1
|
Ino K, Mockaitis T, Shikuwa R, Oba K, Hiramoto K, Morkvenaite-Vilkonciene I, Abe H, Shiku H. Recent advances in electrochemiluminescence sensing for in vitro cell analysis: a review. ANAL SCI 2025; 41:557-569. [PMID: 39918697 DOI: 10.1007/s44211-025-00723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 05/10/2025]
Abstract
Electrochemiluminescence (ECL) is a chemiluminescence phenomenon triggered by electrochemical reactions and is widely used for (bio)chemical analyses and electrochemical bioimaging. Compared to fluorescence sensing, ECL sensing reduces background noise by eliminating autofluorescence associated with excitation light. In addition, compared with conventional electrochemical imaging with scanning electrochemical microscopes, ECL imaging is faster as it requires no scanning. Furthermore, unlike electrode arrays, ECL devices can function without complex wiring, simplifying their construction. These characteristics render ECL sensing a useful analytical tool. Recently, ECL sensing has been widely used for in vitro cell analysis due to high demand for biochips in regenerative medicine, drug screening, and microphysiological systems. This review focuses on recent advancements in ECL-based cell analysis with applications for the detection of H2O2, respiration activity, cell adhesion, lipid membranes, and bipolar electrochemistry-based devices.
Collapse
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan.
| | - Tomas Mockaitis
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
- Laboratory of Bioelectrochemical Technologies, Department of Nanotechnology, State Research Institute Centre for Physical Sciences and Technology, 10257, Vilnius, Lithuania
| | - Ryota Shikuwa
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Kimiharu Oba
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Kaoru Hiramoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 980-8577, Japan
- Research Institute of Electrical Communications, Tohoku University, Sendai, 980-8577, Japan
| | - Inga Morkvenaite-Vilkonciene
- Laboratory of Bioelectrochemical Technologies, Department of Nanotechnology, State Research Institute Centre for Physical Sciences and Technology, 10257, Vilnius, Lithuania
- Department of Electrical Engineering, Vilnius Gediminas Technical University, 10223, Vilnius, Lithuania
| | - Hiroya Abe
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan.
| |
Collapse
|
2
|
Liu L, Xu Y, Fan B, Wang H, Zhang Y, Tan X, Chai Y, Yuan R. Zinc-Organic Gel with Self-Catalysis-Enhanced Electrochemiluminescence as an Emitter for the Evaluation of Liver Cancer Markers. Anal Chem 2024; 96:20510-20518. [PMID: 39679621 DOI: 10.1021/acs.analchem.4c04766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Herein, a novel zinc-organic gel with self-catalysis-enhanced electrochemiluminescence (ECL) performance was prepared as an emitter for the first time to assemble a biosensor for ultrasensitive detection of microRNA-221 (miR-221) related to liver cancer. Interestingly, Zn2+ served as a central ion to coordinate with multidentate ligands 2,4,6-tris(4-carboxyphenyl)-1,3,5-triazine (TATB) at room temperature to form Zn-TATB-MOGs with excellent ECL intensity. More importantly, compared to metal ions (e.g., Al3+, Fe3+, and Eu3+) in the reported MOGs with the role of central ions, Zn2+ in Zn-TATB-MOGs not only served as the central ion but also as a coreaction promoter to facilitate the transformation of S2O82- into free radicals SO4•- to react with Zn-TATB-MOGs•- for further enhancing the ECL signal of Zn-TATB-MOGs. This was the first time to explore the promotion function of metal ions for coreaction reagents and realize the self-catalysis-enhanced ECL of MOGs. Additionally, the double domino-like cascade strand displacement amplification (DC-SDA) methods could overcome the shortcomings of time-consuming procedures and low DNA utilization in traditional cascade-free amplification methods, which significantly shortened the response time of the biosensor and improved the utilization rate of DNA. Consequently, the constructed biosensor achieved ultrasensitive detection of miR-221 with a detection limit of 2.19 aM, which was lower than reported works. This work provided new insight into broadening the development and improving the performance of MOGs as emitters, holding promise for applications in trace detection of biomarkers and early disease diagnosis.
Collapse
Affiliation(s)
- Linlei Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education Chongqing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Yuanqi Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education Chongqing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Bihui Fan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education Chongqing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Haijun Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education Chongqing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Yue Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Xingrong Tan
- Department of Endocrinology, 9th People's Hospital of Chongqing, Chongqing 400700, PR China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education Chongqing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education Chongqing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
3
|
Dai S, Chen H, Zhang Y, Zhang L, Liu T, Wu C, Sun M, Su G, Ye J, Wang Y, Rao H, Lu Z. Enhanced sensing of dinotefuran in foods based on BC/ZnCo MOF@PBA nano-enzyme induced MIECL sensor. Food Chem 2024; 467:142339. [PMID: 39657484 DOI: 10.1016/j.foodchem.2024.142339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/17/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
Natural enzymes can increase the signal of electrochemiluminescence. However, they are expensive and environmentally demanding. Here, the hollow prussian blue analogues decorated and biomass-derived carbon doped ZnCo metal-organic framework nano-enzyme was designed via self-assembly method. The BC/ZnCo MOF@PBA with peroxidase activity boosts the ECL intensity by catalyzing H2O2 to produce more free radicals as intermediates in the ECL reaction. Then, the molecularly imprinted polymer was synthesized by in-situ electropolymerization using o-aminophenol as the functional monomer and dinotefuran as the template molecule to form the MIECL sensor. This MIECL sensor exhibited high sensitivity for dinotefuran detection with a good linear relationship range from 0.01 μM to 100 μM, and a low detection limit of 0.0046 μM, which was better than the reported dinotefuran sensor. Additionally, this MIECL sensor has good selectivity, stability, repeatability, etc. Lastly, the MIECL sensor performed well in the fruit sample detection.
Collapse
Affiliation(s)
- Shijie Dai
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China; College of Forestry, Sichuan Agricultural University, Hui Ming Road, Chengdu 611130, PR China
| | - Haoran Chen
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Yongxing Zhang
- Anhui Province Key Laboratory of Intelligent Computing and Applications, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Lan Zhang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Tao Liu
- College of Information Engineering, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Jianshan Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| |
Collapse
|
4
|
Zhang LL, Li L, Wang D, Hong Y, Tang K, Hong J, Chen Z, Yang W, Lu L, Duan LY. Rapid redox-response featured visual ascorbic acid sensor based on simple-assembled europium metal-organic framework. Food Chem 2024; 459:140339. [PMID: 38986206 DOI: 10.1016/j.foodchem.2024.140339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
A facile, fast and visible sensing platform for ascorbic acid (AA) detection has been developed based on self-assembled hydrangea-like europium metal-organic framework (HL-EuMOF). HL-EuMOF was synthesized through a simple one-step mixing process with Eu3+ and 1, 10-phenanthroline-2, 9-dicarboxylic acid at room temperature, which exhibited excellent properties including strong red fluorescence, long decay lifetime (548.623 μs) and good luminescent stability. Based on the specific redox reaction between Fe3+ and AA, the HL-EuMOF@Fe3+ was fabricated with "turn-off" response for AA, where the resulting Fe2+ displayed effective fluorescence quenching ability toward HL-EuMOF. The sensor demonstrated low detection limit (31.94 nM), rapid response time (30 s) and high selectivity. Integration of smartphone-assisted RGB analysis with HL-EuMOF@Fe3+ permitted convenient and visible quantitative determination of AA level. This approach also presented good detection performances in complex human serum and beverage samples, which could provide a valuable tool for AA detection in biomedical research and food industry.
Collapse
Affiliation(s)
- Lin-Lin Zhang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Li Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, College of Science, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dan Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanping Hong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Kaijie Tang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiaxin Hong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zeng Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wuying Yang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Limin Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, College of Science, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Lu-Ying Duan
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
5
|
Wei C, Zhu S, Lu J, Guan A, Sun Y, Zeng L, Fu J, Luo X. Engineering the nanozyme hydrogel beads by polyvinyl alcohol/chitosan encapsulation with recyclable and sustainable catalytic activity for visual analysis of hydrogen peroxide. Anal Chim Acta 2024; 1320:343017. [PMID: 39142789 DOI: 10.1016/j.aca.2024.343017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Hydrogen peroxide (H2O2) plays a vital role in human health and have been regarded as a crucial analyte in metabolic processes, redox transformations, foods research and medical fields. Especially, the long-time and excessive digestion of H2O2 may even cause severe diseases. Although conventional instrumental methods and nanozymes-based colorimetric methods have been developed to accomplish the quantitative analysis of H2O2, the drawbacks of instrument dependence, cost-effectiveness, short lifespan, non-portable and unsustainable detection efficacies will limit their applications in different detection scenarios. RESULTS Herein, to address these challenges, we have proposed a novel strategy for nanozyme (RuO2) hydrogel preparation by the solid support from cross-linked polyvinyl alcohol (PVA) and chitosan (CS) to both inherit the dominant peroxidase-like (POD) activity and protect the RuO2 from losing efficacies. Taking advantages from the hydrogel, the encapsulated RuO2 were further prepared as the regularly spherical beads (PCRO) to exhibit the sustainable, recyclable, and robust catalysis. Moreover, the intrinsic color interferences which originated from RuO2 can be avoided by the encapsulation strategy to promote the detection accuracy. Meanwhile, the high mechanical strength of PCRO shows the high stability, reproducibility, and cyclic catalysis to achieve the recyclable detection performance and long lifetime storage (40 days), which enables the sensitively detection of H2O2 with the detection limit as lower to 15 μM and the wide detection linear range from 0.025 to 1.0 mM. SIGNIFICANCE On the basis of the unique properties, PCRO has been further adopted to construct a smartphone detection platform to realize the instrument-free and visual analysis of H2O2 in multi-types of milk and real water samples through capturing, processing, and analyzing the RGB values from the colorimetric photographs. Therefore, PCRO with the advanced detection efficacies holds the great potential in achieving the portable and on-site analysis of targets-of-interest.
Collapse
Affiliation(s)
- Chonghui Wei
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Shu Zhu
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Jiacheng Lu
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Aoran Guan
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Yan Sun
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Liyun Zeng
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Jinghao Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Xingyu Luo
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China.
| |
Collapse
|
6
|
Wang W, Ma Z, Shao Q, Wang J, Wu L, Huang X, Hu Z, Jiang N, Dai J, He L. Multi-MXene assisted large-scale manufacturing of electrochemical biosensors based on enzyme-nanoflower enhanced electrodes for the detection of H 2O 2 secreted from live cancer cells. NANOSCALE 2024; 16:12586-12598. [PMID: 38869377 DOI: 10.1039/d4nr01328j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In situ monitoring of H2O2 in cellular microenvironments plays a critical role in the early diagnosis and pretreatment of cancer, but is limited by the lack of efficient and low-cost strategies for the large-scale preparation of real-time biosensors. Herein, a universal strategy for MXene-based composite inks combined with a scalable screen-printing process is validated in large-scale manufacturing of electrochemical biosensors for in situ detection of H2O2 secreted from live cells. Compositing biocompatible carboxymethyl cellulose (CMCS) with excellent conductive MXene, a water-based ink electrode (MXene/CMCS) with tunable viscosity is efficiently printed with desirable printing accuracy. Subsequently, the MXene/CMCS@HRP electrochemical biosensor exhibits stable electrochemical performance through HRP nanoflower modification, showing rapid electron transport and high electrocatalytic capacity, and demonstrating a low limit of detection (0.29 μM) with a wide linear detection range (0.5 μM-3 mM), superior sensitivity (56.45 μA mM-1 cm-2), long-term stability and high anti-interference ability. Moreover, this electrochemical biosensor is effectively employed for in situ detection of H2O2 secreted from HeLa cells, revealing good biocompatibility and outstanding biosensing capability. This proposed strategy not only extends the possibility of low-cost biomedical devices, but also provides a promising approach for early diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Wenwu Wang
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Zeyu Ma
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Qi Shao
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jiangwang Wang
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Leixin Wu
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xiyao Huang
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Zilu Hu
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China
- Jinfeng Laboratory, Chongqing 401329, P. R. China
| | - Jun Dai
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Liang He
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, P. R. China.
- Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin R&D Park of Sichuan University, Yibin 644005, P. R. China
| |
Collapse
|
7
|
Jia Z, Zhang H, Chen Y, Fang Y, Zhang J, Hu S. Perovskite-based electrochemiluminescence analysis of H 2O 2. RSC Adv 2024; 14:19744-19751. [PMID: 38903679 PMCID: PMC11188618 DOI: 10.1039/d4ra03652b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
The detection of hydrogen peroxide (H2O2) represents an extensive requirement across various domains, including food, environmental, and medical fields. This study introduces a highly sensitive technique for the quantification of H2O2, integrating the electrochemiluminescence properties of perovskite with bio-catalyzed precipitation. A water-soluble perovskite-based electrochemiluminescence (ECL) biosensing interface was constructed, wherein H2O2 catalyzes a precipitation reaction that leads to the formation of an insoluble precipitate on the electrode surface. This occurrence effectively quenches the electrochemiluminescence signal of the perovskite, thus facilitating the quantitative detection of H2O2. The modified perovskite demonstrated excellent ECL performance, offering a stable signal source, while the bio-catalyzed precipitation reaction significantly amplified the quenching effect, thereby enhancing detection sensitivity. This strategy exhibits excellent stability and sensitivity, presenting a promising method for the detection of hydrogen peroxide, which holds great potential for applications in various fields.
Collapse
Affiliation(s)
- Ziyi Jia
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University Fuzhou Fujian 350122 P. R. China
| | - Hui Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University Fuzhou Fujian 350122 P. R. China
| | - Yuxin Chen
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University Fuzhou Fujian 350122 P. R. China
| | - Yuan Fang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University Fuzhou Fujian 350122 P. R. China
| | - Junnan Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University Fuzhou Fujian 350122 P. R. China
| | - Shanwen Hu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University Fuzhou Fujian 350122 P. R. China
| |
Collapse
|
8
|
Wang M, Zhu X, Yin Y, Ling G, Zhang P. Porous reticular Co@Fe metal-organic gel: dual-function simulated peroxidase nanozyme for both colorimetric sensing and antibacterial applications. J Mater Chem B 2024; 12:5418-5430. [PMID: 38716837 DOI: 10.1039/d4tb00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Constructing metal-organic gels (MOGs) with enzyme-catalyzed activity and studying their catalytic mechanism are crucial for the development of novel nanozyme materials. In this study, a Co@Fe MOG with excellent peroxidase activity was developed by a simple and mild one-pot process. The results showed that the material exhibited almost a single peroxidase activity under optimal pH conditions, which allowed it to attract and oxidize the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB). Based on the active electron transfer between the metal centers and the organic ligand in the synthetic material, the Co@Fe MOG-H2O2-TMB system was verified to be able to detect H2O2 and citric acid (CA). The catalytic microenvironment formed by the adsorption and the catalytic center accelerated the electron-transfer rate, which expedited the generation of hydroxyl radicals (˙OH, a kind of reactive oxygen species (ROS)) in the presence of H2O2. The persistence and high intensity of ˙OH generation were proven, which would endow Co@Fe MOG with a certain antibacterial ability, promoting the healing of bacteria-infected wounds. In conclusion, this study contributes to the development efforts toward the application systems of nanozymes for marker detection and antibacterial activity.
Collapse
Affiliation(s)
- Meng Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Yannan Yin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
9
|
Zhang X, Bai M, Ge L, Yao Y. Electrochemical control of the morphological evolution of PEDOT on a Ni-Co(OH) 2/carbon cloth surface to modulate the performance of wearable H 2O 2 sensors. NANOSCALE 2024; 16:8162-8176. [PMID: 38572710 DOI: 10.1039/d3nr06503k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The slow redox rate of hydrogen peroxide (H2O2) in neutral environments makes the H2O2 sensor inadequate for the detection of low levels of signalling molecules. The aim of this study is to fabricate a flexible sensing electrode by hydrothermally loading micro-nanometer Ni and Co(OH)2 on carbon cloth (CC) and electrochemically depositing poly(3,4-ethylenedioxythiophene) (PEDOT) on the surface of the electrode. The sensor presented high sensitivity (10.43 mA mM-1 cm-2), a wide detection range (0.033-120.848 mM), a low detection limit (0.92 nM), high stability, and excellent anti-interference performance in neutral solutions. Ni-Co(OH)2 provides abundant active sites while CC solves their agglomeration phenomenon and conductivity. The PEDOT film offers heightened conductivity, hydrophilicity, interfacial stability, and an electrochemically active surface area (ECSA). The side area of the chrysanthemum petal like PEDOT is 39 ± 7 times the bottom area, and PEDOT increases the ECSA of the composite to six times that of CC. Electrochemical precise control of PEDOT morphology to improve sensor performance provides a new strategy for the application of PEDOT in sensors.
Collapse
Affiliation(s)
- Xinmeng Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Mingyue Bai
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Lei Ge
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Yuanyuan Yao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, China.
| |
Collapse
|
10
|
Li W, Liang Z, Wang P, Ma Q. The luminescent principle and sensing mechanism of metal-organic framework for bioanalysis and bioimaging. Biosens Bioelectron 2024; 249:116008. [PMID: 38245932 DOI: 10.1016/j.bios.2024.116008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Metal-organic frameworks (MOFs) porous material have obtained more and more attention during the past decade. Among various MOFs materials, luminescent MOFs with specific chemical characteristics and excellent optical properties have been regarded as promising candidates in the research of cancer biomarkers detection and bioimaging. Therefore, the latest advances and the principal biosensing and imaging strategies based on the luminescent MOFs were discussed in this review. The effective synthesis methods of luminescent MOFs were emphasized firstly. Subsequently, the luminescent principle of MOFs has been summarized. Furthermore, the luminescent MOF-based sensing mechanisms have been highlighted to provide insights into the design of biosensors. The designability of LMOFs was suitable for different needs of biorecognition, detection, and imaging. Typical examples of luminescent MOF in the various cancer biomarkers detection and bioimaging were emphatically introduced. Finally, the future outlooks and challenges of luminescent MOF-based biosensing systems were proposed for clinical cancer diagnosis.
Collapse
Affiliation(s)
- Wenyan Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zihui Liang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
11
|
Tong W, Shi J, Yu Z, Ran B, Chen H, Zhu Y. High sensitivity and automatic chemiluminescence detection of glucose and lactate using a spin-disc paper-based device. LAB ON A CHIP 2024; 24:810-818. [PMID: 38224458 DOI: 10.1039/d3lc00937h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
This paper reports a spin-disc paper-based device with 10 individual detection units containing electromagnetic modules controlling the sample incubation time before chemiluminescence (CL) signal detection. After the sample was added to the top paper chip and incubated with the enzyme, the electromagnet was turned off to allow contact between the top and bottom paper. The H2O2 generated by the sample flowed vertically to the bottom paper and initiated the oxidase of the luminol to generate the CL signal. After one detection the disc was automatically rotated to the next position to repeat the above detection. The advantage of using the device over the lateral flow and the in situ detection was firstly proved using the detection of H2O2 and the glucose/lactate sample with 5 minute incubation. The CL intensity was increased 300 times/1000 times as the glucose/lactate was incubated for 5 minutes compared to the non-incubated samples. Afterward, the device was employed to separately detect glucose and lactate diluted in PBS, artificial sweat, artificial saliva, and fresh cell culture media. Finally, the device was employed to detect the glucose and lactate in the media collected over the 24 hour culture of PC3 cells. The uptake and production rates of glucose and lactate were correspondingly determined as 0.328 ± 0.015 pmol h-1 per cell and 1.254 ± 0.053 pmol h-1 per cell, respectively. The reported device has wide application potential due to its capabilities in automatic detection of multiple samples with very high sensitivity and small sample volume (down to 0.5 μL).
Collapse
Affiliation(s)
- Wenqiang Tong
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Jiaming Shi
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Zhihang Yu
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Bin Ran
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Yonggang Zhu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| |
Collapse
|
12
|
Gu C, Bai L, Hou T, Zhang L, Gai P, Li F. Dual-mode colorimetric and homogeneous electrochemical detection of intracellular/extracellular H 2O 2 based on FeS x/SiO 2 nanoparticles with high peroxidase-like activity. Anal Chim Acta 2023; 1265:341332. [PMID: 37230574 DOI: 10.1016/j.aca.2023.341332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
Abnormal expression of hydrogen peroxide (H2O2) elucidates cell dysfunctions and might induce the occurrence and deterioration of various diseases. However, limited by its ultralow level under pathophysiological conditions, intracellular and extracellular H2O2 was difficult to be detected accurately. Herein, a colorimetric and homogeneous electrochemical dual-mode biosensing platform was constructed for intracellular/extracellular H2O2 detection based on FeSx/SiO2 nanoparticles (FeSx/SiO2 NPs) with high peroxidase-like activity. In this design, FeSx/SiO2 NPs were synthesized with excellent catalytic activity and stability compared to natural enzymes, which improved the sensitivity and stability of sensing strategy. 3,3',5,5'-Tetramethylbenzidine (TMB), as a multifunctional indicator, was oxidized in the presence of H2O2, generated color changes and realized visual analysis. In this process, the characteristic peak current of TMB decreased, which could realize the ultrasensitive detection of H2O2 by homogeneous electrochemistry. Accordingly, by integrating visual analysis ability of colorimetry and the high sensitivity of homogeneous electrochemistry, the dual-mode biosensing platform exhibited high accuracy, sensitivity and reliability. The detection limits of H2O2 were 0.2 μM (S/N = 3) for the colorimetric method and 2.5 nM (S/N = 3) for the homogeneous electrochemistry assay. Therefore, the dual-mode biosensing platform provided a new opportunity for highly accurate and sensitive detection of intracellular/extracellular H2O2.
Collapse
Affiliation(s)
- Chengcheng Gu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Lipeng Bai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Lei Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Panpan Gai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China.
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, PR China.
| |
Collapse
|
13
|
Zhang T, Zhu S, Wang J, Liu Z, Wang M, Li S, Huang Q. Construction of a novel nano-enzyme for ultrasensitive glucose detection with surface-enhanced Raman scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122307. [PMID: 36630808 DOI: 10.1016/j.saa.2022.122307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Fabricating more sensitive, stable and low-cost nanomaterials for the detection of glucose is important for the disease diagnosis and monitoring. Herein, we established a nanocomposite (polypyrrole bridging GO@Au@MnO2) as a novel surface-enhanced Raman scattering (SERS) nanoprobe for the quantitative detection of glucose in trace serum. Each component in the nanocomposites played an irreplaceable role in SERS detection of glucose. Polypyrrole (PPy) could act as Raman signal and extra SERS signal molecules didn't need to be introduced; Graphene oxide (GO) and gold nanoparticles (Au NPs) could enhance Raman signal of PPy; Au NPs also acted as glucose oxidase, which can oxidize glucose to produce gluconic acid and hydrogen peroxide(H2O2); Manganese oxide (MnO2) further enhanced Raman signal of PPy and responded to hydrogen peroxide, which will induce the decrease of Raman intensity of PPy. Thus, glucose can be quantified according to Raman signal output of PPy, which displayed a liner range from 1 to 10 μM, with detectable limit of 0.114 μM. Because of the merits in sensitivity, convenience and versatility, the novel method shows large potential space for disease-related substance detection in the future.
Collapse
Affiliation(s)
- Tong Zhang
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Shunhua Zhu
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Jingjing Wang
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Zhiying Liu
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Mingxin Wang
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Shibao Li
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China.
| | - Qingli Huang
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Public Experimental Research Center of Xuzhou Medical University, Xuzhou City, Jiangsu 221004, China; School of Pharmacy of Xuzhou Medical University, Xuzhou City, Jiangsu 221004, China.
| |
Collapse
|
14
|
Wu W, Li J. Recent Progress on Nanozymes in Electrochemical Sensing. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
15
|
Yuan S, Yu R, Tu Y, Du Y, Feng X, Nie F. An enhanced chemiluminescence hybrids of luminol by sulfonated polyaniline decorated copper-based metal organic frame composite applicable to the measurement of hydrogen peroxide in a wide pH range. Talanta 2023; 254:124183. [PMID: 36512973 DOI: 10.1016/j.talanta.2022.124183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Here, sulfonated polyaniline (SPAN) was decorated on the surface of copper-based metal organic frame (HKUST-1) and the composite was functionalized by luminol to construct a chemiluminescence (CL) hybrids (SPAN/HKUST-1@Luminol). The as-prepared SPAN/HKUST-1@Luminol demonstrated a great dispersion and stability performance in aqueous solution. Moreover, the resultant SPAN/HKUST-1@Luminol hybrids exhibited extremely strong CL properties, and the CL quantum yield was 136 times higher than that of luminol. In particular, it exhibited outstanding CL activity not only under alkaline conditions, but also under neutral conditions. The sensitive response of the hybrid to hydrogen peroxide was used to construct CL methods for the detection of hydrogen peroxide at a wide range of pH, with the detection limit of 60 nM at a neutral condition and 25 pM at alkaline condition. Due to strong and stable signal of the SPAN/HKUST-1@Luminol, the CL method provides a viable tool for determination of H2O2 in biological systems and enabled the monitoring of stimulated production of H2O2 released by living cells.
Collapse
Affiliation(s)
- Sijie Yuan
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, Shaanxi, People's Republic of China
| | - Ru Yu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, Shaanxi, People's Republic of China
| | - Ying Tu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, Shaanxi, People's Republic of China
| | - Yanhua Du
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi'an, 710054, Shaanxi, People's Republic of China
| | - Xuan Feng
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi'an, 710054, Shaanxi, People's Republic of China
| | - Fei Nie
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, Shaanxi, People's Republic of China.
| |
Collapse
|
16
|
Liu ML, He XJ, Li Y, Zhao ML, Zhuo Y. A convenient and economical strategy for multiple-target electrochemiluminescence detection using peroxydisulfate solution. Talanta 2023; 251:123788. [DOI: 10.1016/j.talanta.2022.123788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022]
|
17
|
Mohan B, Kumar S, Kumar V, Jiao T, Sharma HK, Chen Q. Electrochemiluminescence metal-organic frameworks biosensing materials for detecting cancer biomarkers. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Liu Q, Cao S, Sun Q, Xing C, Gao W, Lu X, Li X, Yang G, Yu S, Chen Y. A perylenediimide modified SiO 2@TiO 2 yolk-shell light-responsive nanozyme: Improved peroxidase-like activity for H 2O 2 and sarcosine sensing. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129321. [PMID: 35739809 DOI: 10.1016/j.jhazmat.2022.129321] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Although light-responsive nanozyme have been widely used in colorimetric sensing, some limitations such as poor catalytic activity, low detection efficiency, and unclear structure-activity relationships remain unresolved. Herein, we prepared an excellent light-responsive peroxidase (POD) mimic, perylenediimide (PDI-OH) modified SiO2 @TiO2 yolk-shell spheres (SiO2 @TiO2/PDI-OH), based on DFT-assisted design. The experiment and DFT calculation revealed that the enhanced POD-like activity was mainly attributed to a suitable built-in electric field among adjacent PDI-OH molecules on the surface of the SiO2 @TiO2 and the unique yolk-shell structure with more reaction sites of SiO2 @TiO2. Consequently, the highly selective and ultrasensitive detection of H2O2 is achieved with a detection limit (LOD) of 7.6 × 10-8M. Further, the selective detection of sarcosine with LOD of 1.2 × 10-7 M was also achieved by introducing sarcosine oxidase (SOx). This colorimetric assay is successfully applied to selectively detect H2O2 and sarcosine levels in real samples. Controlled response time, anti-interference, and the robustness of the developed colorimetric sensor are the key advantages. And the present work firstly clarifies the effect of PDIs substituents on the POD-like activity of light-responsive nanozymes and provided new guidelines to develop high-performance nanozymes for hazardous substances detection.
Collapse
Affiliation(s)
- Qi Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Shoufu Cao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Qiqi Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Chuanwang Xing
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Wen Gao
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao, 266580, Shandong, China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Xiyou Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Guangwu Yang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| | - Sirong Yu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| |
Collapse
|
19
|
Li M, Li DY, Li ZY, Hu R, Yang YH, Yang T. A visual peroxidase mimicking aptasensor based on Pt nanoparticles-loaded on iron metal organic gel for fumonisin B1 analysis in corn meal. Biosens Bioelectron 2022; 209:114241. [DOI: 10.1016/j.bios.2022.114241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/12/2022] [Accepted: 04/01/2022] [Indexed: 01/10/2023]
|
20
|
Zhang Y, Cui Y, Sun M, Wang T, Liu T, Dai X, Zou P, Zhao Y, Wang X, Wang Y, Zhou M, Su G, Wu C, Yin H, Rao H, Lu Z. Deep learning-assisted smartphone-based molecularly imprinted electrochemiluminescence detection sensing platform: Protable device and visual monitoring furosemide. Biosens Bioelectron 2022; 209:114262. [DOI: 10.1016/j.bios.2022.114262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/02/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023]
|
21
|
Tan B, Zhang S, Wang K, Yan Y, Chu Z, Wang Q, Li X, Zhu G, Fan J, Zhao H. Moisture-resistant and green cyclodextrin metal-organic framework nanozyme based on cross-linkage for visible detection of cellular hydrogen peroxide. Mikrochim Acta 2022; 189:295. [PMID: 35882703 DOI: 10.1007/s00604-022-05389-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/19/2022] [Indexed: 11/28/2022]
Abstract
A moisture-resistant and green cyclodextrin metal-organic framework (CD-MOF) nanosheet has been prepared via an one-pot antisolvent synthesis procedure. After the treatment of in situ chemical cross-linkage, the two-dimensional (2D) cross-linked CD-MOF exhibited both peroxidase (POD) and oxidase (OXD) enzymatic activities, as well as hydrolytic stability. On the basis of its POD mimics function, the proof-of-concept biosensors were constructed to realize the colorimetric detection for H2O2 and glucose, respectively. In vitro cytotoxicity experiments showed that the 2D cross-linked CD-MOF nanozymes still maintained excellent biocompatibility even at a concentration reaching up to several mg/mL. The in situ colorimetric detection of H2O2 secreted by HepG2 cells further confirmed its promising biocompatibility, showing its great promises as label-free colorimetric probe in early cancer detection and pathological process monitoring.
Collapse
Affiliation(s)
- Bing Tan
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, International Joint Laboratory On Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China.
| | - Shasha Zhang
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, International Joint Laboratory On Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Kemeng Wang
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, International Joint Laboratory On Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Yingli Yan
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, International Joint Laboratory On Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Zhili Chu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453007, People's Republic of China
| | - Qiwen Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Xiang Li
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, International Joint Laboratory On Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Guifen Zhu
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, International Joint Laboratory On Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Jing Fan
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, International Joint Laboratory On Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, People's Republic of China.
| |
Collapse
|
22
|
Liu W, Nie Y, Zhang M, Yan K, Wang M, Guo Y, Ma Q. A novel nanosponge-hydrogel system-based ECL biosensor for uric acid detection. LUMINESCENCE 2022; 37:1524-1531. [PMID: 35815832 DOI: 10.1002/bio.4326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022]
Abstract
In this work, a highly efficient electrochemiluminescence (ECL) biosensor has been developed based on the nanosponge-hydrogel system for uric acid (UA) detection. Firstly, the nanosponge consists of PLGA nanoparticles immobilized with MoS2 QDs and urate oxidase (UAO). The remarkable loading capability of PLGA nanoparticles can load much biomolecules and QDs for the specific recognition of uric acid. Urate oxidase on the nanosponge can catalyze uric acid to generate H2 O2 in situ, which further trigger the ECL signal of MoS2 QDs. Furthermore, the biocompatible acrylamide-based hydrogel not only effectively retains the functionalities of the chimeric nanosponge-hydrogel, but also provides the structural integrity and engineering flexibility on the electrode in the ECL sensing application. Meanwhile, there are plenty of ester groups and amide bonds in the nanosponge-hydrogel structure. So, much electron can be excited due to a large number of lone electron pairs on oxygen and nitrogen atom in the ECL process. It results in 7-fold ECL enhancement of MoS2 QDs. Finally, the nanosponge-hydrogel structure-based ECL biosensor has been successfully used in actual clinical serum assays. It shows a good analytical performance for the uric acid detection (100 ~ 500 μmol/L) with a detection limit of 20 μmol/L.
Collapse
Affiliation(s)
- Wanqing Liu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, China.,National Chemistry Experimental Teaching Demonstration Center, Jilin University, Changchun, Jilin, China
| | - Yixin Nie
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Mengmeng Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, China.,National Chemistry Experimental Teaching Demonstration Center, Jilin University, Changchun, Jilin, China
| | - Kefan Yan
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, China.,National Chemistry Experimental Teaching Demonstration Center, Jilin University, Changchun, Jilin, China
| | - Mai Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, China.,National Chemistry Experimental Teaching Demonstration Center, Jilin University, Changchun, Jilin, China
| | - Yupeng Guo
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, China.,National Chemistry Experimental Teaching Demonstration Center, Jilin University, Changchun, Jilin, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, China.,National Chemistry Experimental Teaching Demonstration Center, Jilin University, Changchun, Jilin, China
| |
Collapse
|
23
|
Hu P, Qin H, Hu K, Dai R, Wang Z, Huang K. Constructing a defect-rich hydroxide nanoenzyme sensor based on dielectric barrier discharge microplasma etching for sensitive detection of thiamine hydrochloride and hydrogen peroxide. J Colloid Interface Sci 2022; 628:597-606. [DOI: 10.1016/j.jcis.2022.07.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
|
24
|
Tong P, Asif M, Ajmal M, Aziz A, Sun Y. A Multicomponent Polymer-Metal-Enzyme System as Electrochemical Biosensor for H2O2 Detection. Front Chem 2022; 10:874965. [PMID: 35572115 PMCID: PMC9099068 DOI: 10.3389/fchem.2022.874965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Herein, an Au nanoparticles-polydopamine-poly acrylic acid-graphene (Au NPs-PDA-PAA-graphene) multicomponent nanohybrid is fabricated by surface functionalization of graphene alongside extensive in-situ growth of Au nanoparticles. The as-obtained nanocomposite possesses good hydrophilicity, excellent biocompatibility and high biomolecules loading capacity, which acts as an ideal platform for enzyme modification. Considering this fact, Horseradish peroxidase is expressively immobilized upon Au NPs-PDA-PAA-graphene surface, in order to lay the foundations of a biosensor that is majorly based on enzymatic activity. The biosensor exhibits higher sensitivity towards the determination of H2O2 with linearity ranging from 0.1 μm upto 20 mm, and the limit of detection going down to 0.02 μm. Encouraged by its acceptable electrocatalytic performance, this multicomponent system can also be easily employed for carrying out the real-time tracking of H2O2 coming out of Macrophage cells. Therefore, this work designs an extraordinarily updated platform for biosensing related applications, and also presents a reliable platform for the direct detection of H2O2in vivo and in vitro, which show great potential in bioelectroanalytical chemistry, cellular biology, and pathophysiology.
Collapse
Affiliation(s)
- Pengfei Tong
- Henan Institute of Microsurgery, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Muhammad Asif
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Muhammad Ajmal
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Ayesha Aziz
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Sun
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
- *Correspondence: Yimin Sun,
| |
Collapse
|
25
|
Sharma P, Wang G. 4,6- O-Phenylethylidene Acetal Protected D-Glucosamine Carbamate-Based Gelators and Their Applications for Multi-Component Gels. Gels 2022; 8:191. [PMID: 35323304 PMCID: PMC8953293 DOI: 10.3390/gels8030191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/21/2022] Open
Abstract
The self-assembly of carbohydrate-based low molecular weight gelators has led to useful advanced soft materials. The interactions of the gelators with various cations and anions are important in creating novel molecular architectures and expanding the scope of the small molecular gelators. In this study, a series of thirteen new C-2 carbamates of the 4,6-O-phenylethylidene acetal-protected D-glucosamine derivatives has been synthesized and characterized. These compounds are rationally designed from a common sugar template. All carbamates synthesized were found to be efficient gelators and three compounds are also hydrogelators. The resulting gels were characterized using optical microscopy, atomic force microscopy, and rheology. The gelation mechanisms were further elucidated using 1H NMR spectroscopy at different temperatures. The isopropyl carbamate hydrogelator 7 formed hydrogels at 0.2 wt% and also formed gels with several tetra alkyl ammonium salts, and showed effectiveness in the creation of gel electrolytes. The formation of metallogels using earth-abundant metal ions such as copper, nickel, iron, zinc, as well as silver and lead salts was evaluated for a few gelators. Using chemiluminescence spectroscopy, the metal-organic xerogels showed enzyme-like properties and enhanced luminescence for luminol. In addition, we also studied the applications of several gels for drug immobilizations and the gels showed sustained release of naproxen from the gel matrices. This robust sugar carbamate-derived gelator system can be used as the scaffold for the design of other functional materials with various types of applications.
Collapse
Affiliation(s)
| | - Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA;
| |
Collapse
|
26
|
A Label-Free Colorimetric Assay Based on Gold Nanoparticles for the Detection of H2O2 and Glucose. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The significance of sensing hydrogen peroxide (H2O2) is due to its ubiquity, being a potential biomarker as well as an end-product of several oxidation reactions. Herein, based on gold nanoparticles (AuNPs) and coupled with single-stranded DNA (ssDNA) and ceria nanoparticles (CeO2), we developed a novel colorimetric method to detect H2O2 and glucose in NaCl solutions. In the presence of H2O2, ssDNA adsorbed on the surface of CeO2 could be released and subsequently decorated AuNPs, resulting in a distinct color change of the aqueous solution from purple to red, which could be observed by the naked eye. Since H2O2 can be produced in the process of glucose oxidation by glucose oxidase (GOx), this approach can also be employed to detect glucose. By employing this sensing system, the detection limits for H2O2 and glucose are about 0.21 μM and 3.01 µM, respectively. Additionally, monitoring the content of glucose in blood serum samples was successfully achieved by the proposed strategy. This work opens a potential avenue for the quantitative detection of H2O2 and glucose in clinical diagnostics.
Collapse
|
27
|
Zhang YW, Cao Y, Mao CJ, Jiang D, Zhu W. An Iron(III)-Based Metal-Organic Gel-Catalyzed Dual Electrochemiluminescence System for Cytosensing and In Situ Evaluation of the VEGF 165 Subtype. Anal Chem 2022; 94:4095-4102. [PMID: 35196001 DOI: 10.1021/acs.analchem.2c00032] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The recent surge of interest in metal-organic gels (MOGs) has emerged for their soft porous structure, large surface area, and abundant active metal sites, making them a promising candidate for building catalyst matrices. In this work, facilely synthesized Fe(III)-organic gel was directly used as a robust electrode matrix. Detailed studies illustrated that their Fe(III) centers can speed up the electro-oxidation/reduction of the H2O2 coreactant to produce reactive oxygen species for enhancing a potential-resolved dual electrochemiluminescence (ECL) emission. Among them, the anodic signal of luminol varied with the cell concentration based on the impedance ECL mechanism, while the cathodic signal of CdS quantum dots traced the VEGF165 subtype at cell surface by specific aptamer recognition. Based on this, a ratiometric strategy was proposed for accurate cytosensing by eliminating environmental interference. Moreover, by cooperating these two signals, a novel strategy was developed for direct evaluation of the VEGF165 subtype, further realizing rapid drug screening and subtype assessment on different cell lines. This work not only opens up the promising application of MOGs as an effective catalyst matrix but also develops reliable cell assays and protein subtype identification for clinical diagnosis and research.
Collapse
Affiliation(s)
- Yi-Wen Zhang
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, PR China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Yue Cao
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, PR China
| | - Chang-Jie Mao
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Dechen Jiang
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, PR China
| | - Wenlei Zhu
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
28
|
Revisiting Some Recently Developed Conducting Polymer@Metal Oxide Nanostructures for Electrochemical Sensing of Vital Biomolecules: A Review. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00209-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Zhang Y, Wei X, Gu Q, Zhang J, Ding Y, Xue L, Chen M, Wang J, Wu S, Yang X, Zhang S, Lei T, Wu Q. Cascade amplification based on PEI-functionalized metal–organic framework supported gold nanoparticles/nitrogen–doped graphene quantum dots for amperometric biosensing applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Zong LP, Li J, Shu G, Liu X, Marks RS, Zhang XJ, Cosnier S, Shan D. Rational Design of a Highly Dispersed Fe-N-C Nanosheet with 1,10-Phenanthroline-2,9-Dicarboxylic Acid as a Preorganized Ligand: Boosted Electrochemiluminescence Detection of Tetracycline. Anal Chem 2021; 94:1325-1332. [PMID: 34939788 DOI: 10.1021/acs.analchem.1c04558] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In view of the shortcomings of the current coreactant electrochemiluminescence (ECL) and inspired by natural oxygen (O2) reduction metalloenzymes, a novel ECL amplification strategy was established. A pyrolytic iron- and nitrogen-doped (Fe-N-C) nanosheet rich in singly ionized oxygen vacancy (VO•) defects was rationally designed by destroying the highly saturated coordination with a preorganized ligand 1,10-phenanthroline-2,9-dicarboxylic acid (PDA). Extraordinary catalytic activity for O2 activation was obtained via screening a special pyrolysis temperature using spectroscopic and electrochemical methods. The high-spin ferric centers of highly dispersed FeC nanoclusters and abundant carbon and oxygen vacancy defects fully contributed to the inherent catalytic activity. ECL amplification was achieved by integrating the material with luminol to generate redox-active radicals in situ from dissolved O2 and simultaneously shorten the transferring distance of radicals. Tetracycline (TC), which posed a growing threat to aquatic biodiversity and environmental safety, as a model antibiotic was successfully detected with a detection limit of 3.88 nM (S/N = 3), clarifying a promising application prospect of this new effective ECL amplification strategy in biological analysis and environmental monitoring.
Collapse
Affiliation(s)
- Li-Ping Zong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Junji Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Guofang Shu
- Department of Clinical Laboratory, Zhongda Hospital, Southeast University School of Medicine, Nanjing 210009, P. R. China
| | - Xinye Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.,Sino-French Engineer School, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Robert S Marks
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Xue-Ji Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.,School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen 518060, P. R. China
| | - Serge Cosnier
- Department of Molecular Chemistry, CNRS, University of Grenoble Alpes, Grenoble 38000, France
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
31
|
Shang LL, Song X, Niu CB, Lv QY, Li CL, Cui HF, Zhang S. Red fluorescent nanoprobe based on Ag@Au nanoparticles and graphene quantum dots for H 2O 2 determination and living cell imaging. Mikrochim Acta 2021; 188:291. [PMID: 34363101 DOI: 10.1007/s00604-021-04940-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/10/2021] [Indexed: 10/20/2022]
Abstract
A sensitive and turn-on fluorescence nanoprobe based on core-shell Ag@Au nanoparticles (Ag@AuNPs) as a fluorescence receptor and red emissive graphene quantum dots (GQDs) as a donor was fabricated. They were conjugated together through π-π stacking between the GQDs and single-strand DNA modified at the Ag@AuNPs surface. The absorption spectrum of the receptor significantly overlapped with the donor emission spectrum, leading to a strong Förster resonance energy transfer (FRET) and thus a dramatic quenching. The sensing mechanism relies on fluorescence recovery following DNA cleavage by •OH produced from Fenton-like reaction between the peroxidase-like Ag nanocore and H2O2. The red emissive feature (Ex/Em, 520 nm/560 nm) provides low background in physiological samples. The •OH production, great spectrum overlapping, and red emission together contributes to good sensitivity and living cell imaging capability. The fluorescence assay (intensity at 560 nm) achieves a low detection limit of 0.49 μM H2O2 and a wide linear range from 5 to 200 μM, superior to most of the reported fluorescent probes. The RSD value for 100 μM H2O2 was 1.4%. The nanoprobe exhibits excellent anti-interferences and shows low cytotoxicity. The recovery of 100 μM standard H2O2 in a cancer cell lysate was 85.8%. Most satisfactorily, it can realize monitoring and imaging H2O2 in living cells. This study not only presents a sensitive H2O2 probe but also provides a platform for detecting other types of reactive oxygen species.
Collapse
Affiliation(s)
- Ling-Ling Shang
- School of Life Sciences, Zhengzhou University, 100# Science Avenue, Zhengzhou, 450001, China
| | - Xiaojie Song
- School of Life Sciences, Zhengzhou University, 100# Science Avenue, Zhengzhou, 450001, China
| | - Chang-Bin Niu
- School of Life Sciences, Zhengzhou University, 100# Science Avenue, Zhengzhou, 450001, China
| | - Qi-Yan Lv
- School of Life Sciences, Zhengzhou University, 100# Science Avenue, Zhengzhou, 450001, China
| | - Chun-Ling Li
- School of Life Sciences, Zhengzhou University, 100# Science Avenue, Zhengzhou, 450001, China
| | - Hui-Fang Cui
- School of Life Sciences, Zhengzhou University, 100# Science Avenue, Zhengzhou, 450001, China.
| | - Shoutao Zhang
- School of Life Sciences, Zhengzhou University, 100# Science Avenue, Zhengzhou, 450001, China
| |
Collapse
|
32
|
Zhou S, Wang X, Jiang L, Sun H, Huo D, Hou C. A three-dimensional hydrogel-modified indium tin oxide electrode with enhanced performance for in situ electrochemical detection of extracellular H 2O 2. Analyst 2021; 146:5403-5412. [PMID: 34346414 DOI: 10.1039/d1an00875g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two different electrochemical sensors (Hemin-G4/Au/GCE and Hemin-G4/Au/ITO) were developed and applied to explore the electrocatalytic capacity of H2O2 reduction. Due to the excellent catalytic activity of Hemin-G4 and high conductivity of gold nanoparticles, both electrodes show excellent electrochemical performances towards H2O2 with a low LOD (0.67 μM for Hemin-G4/Au/GCE and 0.65 μM for Hemin-G4/Au/ITO), rapid response (<4 s), and high selectivity and sensitivity (314.33 μA mM-1 cm-2 for Hemin-G4/Au/GCE and 322.22 μA mM-1 cm-2 for Hemin-G4/Au/ITO). The two electrodes allow sensitive capture of H2O2 produced by A549 cells. Compared with the conventional method of detection in cell suspensions, an ITO electrode with a large specific surface area and good biocompatibility can provide a promising platform for cell adhesion, so as to realize real-time and in situ detection of extracellular H2O2. The experimental results show that A549 cells can adhere to the surface of the Hemin-G4/Au/ITO electrode and grow well. This is benefitted from the three-dimensional structure of the Hemin-G4/Au hydrogel, which provides a suitable microenvironment for cell adhesion and growth. Furthermore, the in situ detection shows a faster response time than that of in-solution detection. This is because the H2O2 generated by the cells can be directly captured by the ITO electrode, which avoids diffusion from the solution to the electrode. These results indicate that the self-supporting hydrogel modified ITO electrode has great application prospects in basic biomedical research and continuous dynamic surveillance of diseases.
Collapse
Affiliation(s)
- Shiying Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | | | | | | | | | | |
Collapse
|
33
|
Elgamouz A, Nassab C, Bihi A, Mohamad SAI, Almusafri AHSA, Alharthi SS, Abdulla SAE, Patole SP. Encapsulation Capacity of β-Cyclodextrin Stabilized Silver Nanoparticles towards Creatinine Enhances the Colorimetric Sensing of Hydrogen Peroxide in Urine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1897. [PMID: 34443730 PMCID: PMC8399024 DOI: 10.3390/nano11081897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022]
Abstract
The β-cyclodextrin shell of synthesized silver nanoparticles (βCD-AgNPs) are found to enhance the detection of hydrogen peroxide in urine when compared to the Horse Radish Peroxidase assay kit. Nanoparticles are confirmed by the UV-Vis absorbance of their localized surface plasmonic resonance (LSPR) at 384 nm. The mean size of the βCD-AgNPs is 53 nm/diameter; XRD analysis shows a face-centered cubic structure. The crystalline structure of type 4H hexagonal nature of the AgNPs with 2.4 nm β-CD coating onto is confirmed using aberration corrected high-resolution transmission electron microscopy (HRTEM). A silver atomic lattice at 2.50 Å and 2.41 Å corresponding to (100) and (101) Miller indices is confirmed using the HRTEM. The scope of βCD-AgNPs to detect hydrogen peroxide (H2O2) in aqueous media and human urine is investigated. The test is optimized by examining the effect of volumes of nanoparticles, the pH of the medium, and the kinetic and temperature effect on H2O2 detection. The βCD-AgNPs test is used as a refined protocol, which demonstrated improved sensitivity towards H2O2 in urine compared to the values obtained by the Horse Radish Assay kit. Direct assessment of H2O2 by the βCD-AgNPs test presented always with a linear response in the nM, μM, and mM ranges with a limit of detection of 1.47 nM and a quantitation limit of 3.76 nM. While a linear response obtained from 1.3 to 37.3 nmoles of H2O2/mole creatinine with a slope of 0.0075 and regression coefficient of 0.9955 when the βCD-AgNPs is used as refined test of creatinine. Values ranging from 34.62 ± 0.23 nmoles of H2O2/mole of creatinine and 54.61 ± 1.04 nmoles of H2O2/mole of creatinine when the matrix is not diluted and between 32.16 ± 0.42 nmoles of H2O2/mole of creatinine and 49.66 ± 0.80 nmoles of H2O2/mole of creatinine when the matrix is twice diluted are found in freshly voided urine of seven apparent healthy men aged between 20 and 40 years old.
Collapse
Affiliation(s)
- Abdelaziz Elgamouz
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (C.N.); (A.B.); (S.A.I.M.); (A.H.S.A.A.)
| | - Chahlaa Nassab
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (C.N.); (A.B.); (S.A.I.M.); (A.H.S.A.A.)
| | - Alaa Bihi
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (C.N.); (A.B.); (S.A.I.M.); (A.H.S.A.A.)
| | - Somaya A. I. Mohamad
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (C.N.); (A.B.); (S.A.I.M.); (A.H.S.A.A.)
| | - Aisha H. S. A. Almusafri
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (C.N.); (A.B.); (S.A.I.M.); (A.H.S.A.A.)
| | - Salman S. Alharthi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Sarah A. E. Abdulla
- Mohamed Bin Zayed University for Humanities, Al Muroor Street, Signal 23, Abu Dhabi, United Arab Emirates;
| | - Shashikant P. Patole
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| |
Collapse
|