, Seoul 03122, Republic of Korea.
| |
Collapse
|
40
|
Vyas T, Gogoi M, Joshi A. Fluorescent fiber-optic device sensor based on carbon quantum dot (CQD) thin films for dye detection in water resources. Analyst 2023; 148:5178-5189. [PMID: 37721153 DOI: 10.1039/d3an01343j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Industrialization, especially in textile industries, has led to increased use of dyes and pigments to impart colours to fabrics. Textile dyes are one of the chief emerging pollutants of water resources as industrial effluents. In the current research, we report the development and utilization of pH-sensitive carbon quantum dots (CQDs) immobilized in polymer thin films acting as sensors for textile dye detection. The CQDs and CQD-containing polymer films were characterized by various techniques like XRD, TEM, XPS, and CLSM. The synthesized CQD thin films possess a unique pH-sensitive property that can be used to detect various model acidic and basic dyes that are important components of industrial effluents from textile dyes. The detection capability of the sensor films was evaluated by spiking dyes in various water matrices, like household tap water and river water. The results indicate that pH-sensitive CQD thin film was able to detect three acidic dyes, namely methyl red, methyl orange, and bromocresol green, and one basic dye, methylene blue, in a linear range of 0-100 μM with a response time of 1 minute. The CQD thin-film sensors have a limit of detection of 26.4 ppb, 214.5 ppb, 46.2 ppb, and 29.7 ppb for methyl red, methyl orange, bromocresol green and methylene blue, respectively. The accuracy of detection performed by spiking studies in water resources indicated an ∼100% recovery value in all tested acidic and basic dyes. The sensor films were compared for analytical parameters using UV-visible-fluorescence spectroscopy and HPLC.
Collapse
Affiliation(s)
- Tanmay Vyas
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore-453552, Madhya Pradesh, India.
| | - Manashjit Gogoi
- Department of Biomedical Engineering, North-Eastern Hill University, Umshing Mawkynroh, Shillong 793022, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore-453552, Madhya Pradesh, India.
| |
Collapse
|
41
|
Tianyi S, Yulong Z, Yanzhen J, Chen CJ, Liu JT. Micro interstitial fluid extraction and detection device integrated with the optimal extraction conditions for noninvasive glucose monitoring. Biosens Bioelectron 2023; 237:115515. [PMID: 37481866 DOI: 10.1016/j.bios.2023.115515] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
Interstitial fluid glucose sensors have promising prospects in noninvasive glucose monitoring. However, the commonly used method of extracting interstitial fluid, reverse iontophoresis (RI), still remains to be optimized to solve problems such as insufficient extraction flux and skin irritation. To find the optimal RI conditions, in this study we explored the effects of multiple factors such as current frequency, duration, duty cycle and their interactions on extraction with the design of experiments (DOE) method. A multifunctional extraction and detection device was designed to control extraction conditions and measure the surface water content of the extraction electrode in situ and real time. A micro glucose monitoring device (MicroTED) combined with a cheap and flexible paper-based electrode was developed under the determined optimal extraction conditions. In on-body continuous glucose monitoring tests carried out to verify the performance of the device, the optimized conditions can facilitate stable extraction of up to 1.0 mg without any skin discomfort. The mean Pearson correlation coefficient between the measurement results of MicroTED and commercial glucometer is above 0.9. In the Clarke error grid analysis, all data points fell within Clarke error grid areas A and B, demonstrating the feasibility of further clinical application of the device.
Collapse
Affiliation(s)
- Sun Tianyi
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Zhou Yulong
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Yanzhen
- Research Center for Materials Science and Opti-Electronic Technology, School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, China
| | - Ching-Jung Chen
- Research Center for Materials Science and Opti-Electronic Technology, School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, China.
| | - Jen-Tsai Liu
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
42
|
Javanbakht S, Darvishi S, Dorchei F, Hosseini-Ghalehno M, Dehghani M, Pooresmaeil M, Suzuki Y, Ul Ain Q, Ruiz Rubio L, Shaabani A, Hayashita T, Namazi H, Heydari A. Cyclodextrin Host-Guest Recognition in Glucose-Monitoring Sensors. ACS OMEGA 2023; 8:33202-33228. [PMID: 37744789 PMCID: PMC10515351 DOI: 10.1021/acsomega.3c03746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
Diabetes mellitus is a prevalent chronic health condition that has caused millions of deaths worldwide. Monitoring blood glucose levels is crucial in diabetes management, aiding in clinical decision making and reducing the incidence of hypoglycemic episodes, thereby decreasing morbidity and mortality rates. Despite advancements in glucose monitoring (GM), the development of noninvasive, rapid, accurate, sensitive, selective, and stable systems for continuous monitoring remains a challenge. Addressing these challenges is critical to improving the clinical utility of GM technologies in diabetes management. In this concept, cyclodextrins (CDs) can be instrumental in the development of GM systems due to their high supramolecular recognition capabilities based on the host-guest interaction. The introduction of CDs into GM systems not only impacts the sensitivity, selectivity, and detection limit of the monitoring process but also improves biocompatibility and stability. These findings motivated the current review to provide a comprehensive summary of CD-based blood glucose sensors and their chemistry of glucose detection, efficiency, and accuracy. We categorize CD-based sensors into four groups based on their modification strategies, including CD-modified boronic acid, CD-modified mediators, CD-modified nanoparticles, and CD-modified functionalized polymers. These findings shed light on the potential of CD-based sensors as a promising tool for continuous GM in diabetes mellitus management.
Collapse
Affiliation(s)
- Siamak Javanbakht
- Research
Laboratory of Dendrimers and Natural Polymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Sima Darvishi
- Faculty
of Chemistry, Khajeh Nasir Toosi University, Tehran, Iran
| | - Faeze Dorchei
- Polymer
Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | | | - Marjan Dehghani
- Department
of Chemistry, Shahid Bahonar University
of Kerman, Kerman 76169, Iran
| | - Malihe Pooresmaeil
- Research
Laboratory of Dendrimers and Natural Polymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Yota Suzuki
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
- Graduate
School of Science and Engineering, Saitama
University, Saitama 338-8570, Japan
| | - Qurat Ul Ain
- Department
of Materials Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad H-12, Pakistan
| | - Leire Ruiz Rubio
- Macromolecular
Chemistry Group (LQM), Department of Physical Chemistry, Faculty of
Science and Technology, University of Basque
Country (UPV/EHU), Leioa 48940, Spain
- Basque
Centre for Materials, Applications and Nanostructures
(BCMaterials), UPV/EHU
Science Park, Leioa 48940, Spain
| | - Ahmad Shaabani
- Faculty
of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Takashi Hayashita
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Hassan Namazi
- Research
Laboratory of Dendrimers and Natural Polymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
- Research
Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran
| | - Abolfazl Heydari
- Polymer
Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- National
Institute of Rheumatic Diseases, Nábrežie I. Krasku 4782/4, 921 12 Piešt’any, Slovakia
| |
Collapse
|
43
|
Li J, Mahdavi B, Baghayeri M, Rivandi B, Lotfi M, Mahdi Zangeneh M, Zangeneh A, Tayebee R. A new formulation of Ni/Zn bi-metallic nanocomposite and evaluation of its applications for pollution removal, photocatalytic, electrochemical sensing, and anti-breast cancer. ENVIRONMENTAL RESEARCH 2023; 233:116462. [PMID: 37352956 DOI: 10.1016/j.envres.2023.116462] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/17/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
Nanocomposites have gained attention due to their variety of applications in different fields. In this research, we have reported a green synthesis of a bi-metallic nanocomposite of nickel and zinc using an aqueous extract of Citrus sinensis in the presence of chitosan (Ni/Zn@orange/chitosan). The nanocomposite was characterized using different techniques. We have examined various applications for Ni/Zn@orange/chitosan. The NPs were manufactured in spherical morphology with a particle range size of 17.34-90.51 nm. Ni/Zn@orange/chitosan showed an acceptable ability to remove dyes of Congo red and methyl orange from an aqueous solution after 80 min furthermore, it uptaking the drug mefenamic acid from a solution. Ni/Zn@orange/chitosan also exhibited great photocatalytic activity in synthesizing benzimidazole using benzyl alcohol and o-phenylenediamine. Ni/Zn@orange/chitosan was found as a potent electrochemical sensor to determine glucose. In the molecular and cellular section of the current research, the cells with composite nanoparticles were studied by MTT way about the anti-breast adenocarcinoma potentials malignant cell lines. The IC50 of composite nanoparticles were 320, 460, 328, 500, 325, 379, 350, and 396 μg/mL concering RBA, NMU, SK-BR-3, CAMA-1, MCF7, AU565, MDA-MB-468, and Hs 281.T breast adenocarcinoma cell lines, respectively. The results revealed the newly synthesized nanocomposite is a potent photocatalyst, dye pollution removal agent, and an acceptable new drug to treat breast cancer.
Collapse
Affiliation(s)
- Jia Li
- Department of Breast Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi Province, 030013, China.
| | - Behnam Mahdavi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran.
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran.
| | - Behnaz Rivandi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Maryam Lotfi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Mohammad Mahdi Zangeneh
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Akram Zangeneh
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Reza Tayebee
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| |
Collapse
|
44
|
Qian X, Ko A, Li H, Liao C. Saliva sampling strategies affecting the salivary glucose measurement. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4598-4605. [PMID: 37655760 DOI: 10.1039/d3ay01005h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Characterized by sustained elevated blood glucose levels, diabetes mellitus has become one of the largest global public health concerns by imposing a heavy global burden on socio-economic development. To date, regular blood glucose level check by performing a finger-prick test has been a routine strategy to monitor diabetes. However, the intrusive nature of finger blood prick tests makes it challenging for individuals to maintain consistent testing routines. Recently, salivary glucose measurement (SGM) has increasingly become a non-invasive alternative to traditional blood glucose testing for diabetes. Despite that, further research is needed to standardize the collection methods and address the issues of variability to ensure accurate and reliable SGM. To resolve possible remaining issues in SGM, we here thoroughly explored saliva sampling strategies that could impact the measurement results. Additionally, the effects of supplements taken, mouth washing, gum chewing, and smoking were collectively analyzed, followed by a continuous SGM over a long period, forming the stepping stone for the practical transitional development of SGM in non-invasive diabetes monitoring.
Collapse
Affiliation(s)
- Xia Qian
- Medical School, Sun Yat-Sen University, Guangzhou, China
- Renaissance Bio, New Territories, Hong Kong SAR, China.
| | - Anthony Ko
- Renaissance Bio, New Territories, Hong Kong SAR, China.
| | - Haifeng Li
- Shenzhen People's Hospital, Shenzhen, China
| | - Caizhi Liao
- Renaissance Bio, New Territories, Hong Kong SAR, China.
| |
Collapse
|
45
|
Ko A, Liao C. Paper-based colorimetric sensors for point-of-care testing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4377-4404. [PMID: 37641934 DOI: 10.1039/d3ay00943b] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
By eliminating the need for sample transportation and centralized laboratory analysis, point-of-care testing (POCT) enables on-the-spot testing, with results available within minutes, leading to improved patient management and overall healthcare efficiency. Motivated by the rapid development of POCT, paper-based colorimetric sensing, a powerful analytical technique that exploits the changes in color or absorbance of a chemical species to detect and quantify analytes of interest, has garnered increasing attention. In this review, we strive to provide a bird's eye view of the development landscape of paper-based colorimetric sensors that harness the unique properties of paper to create low-cost, easy-to-use, and disposable analytical devices, thematically covering both fundamental aspects and categorized applications. In the end, we authors summarized the review with the remaining challenges and emerging opportunities. Hopefully, this review will ignite new research endeavors in the realm of paper-based colorimetric sensors.
Collapse
Affiliation(s)
- Anthony Ko
- Renaissance Bio, New Territories, Hong Kong SAR, China.
- Medical School, Sun Yat-Sen University, Guangzhou, China
| | - Caizhi Liao
- Renaissance Bio, New Territories, Hong Kong SAR, China.
| |
Collapse
|
46
|
Yuwen T, Shu D, Zou H, Yang X, Wang S, Zhang S, Liu Q, Wang X, Wang G, Zhang Y, Zang G. Carbon nanotubes: a powerful bridge for conductivity and flexibility in electrochemical glucose sensors. J Nanobiotechnology 2023; 21:320. [PMID: 37679841 PMCID: PMC10483845 DOI: 10.1186/s12951-023-02088-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
The utilization of nanomaterials in the biosensor field has garnered substantial attention in recent years. Initially, the emphasis was on enhancing the sensor current rather than material interactions. However, carbon nanotubes (CNTs) have gained prominence in glucose sensors due to their high aspect ratio, remarkable chemical stability, and notable optical and electronic attributes. The diverse nanostructures and metal surface designs of CNTs, coupled with their exceptional physical and chemical properties, have led to diverse applications in electrochemical glucose sensor research. Substantial progress has been achieved, particularly in constructing flexible interfaces based on CNTs. This review focuses on CNT-based sensor design, manufacturing advancements, material synergy effects, and minimally invasive/noninvasive glucose monitoring devices. The review also discusses the trend toward simultaneous detection of multiple markers in glucose sensors and the pivotal role played by CNTs in this trend. Furthermore, the latest applications of CNTs in electrochemical glucose sensors are explored, accompanied by an overview of the current status, challenges, and future prospects of CNT-based sensors and their potential applications.
Collapse
Affiliation(s)
- Tianyi Yuwen
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Danting Shu
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Hanyan Zou
- Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Xinrui Yang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Shijun Wang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Shuheng Zhang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Qichen Liu
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Xiangxiu Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- JinFeng Laboratory, Chongqing, 401329, China
- Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Guixue Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| | - Yuchan Zhang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
| | - Guangchao Zang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
47
|
Zhang Q, Li P, Wu J, Peng Y, Pang H. Pyridine-Regulated Lamellar Nickel-Based Metal-Organic Framework (Ni-MOF) for Nonenzymatic Electrochemical Glucose Sensor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304102. [PMID: 37470100 PMCID: PMC10520646 DOI: 10.1002/advs.202304102] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/09/2023] [Indexed: 07/21/2023]
Abstract
2D metal-organic frameworks (MOFs) are considered as promising electrochemical sensing materials and have attracted a lot of attention in recent years. Compared with bulk MOFs, the construction of 2D MOFs can increase the exposure of active sites by obtaining a larger surface area ratio. Herein, a facile one-pot hydrothermal synthesis of pyridine-regulated lamellar Ni-MOFs with ultrathin and well-defined 2D morphology is described. Compared with the bulk structure, the 2D lamellar Ni-MOF has higher surface area and active site density, showing better electrochemical glucose sensing performance. The 2D lamellar Ni-MOF exhibits a fast amperometric response of less than 3 s and a high sensitivity of 907.54 µA mm-1 cm-2 toward glucose with a wide linear range of 0.5-2665.5 µm. Furthermore, the 2D lamellar Ni-MOF also possesses excellent stability and reproducibility, and can be used to detect glucose with high accuracy and reliability in different environments.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009P. R. China
| | - Panpan Li
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009P. R. China
| | - Jun Wu
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009P. R. China
| | - Yi Peng
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009P. R. China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009P. R. China
| |
Collapse
|
48
|
Wang Y, Wu Y, Lei Y. Microneedle-based glucose monitoring: a review from sampling methods to wearable biosensors. Biomater Sci 2023; 11:5727-5757. [PMID: 37431216 DOI: 10.1039/d3bm00409k] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Blood glucose (BG) monitoring is critical for diabetes management. In recent years, microneedle (MN)-based technology has attracted emerging attention in glucose sensing and detection. In this review, we summarized MN-based sampling for glucose collection and glucose analysis in detail. First, different principles of MN-based biofluid extraction were elaborated, including external negative pressure, capillary force, swelling force and iontophoresis, which would guide the shape design and material optimization of MNs. Second, MNs coupled with different analysis approaches, including Raman methods, colorimetry, fluorescence, and electrochemical sensing, were emphasized to exhibit the trend towards highly integrated wearable sensors. Finally, the future development prospects of MN-based devices were discussed.
Collapse
Affiliation(s)
- Yan Wang
- School of Power and Mechanical Engineering & The Institute of Technological Science, Wuhan University, Wuhan 430072, China.
| | - You Wu
- School of Power and Mechanical Engineering & The Institute of Technological Science, Wuhan University, Wuhan 430072, China.
| | - Yifeng Lei
- School of Power and Mechanical Engineering & The Institute of Technological Science, Wuhan University, Wuhan 430072, China.
- Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
49
|
Li Z, Zeng W, Li Y. Recent Progress in MOF-Based Electrochemical Sensors for Non-Enzymatic Glucose Detection. Molecules 2023; 28:4891. [PMID: 37446552 DOI: 10.3390/molecules28134891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
In recent years, substantial advancements have been made in the development of enzyme-free glucose sensors utilizing pristine metal-organic frameworks (MOFs) and their combinations. This paper provides a comprehensive exploration of various MOF-based glucose sensors, encompassing monometallic MOF sensors as well as multi-metal MOF combinations. These approaches demonstrate improved glucose detection capabilities, facilitated by the augmented surface area and availability of active sites within the MOF structures. Furthermore, the paper delves into the application of MOF complexes and derivatives in enzyme-free glucose sensing. Derivatives incorporating carbon or metal components, such as carbon cloth synthesis, rGO-MOF composites, and core-shell structures incorporating noble metals, exhibit enhanced electrochemical performance. Additionally, the integration of MOFs with foams or biomolecules, such as porphyrins, enhances the electrocatalytic properties for glucose detection. Finally, this paper concludes with an outlook on the future development prospects of enzyme-free glucose MOF sensors.
Collapse
Affiliation(s)
- Ziteng Li
- College of Materials Science and Engineering, Chongqing University, Chongqing 400030, China
| | - Wen Zeng
- College of Materials Science and Engineering, Chongqing University, Chongqing 400030, China
| | - Yanqiong Li
- School of Electronic Information & Electrical Engineering, Chongqing University of Arts and Sciences, Chongqing 400030, China
| |
Collapse
|
50
|
Li P, Peng Y, Cai J, Bai Y, Li Q, Pang H. Recent Advances in Metal-Organic Frameworks (MOFs) and Their Composites for Non-Enzymatic Electrochemical Glucose Sensors. Bioengineering (Basel) 2023; 10:733. [PMID: 37370664 DOI: 10.3390/bioengineering10060733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, with pressing needs such as diabetes management, the detection of glucose in various substrates has attracted unprecedented interest from researchers in academia and industry. As a relatively new glucose sensor, non-enzymatic target detection has the characteristics of high sensitivity, good stability and simple manufacturing process. However, it is urgent to explore novel materials with low cost, high stability and excellent performance to modify electrodes. Metal-organic frameworks (MOFs) and their composites have the advantages of large surface area, high porosity and high catalytic efficiency, which can be utilized as excellent materials for electrode modification of non-enzymatic electrochemical glucose sensors. However, MOFs and their composites still face various challenges and difficulties that limit their further commercialization. This review introduces the applications and the challenges of MOFs and their composites in non-enzymatic electrochemical glucose sensors. Finally, an outlook on the development of MOFs and their composites is also presented.
Collapse
Affiliation(s)
- Panpan Li
- Guangling College, Yangzhou University, Yangzhou 225009, China
| | - Yi Peng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Jinpeng Cai
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yang Bai
- School of Pharmacy, Changzhou University, Changzhou 213164, China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210008, China
| | - Qing Li
- Guangling College, Yangzhou University, Yangzhou 225009, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|