1
|
Lin R, Huang Z, Liu Y, Zhou Y. Analysis of Personalized Cardiovascular Drug Therapy: From Monitoring Technologies to Data Integration and Future Perspectives. BIOSENSORS 2025; 15:191. [PMID: 40136988 PMCID: PMC11940481 DOI: 10.3390/bios15030191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/09/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025]
Abstract
Cardiovascular diseases have long been a major challenge to human health, and the treatment differences caused by individual variability remain unresolved. In recent years, personalized cardiovascular drug therapy has attracted widespread attention. This paper reviews the strategies for achieving personalized cardiovascular drug therapy through traditional dynamic monitoring and multidimensional data integration and analysis. It focuses on key technologies for dynamic monitoring, dynamic monitoring based on individual differences, and multidimensional data integration and analysis. By systematically reviewing the relevant literature, the main challenges in current research and the proposed potential directions for future studies were summarized.
Collapse
Affiliation(s)
| | | | | | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa 999078, Macau
| |
Collapse
|
2
|
Zou J, Bai H, Zhang L, Shen Y, Yang C, Zhuang W, Hu J, Yao Y, Hu WW. Ion-sensitive field effect transistor biosensors for biomarker detection: current progress and challenges. J Mater Chem B 2024; 12:8523-8542. [PMID: 39082127 DOI: 10.1039/d4tb00719k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The ion-sensitive field effect transistor (ISFET) has emerged as a crucial sensor device, owing to its numerous benefits such as label-free operation, miniaturization, high sensitivity, and rapid response time. Currently, ISFET technology excels in detecting ions, nucleic acids, proteins, and cellular components, with widespread applications in early disease screening, condition monitoring, and drug analysis. Recent advancements in sensing techniques, coupled with breakthroughs in nanomaterials and microelectronics, have significantly improved sensor performance. These developments are steering ISFETs toward a promising future characterized by enhanced sensitivity, seamless integration, and multifaceted detection capabilities. This review explores the structure and operational principles of ISFETs, highlighting recent research in ISFET biosensors for biomarker detection. It also examines the limitations of these sensors, proposes potential solutions, and anticipates their future trajectory. This review aims to provide a valuable reference for advancing ISFETs in the field of biomarker measurement.
Collapse
Affiliation(s)
- Jie Zou
- Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Department of Laboratory Medicine, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hao Bai
- Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Department of Laboratory Medicine, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Limei Zhang
- Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Department of Laboratory Medicine, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yan Shen
- Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Chengli Yang
- Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Weihua Zhuang
- Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jie Hu
- Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yongchao Yao
- Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Wenchuang Walter Hu
- Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Department of Laboratory Medicine, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
3
|
Xu W, Althumayri M, Mohammad A, Ceylan Koydemir H. Foldable low-cost point-of-care device for testing blood coagulation using smartphones. Biosens Bioelectron 2023; 242:115755. [PMID: 37839348 DOI: 10.1016/j.bios.2023.115755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Cardiovascular diseases (CVDs) caused by thrombotic events are a significant global health concern, affecting millions of people worldwide. The international normalized ratio (INR) is the most widely used measure of coagulation status, and frequent testing is required to adjust blood-thinning drug dosage, requiring hospital visits and experts to perform the test. Here we present a low-cost and portable smartphone-based device for screening INR levels from whole blood samples at the point of care. Our device uses a 3D printed platform and light-emitting diode backlight modules to create a uniform optical environment, and its foldable design allows for easy transport. Our device also features an algorithm that allows users to acquire and process video of sample flow in a microfluidic channel on their smartphone, providing a cost-effective and convenient option for blood coagulation monitoring at the point of care. We tested the performance of our smartphone-based INR device using both commercially available control samples and clinical human blood samples, demonstrating high accuracy and reliability. Our device has the potential to improve patient outcomes by enabling more frequent monitoring and, as appropriate, dosage adjustments of blood-thinning drugs, providing an affordable and portable option for screening INR levels at the point of care.
Collapse
Affiliation(s)
- Weiming Xu
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, TX, 77843, USA
| | - Majed Althumayri
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, TX, 77843, USA
| | - Amin Mohammad
- Texas A&M Health Science Center, Bryan, TX, 77807, USA; Department of Pathology, Baylor Scott & White Medical Center, Temple, TX, 76508, USA
| | - Hatice Ceylan Koydemir
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, TX, 77843, USA.
| |
Collapse
|
4
|
Pourang S, Sekhon UDS, Disharoon D, Ahuja SP, Suster MA, Sen Gupta A, Mohseni P. Assessment of fibrinolytic status in whole blood using a dielectric coagulometry microsensor. Biosens Bioelectron 2022; 210:114299. [PMID: 35533507 PMCID: PMC10124761 DOI: 10.1016/j.bios.2022.114299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 02/09/2023]
Abstract
Rapid assessment of the fibrinolytic status in whole blood at the point-of-care/point-of-injury (POC/POI) is clinically important to guide timely management of uncontrolled bleeding in patients suffering from hyperfibrinolysis after a traumatic injury. In this work, we present a three-dimensional, parallel-plate, capacitive sensor - termed ClotChip - that measures the temporal variation in the real part of blood dielectric permittivity at 1 MHz as the sample undergoes coagulation within a microfluidic channel with <10 μL of total volume. The ClotChip sensor features two distinct readout parameters, namely, lysis time (LT) and maximum lysis rate (MLR) that are shown to be sensitive to the fibrinolytic status in whole blood. Specifically, LT identifies the time that it takes from the onset of coagulation for the fibrin clot to mostly dissolve in the blood sample during fibrinolysis, whereas MLR captures the rate of fibrin clot lysis. Our findings are validated through correlative measurements with a rotational thromboelastometry (ROTEM) assay of clot viscoelasticity, qualitative/quantitative assessments of clot stability, and scanning electron microscope imaging of clot ultrastructural changes, all in a tissue plasminogen activator (tPA)-induced fibrinolytic environment. Moreover, we demonstrate the ClotChip sensor ability to detect the hemostatic rescue that occurs when the tPA-induced upregulated fibrinolysis is inhibited by addition of tranexamic acid (TXA) - a potent antifibrinolytic drug. This work demonstrates the potential of ClotChip as a diagnostic platform for rapid POC/POI assessment of fibrinolysis-related hemostatic abnormalities in whole blood to guide therapy.
Collapse
Affiliation(s)
- Sina Pourang
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ujjal D S Sekhon
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Dante Disharoon
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sanjay P Ahuja
- Division of Pediatric Hematology/Oncology, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Michael A Suster
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Pedram Mohseni
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
5
|
Kimura H, Asano R. Strategies to simplify operation procedures for applying labeled antibody-based immunosensors to point-of-care testing. Anal Biochem 2022; 654:114806. [PMID: 35835209 DOI: 10.1016/j.ab.2022.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/12/2022] [Accepted: 07/07/2022] [Indexed: 11/01/2022]
Abstract
Point-of-care testing (POCT) is an ideal testing format for the rapid and on-site detection of analytes in patients, and facilitates disease diagnosis and monitoring. Molecular recognition elements are required for the specific detection of analytes, and biosensors that use antibodies as the molecular recognition elements are called immunosensors. Traditional immunosensors such as sandwich enzyme-linked immunosorbent assay (ELISA) require complicated procedures to form immunocomplexes consisting of detection antibodies, analytes, and capture antibodies. They also require long incubation times, washing procedures, and large and expensive specialized equipment that must be operated by laboratory technicians. Immunosensors for POCT should be systems that use relatively small pieces of equipment and do not require special training. In this review, to help in the construction of immunosensors for POCT, we have summarized the recently reported strategies for simplifying the operation, incubation, and washing procedures. We focused on the optical and electrochemical detection principles of immunosensors, compared the strategies for operation, sensitivity, and detection devices and discussed the ideal system. Combining detection devices that can be fabricated inexpensively and strategies that enable simplification of operation procedures and enhance sensitivities will contribute to the development of immunosensors for POCT.
Collapse
Affiliation(s)
- Hayato Kimura
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan.
| |
Collapse
|
6
|
Liu TL, Dong Y, Chen S, Zhou J, Ma Z, Li J. Battery-free, tuning circuit-inspired wireless sensor systems for detection of multiple biomarkers in bodily fluids. SCIENCE ADVANCES 2022; 8:eabo7049. [PMID: 35857473 PMCID: PMC9258955 DOI: 10.1126/sciadv.abo7049] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Tracking the concentration of biomarkers in biofluids can provide crucial information about health status. However, the complexity and nonideal form factors of conventional digital wireless schemes impose challenges in realizing biointegrated, lightweight, and miniaturized sensors. Inspired by the working principle of tuning circuits in radio frequency electronics, this study reports a class of battery-free wireless biochemical sensors: In a resonance circuit, the coupling between a sensing interface and an inductor-capacitor oscillator through a pair of varactor diodes converts a change in electric potential into a modulation in capacitance, resulting in a quantifiable shift of the resonance circuit. Proper design of sensing interfaces with biorecognition elements enables the detection of various biomarkers, including ions, neurotransmitters, and metabolites. Demonstrations of "smart accessories" and miniaturized probes suggest the broad utility of this circuit model. The design concepts and sensing strategies provide a realistic pathway to building biointegrated electronics for wireless biochemical sensing.
Collapse
Affiliation(s)
- Tzu-Li Liu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43220, USA
| | - Yan Dong
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43220, USA
| | - Shulin Chen
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43220, USA
| | - Jie Zhou
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zhenqiang Ma
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jinghua Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43220, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43220, USA
| |
Collapse
|
7
|
Lv J, Zhang L, Du W, Ling G, Zhang P. Functional gold nanoparticles for diagnosis, treatment and prevention of thrombus. J Control Release 2022; 345:572-585. [DOI: 10.1016/j.jconrel.2022.03.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022]
|
8
|
Ye S, Williams NX, Franklin A. Aerosol Jet Printing of SU-8 as a Passivation Layer Against Ionic Solutions. JOURNAL OF ELECTRONIC MATERIALS 2022; 51:1583-1590. [PMID: 35991773 PMCID: PMC9387772 DOI: 10.1007/s11664-021-09396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/13/2021] [Indexed: 06/15/2023]
Abstract
To ensure stability for low-cost electronics used in direct contact with ionic solutions (such as electronic biosensors), electrodes are frequently passivated to protect against current leakage, which leads to corrosion. The epoxy-based polymer SU-8 yields favorable properties for passivation against ionic solutions. However, it is nearly universally patterned via cleanroom techniques, which increases device cost and fabrication complexity. Printing electronic components has been shown to be a viable approach for decreasing fabrication cost. Previous reports on SU-8 printing focus on the resultant printed structure, with little emphasis on its subsequent use as a passivation layer. Here, we demonstrate the printing of SU-8 with an aerosol jet printer using ultrasonic aerosolization. We show that SU-8 can be printed without reformulation, and that printed SU-8 is a viable passivation layer over conductive silver lines, when tested in ionic solutions. Extending the printed SU-8 film beyond the underlying conductive electrodes by 100 μm produced a six order of magnitude decrease in leakage current and resulted high stability over 20 voltage sweeps. Finally, we optimized post-printing cure time to 15 minutes at 160°C, which further minimized leakage current. While the development of low-cost, electronic biosensing devices has increasingly moved towards printing methods, the lack of a printed passivation strategy has hindered this transition. The advancements made in this study towards an aerosol jet printable SU-8 passivation layer provide useful progress towards a fully printed, stable electronic biosensing device.
Collapse
Affiliation(s)
- Shulin Ye
- Department of Electrical and Computer Engineering, Duke University. Durham, NC 27708
| | - Nicholas X Williams
- Department of Electrical and Computer Engineering, Duke University. Durham, NC 27708
| | - Aaron Franklin
- Department of Electrical and Computer Engineering, Duke University. Durham, NC 27708
| |
Collapse
|
9
|
Abdulhay EW, Khnouf RE, Karain YM, Al Omari TK, Ebeid NM, Al Muhtaseb TH, Arunkumar N, Thilagaraj M, Ramirez-Gonzalez G. Polymethyl Methacrylate-Based Smart Microfluidic Point-of-Care Testing of Prothrombin Time and International Normalized Ratio through Optical Detection. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5975228. [PMID: 35222684 PMCID: PMC8881148 DOI: 10.1155/2022/5975228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 11/18/2022]
Abstract
The mechanical heart valve is a crucial solution for many patients. However, it cannot function on the state of blood as human tissue valves. Thus, people with mechanical valves are put under anticoagulant therapy. A good measurement of the state of blood and how long it takes blood to form clots is the prothrombin time (PT); moreover, it is an indicator of how well the anticoagulant therapy is, and of whether the response of the patient to the drug is as needed. For a more specific standardized measurement of coagulation time, an international normalized ratio (INR) is established. Clinical testing of INR and PT is relatively easy. However, it requires the patient to visit the clinic for evaluation purposes. Many techniques are therefore being developed to provide PT and INR self-testing devices. Unfortunately, those solutions are either inaccurate, complex, or expensive. The present work approaches the design of an anticoagulation self-monitoring device that is easy to use, accurate, and relatively inexpensive. Hence, a two-channel polymethyl methacrylate-based microfluidic point-of-care (POC) smart device has been developed. The Arduino based lab-on-a-chip device applies optical properties to a small amount of blood. The achieved accuracy is 96.7%.
Collapse
Affiliation(s)
- Enas W. Abdulhay
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ruba E. Khnouf
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Yahia M. Karain
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Taqwa K. Al Omari
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Nourshan M. Ebeid
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Tamara H. Al Muhtaseb
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - N. Arunkumar
- Department of Biomedical Engineering, Rathinam Technical Campus, Coimbatore, India
| | - M. Thilagaraj
- Department of Electronics and Instrumentation Engineering, Karpagam College of Engineering, Coimbatore, India
| | | |
Collapse
|
10
|
Huang L, Zeng Y, Liu X, Tang D. Pressure-Based Immunoassays with Versatile Electronic Sensors for Carcinoembryonic Antigen Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46440-46450. [PMID: 34547887 DOI: 10.1021/acsami.1c16514] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pressure-based immunoassays have been studied for point-of-care testing for which increasing the sensitivity is still a challenge. In this study, we described an enhanced pressure-based immunoassay with a versatile electronic sensor for the sensitive biological analysis. The versatile electronic sensor had multifunctional sensing capabilities with temperature and pressure recording. Magnetic bead-modified capture antibody and platinum nanoparticle-labeled detection antibody were used as the biorecognition element of the target carcinoembryonic antigen (CEA) (as a model analyte) and would form a sandwich-type immune complex with CEA. After simple magnetic separation, this complex was transferred into the detection chamber, which contained both hydrogen peroxide (H2O2) and 3,3',5,5'-tetramethylbenzidine (TMB). With the catalytic ability of PtNPs, the "H2O2-TMB-PtNPs" system was catalyzed to generate a large amount of oxygen (O2) and photothermal agent of oxidizer TMB (ox-TMB). Meanwhile, in a sealed chamber, further irradiation with an 808 nm near-infrared laser led to a triple-step signal amplification strategy of pressure increase, temperature increase, and gas thermal expansion to receive a strong electrical signal through the electronic sensor in real time. Thus, the amplified electrical signal from the electronic sensor could reveal the target concentration. In addition, we also verified that the synergistic system with two physical quantities had a lower limit of detection and a wider detection range compared to the detection system with a single physical quantity. In general, this immunoassay not only helped in exploring an effective signal amplification pathway but also offered an opportunity for the development of versatile electronic sensors in point-of-care settings.
Collapse
Affiliation(s)
- Lingting Huang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
- Chongqing Vocational Institute of Engineering, Chongqing 402260, P. R. China
| |
Collapse
|
11
|
A handheld testing device for the fast and ultrasensitive recognition of cardiac troponin I via an ion-sensitive field-effect transistor. Biosens Bioelectron 2021; 193:113554. [PMID: 34391177 DOI: 10.1016/j.bios.2021.113554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/07/2021] [Indexed: 12/21/2022]
Abstract
Cardiac troponin I (cTnI) is an efficient and specific biomarker for the accurate diagnosis of acute myocardial infarction (AMI), one of the diseases with the highest mortality worldwide. Due to the short course and high fatality of this disease, a rapid, accurate and portable device for quantitative detection is urgently needed for early diagnosis and treatment. In this work, we designed a handheld device based on a dual-gate ion-sensitive field-effect transistor (ISFET) for early and accurate warning of AMI through cTnI detection. A one-step enzyme-linked immunosorbent assay strategy was proposed for use in this device to recognize trace cTnI in serum, converting the cTnI concentration to a drain-source current generated by an ultrasensitive ISFET. This portable device exhibited an ultrahigh sensitivity of 132 pA pg-1·mL-1, a wide linear range from 1 to 1000 pg/mL that enabled coverage far exceeding the threshold level (280 pg/mL), and a low detection limit of 0.3 pg/mL for the cTnI assay, which was much lower than the current diagnostic cut-off for a healthy control level for AMI (40 pg/mL). In addition, this handheld device showed satisfactory selectivity and reliable results in the analysis of real serum within 20 min, indicating its potential applications in early screening and diagnosis for the clinical evaluation of AMI.
Collapse
|
12
|
Rauf S, Lahcen AA, Aljedaibi A, Beduk T, Ilton de Oliveira Filho J, Salama KN. Gold nanostructured laser-scribed graphene: A new electrochemical biosensing platform for potential point-of-care testing of disease biomarkers. Biosens Bioelectron 2021; 180:113116. [PMID: 33662847 DOI: 10.1016/j.bios.2021.113116] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
Improvements in the laser-scribed graphene (LSG)-based electrodes are critical to overcoming limitations of bare LSG electrodes in terms of sensitivity, direct immobilization of detection probes for biosensor fabrication, and ease of integration with point-of-care (POC) devices. Herein, we introduce a new class of nanostructured gold modified LSG (LSG-AuNS) electrochemical sensing system comprising LSG-AuNS working electrode, LSG reference, and LSG counter electrode. LSG-AuNS electrodes are realized by electrodeposition of gold chloride (HAuCl4) solution, which gave~2-fold enhancement in sensitivity and electrocatalytic activity compared to bare LSG electrode and commercially available screen-printed gold electrode (SPAuE). We demonstrate LSG-AuNS electrochemical aptasensor for detecting human epidermal growth factor receptor 2 (Her-2) with a limit of detection (LOD) of 0.008 ng/mL and a linear range of 0.1-200 ng/mL. LSG-AuNS-aptasensor can easily detect different concentrations of Her-2 spiked in undiluted human serum. Finally, to show the LSG-AuNS sensor system's potential to develop POC biosensor devices, we integrated LSG-AuNS electrodes with a handheld electrochemical system operated using a custom-developed mobile application.
Collapse
Affiliation(s)
- Sakandar Rauf
- Sensors Lab, Advanced Membranes & Porous Materials Centre (AMPMC). Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Abdellatif Ait Lahcen
- Sensors Lab, Advanced Membranes & Porous Materials Centre (AMPMC). Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Abdulrahman Aljedaibi
- Sensors Lab, Advanced Membranes & Porous Materials Centre (AMPMC). Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Tutku Beduk
- Sensors Lab, Advanced Membranes & Porous Materials Centre (AMPMC). Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - José Ilton de Oliveira Filho
- Sensors Lab, Advanced Membranes & Porous Materials Centre (AMPMC). Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Khaled N Salama
- Sensors Lab, Advanced Membranes & Porous Materials Centre (AMPMC). Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|