1
|
Sanz CG, Aldea A, Barsan MM. Electrochemical detection of superoxide anion in living systems: Recent trends and clinical implications. Bioelectrochemistry 2025; 165:108998. [PMID: 40334552 DOI: 10.1016/j.bioelechem.2025.108998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/29/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025]
Abstract
Superoxide plays a significant role in maintaining physiological states of living systems, with major roles in eradicating invading microorganisms and in cell signaling. It is regulated intricately by the enzyme superoxide dismutase (SOD), and when not properly regulated it can lead to cascade biological pathways with severe and irreversible damage to biofilms, tissue, and organs, being linked with many neurodegenerative diseases, atherosclerotic and cardiovascular diseases. Therefore, superoxide anion (O2•-) detection has a tremendous potential in clinical diagnostics to assess oxidative stress in living cells. This comprehensive review aims to explore, discuss, and analyze recent trends in the electrochemical detection of O2•- in living systems, focusing not only on the recognition mechanism for in vitro assays (living cell cultures/tissues) but also on the importance of the electrode design and operational parameters for in vivo measurements (implantable sensors). By analyzing current in vitro/in vivo electrochemical strategies we gather information that is helpful to overcome existing limitations in the dynamic monitoring of O2•-, and further improve electrochemical strategies that can be adopted and applied to prevent its negative effect, with an insight into the pathophysiology of neurodegenerative disorders and even cellular malignancies that derive from its accumulation in living systems.
Collapse
Affiliation(s)
- Caroline G Sanz
- National Institute of Materials Physics, Str. Atomistilor 405A, 077125, Magurele, Ilfov, Romania
| | - Anca Aldea
- National Institute of Materials Physics, Str. Atomistilor 405A, 077125, Magurele, Ilfov, Romania
| | - Madalina M Barsan
- National Institute of Materials Physics, Str. Atomistilor 405A, 077125, Magurele, Ilfov, Romania.
| |
Collapse
|
2
|
Ghaedamini H, Kim DS. Recent advances in electrochemical detection of reactive oxygen species: a review. Analyst 2025; 150:1490-1517. [PMID: 40151998 DOI: 10.1039/d4an01533a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Reactive oxygen species (ROS) are mainly generated as a result of cellular metabolism in plants and animals, playing a crucial role in cellular signaling mechanisms. The excessive generation of ROS leads to oxidative stress, which is associated with numerous diseases such as cancer, diabetes, and neurodegenerative disorders. Superoxide (O2˙-), hydrogen peroxide (H2O2), and hydroxyl radicals (˙OH) are the most common ROS involved in a wide range of human diseases. Therefore, sensitive and selective detection of these ROS is of paramount importance for understanding their roles in biological systems and for disease diagnosis. Among the various detection methods, electrochemical techniques have gained significant attention due to their high sensitivity, selectivity, and real-time monitoring capabilities. Electrochemical methods incorporate both organic and inorganic molecules to detect and monitor ROS, facilitating a deeper understanding of how their levels influence diseases linked to oxidative stress. This review aims to provide a critical discussion on the recent advances in electrochemical methods for detecting O2˙-, H2O2, and ˙OH. The review also highlights the application of these electrochemical techniques in detecting ROS in living cells and discusses the challenges and future perspectives in this field.
Collapse
Affiliation(s)
- Hamidreza Ghaedamini
- Department of Chemical Engineering, University of Toledo, Toledo, OH, 43606, USA.
| | - Dong-Shik Kim
- Department of Chemical Engineering, University of Toledo, Toledo, OH, 43606, USA.
| |
Collapse
|
3
|
Zouleh RS, Rahimnejad M, Najafpour-Darzi G, Sabour D. Design of a microneedle-based enzyme biosensor using a simple and cost-effective electrochemical strategy to monitor superoxide anion released from cancer cells. Anal Biochem 2025; 697:115710. [PMID: 39500217 DOI: 10.1016/j.ab.2024.115710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/15/2024] [Accepted: 11/02/2024] [Indexed: 12/08/2024]
Abstract
Early detection of Reactive oxygen species (ROS) concentration is very important in cancer diagnosis, pathological examinations, and health screening. Studies show that changes in ROS concentration occurs in a short time, causing irreparable damage to living cells and organs. Miniaturized sensors and microelectrodes are capable of online monitoring of electrochemical reactions both in vitro and in vivo. In this study, an enzymatic biosensor based on an electrochemically roughened gold microneedle electrode (RAuME) has been developed to measure superoxide anion released from prostate cancer cells. A uniform layer of reduced graphene oxide (rGO) was deposited onto the gold microelectrode through electrochemical reduction, followed by electrodeposition of yttrium hexacyanoferrate (YHCF) nanoparticles. The deposited layers improved the current response of the microneedle electrode in CV, Impedance, and Amperometric analysis. Furthermore, chitosan was utilized to superoxide dismutase (SOD) immobilization. The presence of chitosan maintained the catalytic properties of the SOD enzyme. The developed microsensor monitored the superoxide anion in a wide linear range from 0.304 to 314 μM with detection limit of 17 nm. According to the physiological concentration of the superoxide anion (10-100 nm), we hypothesized that the developed micro-biosensor can mediate a fast monitoring of ROS that facilitates early-stage cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Razieh Seyfi Zouleh
- Biofuel and Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| | - Ghasem Najafpour-Darzi
- Biotechnology Research Laboratory, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Davood Sabour
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Babol, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| |
Collapse
|
4
|
Jiang R, Liu J, Liu X, Travas Sejdic J. Electrochemical biosensing platform based on AuNWs/rGO-CMC-PEDOT:PSS composite for the detection of superoxide anion released from living cells. Biosens Bioelectron 2024; 254:116228. [PMID: 38522233 DOI: 10.1016/j.bios.2024.116228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
Detection of superoxide anion (O2·-) levels holds significant importance for the diagnosis and even clinical treatments of oxidative stress-related diseases. Herein, we prepared a composite electrode material to encapsulate copper-zinc superoxide dismutase (SOD1) for biosensing of O2·-. The sensing material consists of gold nanowires (AuNWs), reduced graphene oxide (rGO), carboxymethyl cellulose (CMC) and PEDOT:PSS. CMC provides abundant -COOH to bind SOD1, with a high adsorption coverage of 1.499 × 10-9 mol cm-2 on the sensor surface. rGO and PEDOT endow the composite with significant conductivity, whereas PSS has antifouling capability. Moreover, AuNWs exhibit excellent electrical conductivity and a high aspect ratio, which promotes electron transfer, and ultimately enhances the catalytic performance of the enzyme. Meanwhile, SOD1(Cu2+) catalyzes the dismutation of O2·- to O2 and H2O2, and H2O2 is then electrochemically oxidized to generate amperometric signals for determination of O2·-. The sensor demonstrates outstanding detection performance for O2·- with a low detection limit of 2.52 nM, and two dynamic ranges (14.30 nM-1.34 μM and 1.34 μM-42.97 μM) with corresponding sensitivity of 0.479 and 0.052 μA μM-1cm-2, respectively. Additionally, the calculated apparent Michaelis constant (Kmapp) of 1.804 μM for SOD1 demonstrates the outstanding catalytic activity and the surface-immobilized enzyme's substrate affinity. Furthermore, the sensor shows the capability to dynamically detect the level of O2·- released from living HepG2 cells. This study provides an inovative design to obtain a biocompatible electrochemical sensing platform with plenty of immobilization sites for biomolecules, large surface area, high conductivity and flexibility.
Collapse
Affiliation(s)
- Renjun Jiang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemical and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Jiaojiao Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemical and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Xiaoqiang Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemical and Molecular Sciences, Henan University, Kaifeng, 475004, China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, 475004, China.
| | - Jadranka Travas Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland - Waipapa Taumata Rau, 23 Symonds Street, Auckland, 1023, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Kelburn Parade, Wellington, 6140, New Zealand.
| |
Collapse
|
5
|
Koo KM, Kim CD, Kim TH. Recent Advances in Electrochemical Detection of Cell Energy Metabolism. BIOSENSORS 2024; 14:46. [PMID: 38248422 PMCID: PMC10813075 DOI: 10.3390/bios14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Cell energy metabolism is a complex and multifaceted process by which some of the most important nutrients, particularly glucose and other sugars, are transformed into energy. This complexity is a result of dynamic interactions between multiple components, including ions, metabolic intermediates, and products that arise from biochemical reactions, such as glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), the two main metabolic pathways that provide adenosine triphosphate (ATP), the main source of chemical energy driving various physiological activities. Impaired cell energy metabolism and perturbations or dysfunctions in associated metabolites are frequently implicated in numerous diseases, such as diabetes, cancer, and neurodegenerative and cardiovascular disorders. As a result, altered metabolites hold value as potential disease biomarkers. Electrochemical biosensors are attractive devices for the early diagnosis of many diseases and disorders based on biomarkers due to their advantages of efficiency, simplicity, low cost, high sensitivity, and high selectivity in the detection of anomalies in cellular energy metabolism, including key metabolites involved in glycolysis and mitochondrial processes, such as glucose, lactate, nicotinamide adenine dinucleotide (NADH), reactive oxygen species (ROS), glutamate, and ATP, both in vivo and in vitro. This paper offers a detailed examination of electrochemical biosensors for the detection of glycolytic and mitochondrial metabolites, along with their many applications in cell chips and wearable sensors.
Collapse
Affiliation(s)
| | | | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea; (K.-M.K.); (C.-D.K.)
| |
Collapse
|
6
|
Ullah I, Toor MD, Basit A, Mohamed HI, Gamal M, Tanveer NA, Shah ST. Nanotechnology: an Integrated Approach Towards Agriculture Production and Environmental Stress Tolerance in Plants. WATER, AIR, & SOIL POLLUTION 2023; 234:666. [DOI: 10.1007/s11270-023-06675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
|
7
|
Thao NTM, Do HDK, Nam NN, Tran NKS, Dan TT, Trinh KTL. Antioxidant Nanozymes: Mechanisms, Activity Manipulation, and Applications. MICROMACHINES 2023; 14:1017. [PMID: 37241640 PMCID: PMC10220853 DOI: 10.3390/mi14051017] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Antioxidant enzymes such as catalase, superoxide dismutase, and glutathione peroxidase play important roles in the inhibition of oxidative-damage-related pathological diseases. However, natural antioxidant enzymes face some limitations, including low stability, high cost, and less flexibility. Recently, antioxidant nanozymes have emerged as promising materials to replace natural antioxidant enzymes for their stability, cost savings, and flexible design. The present review firstly discusses the mechanisms of antioxidant nanozymes, focusing on catalase-, superoxide dismutase-, and glutathione peroxidase-like activities. Then, we summarize the main strategies for the manipulation of antioxidant nanozymes based on their size, morphology, composition, surface modification, and modification with a metal-organic framework. Furthermore, the applications of antioxidant nanozymes in medicine and healthcare are also discussed as potential biological applications. In brief, this review provides useful information for the further development of antioxidant nanozymes, offering opportunities to improve current limitations and expand the application of antioxidant nanozymes.
Collapse
Affiliation(s)
- Nguyen Thi My Thao
- School of Medicine and Pharmacy, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Nguyen Khoi Song Tran
- College of Korean Medicine, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| | | | - Kieu The Loan Trinh
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
8
|
Kumari R, Dkhar DS, Mahapatra S, Divya, Kumar R, Chandra P. Nano-bioengineered sensing technologies for real-time monitoring of reactive oxygen species in in vitro and in vivo models. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Geraskevich AV, Solomonenko AN, Dorozhko EV, Korotkova EI, Barek J. Electrochemical Sensors for the Detection of Reactive Oxygen Species in Biological Systems: A Critical Review. Crit Rev Anal Chem 2022; 54:742-774. [PMID: 35867547 DOI: 10.1080/10408347.2022.2098669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Reactive oxygen species (ROS) involving superoxide anion, hydrogen peroxide and hydroxyl radical play important role in human health. ROS are known to be the markers of oxidative stress associated with different pathologies including neurodegenerative and cardiovascular diseases, as well as cancer. Accordingly, ROS level detection in biological systems is an essential problem for biomedical and analytical research. Electrochemical methods seem to have promising prospects in ROS determination due to their high sensitivity, rapidity, and simple equipment. This review demonstrates application of modern electrochemical sensors for ROS detection in biological objects (e.g., cell lines and body fluids) over a decade between 2011 and 2021. Particular attention is paid to sensors materials and various types of modifiers for ROS selective detection. Moreover, the sensors comparative characteristics, their main advantages, disadvantages and their possibilities and limitations are discussed.
Collapse
Affiliation(s)
- Alina V Geraskevich
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Anna N Solomonenko
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena V Dorozhko
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena I Korotkova
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Jiří Barek
- UNESCO Laboratory of Environmental Electrochemistry, Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czechia, Czech Republic
| |
Collapse
|
10
|
Manoj D, Rajendran S, Vasseghian Y, Ansar S, Gracia F, Soto-Moscoso M. Tailoring the heterojunction of TiO2 with multivalence CeO2 nanocrystals - for detection of toxic 2-aminophenol. Food Chem Toxicol 2022; 165:113182. [DOI: 10.1016/j.fct.2022.113182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 01/24/2023]
|
11
|
Revisiting Some Recently Developed Conducting Polymer@Metal Oxide Nanostructures for Electrochemical Sensing of Vital Biomolecules: A Review. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00209-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Mahmoudi-Moghaddam H, Garkani-Nejad Z. A new electrochemical DNA biosensor for determination of anti-cancer drug chlorambucil based on a polypyrrole/flower-like platinum/NiCo 2O 4/pencil graphite electrode. RSC Adv 2022; 12:5001-5011. [PMID: 35425519 PMCID: PMC8981350 DOI: 10.1039/d1ra08291d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/27/2022] [Indexed: 01/05/2023] Open
Abstract
In the current study, DNA immobilization was performed on pencil graphite (PG) modified with a polypyrrole (PPy) and flower-like Pt/NiCo2O4 (FL-Pt/NiCo2O4) nanocomposite, as a new sensitive electrode to detect chlorambucil (CHB). Energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were employed to characterize the synthesized FL-Pt/NiCo2O4 and PPy/FL-Pt/NiCo2O4 nanocomposites. Moreover, differential pulse voltammetry (DPV) was selected to assess the guanine and adenine electrochemical responses on the DNA sensor. The CHB determination was performed using the maximum currents towards adenine and guanine in the acetate buffer solution (ABS). According to the results, ds-DNA/PPy/FL-Pt/NiCo2O4/PGE was able to detect the different concentrations of CHB in the range between 0.018 and 200 μM, with a detection limit of (LOD) of 4.0 nM. The new biosensor was also exploited for CHB determination in real samples (serum, urine and drug), the results of which revealed excellent recoveries (97.5% to 103.8%). Furthermore, the interaction between ds-DNA and CHB was studied using electrochemistry, spectrophotometry and docking whose outputs confirmed their effective interaction.
Collapse
Affiliation(s)
- Hadi Mahmoudi-Moghaddam
- Chemistry Department, Faculty of Science, Shahid Bahonar University of Kerman Kerman Iran +98 3433257433
| | - Zahra Garkani-Nejad
- Chemistry Department, Faculty of Science, Shahid Bahonar University of Kerman Kerman Iran +98 3433257433
| |
Collapse
|
13
|
Chang C, Wang Q, Xue Q, Liu F, Hou L, Pu S. Highly efficient detection of chloramphenicol in water using Ag and TiO2 nanoparticles modified laser-induced graphene electrode. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Rozhin P, Melchionna M, Fornasiero P, Marchesan S. Nanostructured Ceria: Biomolecular Templates and (Bio)applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2259. [PMID: 34578575 PMCID: PMC8467784 DOI: 10.3390/nano11092259] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022]
Abstract
Ceria (CeO2) nanostructures are well-known in catalysis for energy and environmental preservation and remediation. Recently, they have also been gaining momentum for biological applications in virtue of their unique redox properties that make them antioxidant or pro-oxidant, depending on the experimental conditions and ceria nanomorphology. In particular, interest has grown in the use of biotemplates to exert control over ceria morphology and reactivity. However, only a handful of reports exist on the use of specific biomolecules to template ceria nucleation and growth into defined nanostructures. This review focusses on the latest advancements in the area of biomolecular templates for ceria nanostructures and existing opportunities for their (bio)applications.
Collapse
Affiliation(s)
- Petr Rozhin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
| | - Michele Melchionna
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| | - Paolo Fornasiero
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche (ICCOM-CNR), 34127 Trieste, Italy
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| |
Collapse
|
15
|
Fan W, Liu X, Wu J, Liu Q, Ding L, Liu X. Development of a Novel Silver‐based Sensing Platform for Detecting Superoxide Anion Released from HeLa Cells Directly. ELECTROANAL 2021. [DOI: 10.1002/elan.202100254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Weizhou Fan
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University No. 967 Anning East Road 730070 Lanzhou Gansu P. R. China
| | - Xiaohong Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University No. 967 Anning East Road 730070 Lanzhou Gansu P. R. China
| | - Jinsheng Wu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University No. 967 Anning East Road 730070 Lanzhou Gansu P. R. China
| | - Qian Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University No. 967 Anning East Road 730070 Lanzhou Gansu P. R. China
| | - Lan Ding
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University No. 967 Anning East Road 730070 Lanzhou Gansu P. R. China
| | - Xiuhui Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University No. 967 Anning East Road 730070 Lanzhou Gansu P. R. China
| |
Collapse
|