1
|
Elhassan MM, Mahmoud AM, Hegazy MA, Mowaka S, Bell JG. New trends in potentiometric sensors: From design to clinical and biomedical applications. Talanta 2025; 287:127623. [PMID: 39893726 DOI: 10.1016/j.talanta.2025.127623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
Potentiometry, a well-established electrochemical technique, provides a powerful and versatile method for the sensitive and selective measurement of a variety of analytes by measuring the potential difference between two electrodes, allowing for a direct and rapid readout of ion concentrations. This makes it a valuable tool in a variety of applications including industry, agriculture, forensics, medical, environmental assessment, and pharmaceutical drug analysis, therefore it has received significant attention from the scientific community. Their broad implementation in sensing applications arises through their many benefits, including ease of design, fabrication, and modification; rapid response time; high selectivity; suitability for use with colored and/or turbid solutions; and potential for integration into embedded systems interfaces. Owing to these advantages and diverse applicability, sustained research and development in the field has resulted in the emergence of several notable trends in the field. 3D printing is the most recent technique used in potentiometry which offers many benefits such as improved flexibility and precision in the manufacturing of ion-selective electrodes and rapid prototyping decreases the time needed during optimization of important electrochemical parameters. Additionally, paper-based sensors are cost-effective and versatile platforms for in-field (point-of-care, POC) analysis, permitting rapid determination of a variety of analytes. One of the most interesting applications of potentiometry are wearable sensors which allow for the continuous monitoring of biomarkers, electrolytes and even pharmaceuticals, especially those with a narrow therapeutic index. Herein this review, we discuss several recent trends in potentiometric sensors since 2010, including 3D printing, paper-based devices, and other emerging techniques and the translation of potentiometric systems to wearable devices for the determination of ionic species or pharmaceuticals in biological fluids paving the way to various clinical and biomedical uses.
Collapse
Affiliation(s)
- Manar M Elhassan
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, 11837, Egypt
| | - Amr M Mahmoud
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo, 11562, Egypt.
| | - Maha A Hegazy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, 11835, Egypt
| | - Shereen Mowaka
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, 11837, Egypt; Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, Egypt
| | - Jeffrey G Bell
- Department of Chemistry, Washington State University, Pullman, WA, 99163, USA.
| |
Collapse
|
2
|
Xue T, Shen J, Lin W, Zhou J, Zhang X, Chen CJ, Liu JT, Zhu G. Integrated microfluidic colorimetric patch with auto-framing APP for multiplex temporal detection of ketone bodies in sweat. LAB ON A CHIP 2025; 25:2436-2448. [PMID: 40275760 DOI: 10.1039/d5lc00189g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Ketone bodies are key products of fat metabolism, primarily consisting of acetoacetate (AcAc), β-hydroxybutyrate (BHB), and acetone (acetone). Monitoring the concentration of ketone bodies in sweat can reflect the metabolic status of the body; it is also particularly significant in areas such as diabetes management, exercise monitoring, and the evaluation of the ketogenic diet. This paper presents a microfluidic patch for sweat collection and multiplex detection of AcAc, BHB and glucose. The microfluidic patch can achieve time-sequential sensing through Tesla valves, hydrophilic coatings, and unique chamber structural design. The concentrations of the three substances are quantified using colorimetric methods. Additionally, this study has designed a colorimetric app which can achieve automatic framing and detect the grayscale value of the colored area. Experimental results show that the patch can accurately detect changes in the concentrations of the three substances within specific ranges. The linear detection range for AcAc is 0.25 mM to 8 mM, the limit of detection (LOD) is 0.08 mM; for BHB, the linear detection range is 0.05 mM to 0.80 mM, the LOD is 0.02 mM; and for glucose, the linear detection range is 62.50 μM to 1000 μM, the LOD is 20.83 μM. In the future, this technology is expected to be applied to portable metabolic monitoring devices, offering a convenient solution for personal health management.
Collapse
Affiliation(s)
- Tianhao Xue
- School of Instrumentation Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, No. 12 Xiaoying Road, Beijing 100192, China.
| | - Jianing Shen
- School of Instrumentation Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, No. 12 Xiaoying Road, Beijing 100192, China.
| | - Wanting Lin
- School of Instrumentation Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, No. 12 Xiaoying Road, Beijing 100192, China.
| | - Jiahui Zhou
- School of Instrumentation Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, No. 12 Xiaoying Road, Beijing 100192, China.
| | - Xiaofang Zhang
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin, China
| | - Ching-Jung Chen
- Research Center for Materials Science and Opti-Electronic Technology, School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, China.
| | - Jen-Tsai Liu
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Guixian Zhu
- School of Instrumentation Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, No. 12 Xiaoying Road, Beijing 100192, China.
| |
Collapse
|
3
|
Saldanha DJ, Dorval Courchesne NM. Coating of Threads with Fluorescent Curli Fibers for pH Sensing. ACS APPLIED BIO MATERIALS 2025; 8:225-235. [PMID: 39743504 DOI: 10.1021/acsabm.4c01073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Threads coated with bioresponsive materials hold promise for innovative wearable diagnostics. However, most thread coatings reported so far cannot be easily customized for different analytes and frequently incorporate non-biodegradable components. Most optically active thread coatings rely on dyes, which often exhibit irreversible responses. In this work, we propose a biosensing coating for threads using curli fibers. Curli fibers are self-assembling fibers of the protein CsgA that can be genetically engineered to sense rapidly evolving diagnostic targets. We first established a simple electrostatic-mediated absorption protocol for coating anionic cotton threads with anionic curli fibers using an intervening cationic chitosan layer. We applied this protocol to two types of pH-sensing curli fibers, displaying either fluorescent pHuji or mCitrine proteins. This process ensures extensive curli coating over the entire thread surface using only water-based solvents. The resulting protein-coated threads are moderately hydrophobic, stretchable, and can monitor pH changes in real time through fluorescence. The coatings are also stable and functional on the surface for over 25 cycles of use, highlighting their potential for reusable practical applications. This straightforward and adaptable protocol can be extended to coat threads with diverse sensing and responsive capabilities for intelligent clothing.
Collapse
Affiliation(s)
- Dalia Jane Saldanha
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | | |
Collapse
|
4
|
Guo X, Zhang Q, Zhang C, Mi M, Li X, Zhang X, Ramakrishna S, Ji D, Qin X. Pumpless microfluidic sweat sensing yarn. Biosens Bioelectron 2024; 266:116713. [PMID: 39232436 DOI: 10.1016/j.bios.2024.116713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Textile sweat sensors possess immense potential for non-invasive health monitoring. Rapid in-situ sweat capture and prevention of its evaporation are crucial for accurate and stable real-time monitoring. Herein, we introduce a unidirectional, pump-free microfluidic sweat management system to tackle this challenge. A nanofiber sheath layer on micrometer-scale sensing filaments enables this pumpless microfluidic design. Utilizing the capillary effect of the nanofibers allows for the swift capture of sweat, while the differential configuration of the hydrophilic and hydrophobic properties of the sheath and core yarns prevents sweat evaporation. The Laplace pressure difference between the cross-scale fibers facilitates the management system to ultimately expulse sweat. This results in microfluidic control of sweat without the need for external forces, resulting in rapid (<5 s), sensitive (19.8 nA μM-1), and stable (with signal noise and drift suppression) sweat detection. This yarn sensor can be easily integrated into various fabrics, enabling the creation of health monitoring smart garments. The garments maintain good monitoring performance even after 20 washes. This work provides a solution for designing smart yarns for high-precision, stable, and non-invasive health monitoring.
Collapse
Affiliation(s)
- Xinyue Guo
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Qiangqiang Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Chentian Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Mingyue Mi
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xinxin Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xueping Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 117574, Singapore
| | - Dongxiao Ji
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Xiaohong Qin
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
5
|
Savage N. How the latest materials are taking biosensors to the next level. Nature 2024; 636:S16-S17. [PMID: 39663502 DOI: 10.1038/d41586-024-04003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
|
6
|
Salih IL, Alshatteri AH, Omer KM. Role of wearable electrochemical biosensors in monitoring renal function biomarkers in sweat: a review. ANAL SCI 2024; 40:1969-1986. [PMID: 39093545 DOI: 10.1007/s44211-024-00635-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Real-time detection of renal biomarkers is crucial for immediate and continuous monitoring of kidney function, facilitating early diagnosis and intervention in kidney-related disorders. This proactive approach enables timely adjustments in treatment plans, particularly in critical situations, and enhances overall patient care. Wearable devices emerge as a promising solution, enabling non-invasive and real-time data collection. This comprehensive review investigates numerous types of wearable sensors designed to detect kidney biomarkers in body fluids such as sweat. It critically evaluates the precision, dependability, and user-friendliness of these devices, contemplating their seamless integration into daily life for continuous health tracking. The review highlights the potential influence of wearable technology on individualized renal healthcare and its role in preventative medicine while also addressing challenges and future directions. The review's goal is to provide guidance to academics, healthcare professionals, and technologists working on wearable solutions for renal biomarker detection by compiling the body of current knowledge and advancements.
Collapse
Affiliation(s)
- Ibrahim Luqman Salih
- Department of Pharmacy, Raparin Technical and Vocational Institute, Rania, Sulaymaniyah, Kurdistan Region, 46012, Iraq
- Department of Chemistry, College of Science, University of Raparin, RaniaSulaymaniyah, Kurdistan Region, 46012, Iraq
| | - Azad H Alshatteri
- Department of Chemistry, University of Garmian, Darbandikhan Road, Kalar City, Sulaimaniyah, Kurdistan Region, Iraq.
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq
| |
Collapse
|
7
|
Yu W, Li Q, Ren J, Feng K, Gong J, Li Z, Zhang J, Liu X, Xu Z, Yang L. A sensor platform based on SERS detection/janus textile for sweat glucose and lactate analysis toward portable monitoring of wellness status. Biosens Bioelectron 2024; 263:116612. [PMID: 39096763 DOI: 10.1016/j.bios.2024.116612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
Herein we report a wearable sweat sensor of a Janus fabric based on surface enhanced Raman scattering (SERS) technology, mainly detecting the two important metabolites glucose and lactate. Janus fabric is composed of electrospinning PU on a piece of medical gauze (cotton), working as the unidirectional moisture transport component (R = 1305%) to collect and transfer sweat efficiently. SERS tags with different structures act as the probe to recognize and detect the glucose and lactate in high sensitivity. Core-shell structured gold nanorods with DTNB inside (AuNRs@DTNB@Au) are used to detect lactate, while gold nanorods with MPBA (AuNRs@MPBA) are used to detect glucose. Through the characteristic SERS information, two calibration functions were established for the concentration determination of glucose and lactate. The concentrations of glucose and lactate in sweat of a 23 years volunteer during three-stage interval running are tested to be 95.5, 53.2, 30.5 μM and 4.9, 13.9, 10.8 mM, indicating the glucose (energy) consumption during exercise and the rapid accumulation of lactate at the early stage accompanied by the subsequent relief. As expected, this sensing system is able to provide a novel strategy for effective acquisition and rapid detection of essential biomarkers in sweat.
Collapse
Affiliation(s)
- Wenze Yu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| | - Qiujin Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Tai'an, Shandong, 271000, China.
| | - Jianing Ren
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| | - Kexin Feng
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| | - Jixian Gong
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Tai'an, Shandong, 271000, China
| | - Zheng Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| | - Jianfei Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Tai'an, Shandong, 271000, China; Collaborative Innovation Center for Eco-Textiles of Shandong Province, Shandong, Qingdao, 266071, China
| | - Xiuming Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| | - Zhiwei Xu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| | - Li Yang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
8
|
Weng X, Li M, Chen L, Peng B, Jiang H. A wearable nanozyme-enzyme electrochemical biosensor for sweat lactate monitoring. Talanta 2024; 279:126675. [PMID: 39116726 DOI: 10.1016/j.talanta.2024.126675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/12/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
In this study, we developed a wearable nanozyme-enzyme electrochemical biosensor that enablies sweat lactate monitoring. The biosensor comprises a flexible electrode system prepared on a polyimide (PI) film and the Janus textile for unidirectional sweat transport. We obtained favorable electrochemical activities for hydrogen peroxide reduction by modifying the laser-scribed graphene (LSG) electrode with cerium dioxide (CeO2)-molybdenum disulphide (MoS2) nanozyme and gold nanoparticles (AuNPs). By further immobilisation of lactate oxidase (LOx), the proposed biosensor achieves chronoamperometric lactate detection in artificial sweat within a range of 0.1-50.0 mM, a high sensitivity of 25.58 μA mM-1cm-2 and a limit of detection (LoD) down to 0.135 mM, which fully meets the requirements of clinical diagnostics. We demonstrated accurate lactate measurements in spiked artificial sweat, which is consistent with standard ELISA results. To monitor the sweat produced by volunteers while exercising, we conducted on-body tests, showcasing the wearable biosensor's ability to provide clinical sweat lactate diagnosis for medical treatment and sports management.
Collapse
Affiliation(s)
- Xuan Weng
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, China; Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, Guangdong, 523808, China
| | - Ming Li
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, China
| | - Longyan Chen
- Department of Biomedical, Industrial & Systems Engineering, Gannon University, 109 University Square, Erie, PA, 16541, USA
| | - Bei Peng
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, China
| | - Hai Jiang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, China; Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, Guangdong, 523808, China.
| |
Collapse
|
9
|
Chen Q, Li S, Tu X, Zhang X. Skin-attachable Tb-MOF ratio fluorescent sensor for real-time detection of human sweat pH. Biosens Bioelectron 2024; 263:116606. [PMID: 39089190 DOI: 10.1016/j.bios.2024.116606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
The pH of human sweat is highly related with a variety of diseases, whereas the monitoring of sweat pH still remains challenging for ordinary families. In this study, we developed a novel dual-emission Tb-MOF using DPA as the ligand and further designed and constructed a skin-attachable Tb-MOF ratio fluorescent sensor for real-time detection of human sweat pH. With the increased concentration of H+, the interaction of H+ with carbonyl organic ligand leads to the collapse of the Tb-MOF crystal structure, resulting in the interruption of antenna effect, and correspondingly increasing the emission of the ligand at 380 nm and decreasing the emission of the central ion Tb3+ at 544 nm. This Tb-MOF nanoprobe has a good linear response in the pH range of 4.12-7.05 (R2 = 0.9914) with excellent anti-interference ability. Based on the merits of fast pH response and high sensitivity, the nanoprobe was further used to prepare flexible wearable sensor. The wearable sensor can detect pH in the linear range of 3.50-6.70, which covers the pH range of normal human sweat (4.50-6.50). Subsequently, the storage stability and detection accuracy of the sensors were evaluated. Finally, the sensor has been successfully applied for the detection of pH in actual sweat samples from 21 volunteer and the real-time monitoring of pH variation during movement processing. This skin-attachable Tb-MOF sensor, with the advantages of low cost, visible color change and long shelf-life, is appealing for sweat pH monitoring especially for ordinary families.
Collapse
Affiliation(s)
- Qiulin Chen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Sheng Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Xiaoyan Tu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Xinfeng Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
10
|
Gao N, Xu G, Chang G, Wu Y. From Lab to Life: Self-Powered Sweat Sensors and Their Future in Personal Health Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409178. [PMID: 39467262 DOI: 10.1002/advs.202409178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/27/2024] [Indexed: 10/30/2024]
Abstract
The rapid development of wearable sweat sensors has demonstrated their potential for continuous, non-invasive disease diagnosis and health monitoring. Emerging energy harvesters capable of converting various environmental energy sources-biomechanical, thermal, biochemical, and solar-into electrical energy are revolutionizing power solutions for wearable devices. Based on self-powered technology, the integration of the energy harvesters with wearable sweat sensors can drive the device for biosensing, signal processing, and data transmission. As a result, self-powered sweat sensors are able to operate continuously without external power or charging, greatly facilitating the development of wearable electronics and personalized healthcare. This review focuses on the recent advances in self-powered sweat sensors for personalized healthcare, covering sweat sensors, energy harvesters, energy management, and applications. The review begins with the foundations of wearable sweat sensors, providing an overview of their detection methods, materials, and wearable devices. Then, the working mechanism, structure, and a characteristic of different types of energy harvesters are discussed. The features and challenges of different energy harvesters in energy supply and energy management of sweat sensors are emphasized. The review concludes with a look at the future prospects of self-powered sweat sensors, outlining the trajectory of the field and its potential to flourish.
Collapse
Affiliation(s)
- Nan Gao
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| | - Guodong Xu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| | - Gang Chang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, No.368 Youyi Avenue, Wuchang, Wuhan, 430062, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| |
Collapse
|
11
|
Sayyad PW, Park SJ, Ha TJ. Recent advances in biosensors based on metal-oxide semiconductors system-integrated into bioelectronics. Biosens Bioelectron 2024; 259:116407. [PMID: 38776800 DOI: 10.1016/j.bios.2024.116407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Metal-oxide semiconductors (MOSs) have emerged as pivotal components in technology related to biosensors and bioelectronics. Detecting biomarkers in sweat provides a glimpse into an individual's metabolism without the need for sample preparation or collection steps. The distinctive attributes of this biosensing technology position it as an appealing option for biomedical applications beyond the scope of diagnosis and healthcare monitoring. This review encapsulates ongoing developments of cutting-edge biosensors based on MOSs. Recent advances in MOS-based biosensors for human sweat analyses are reviewed. Also discussed is the progress in sweat-based biosensing technologies to detect and monitor diseases. Next, system integration of biosensors is demonstrated ultimately to ensure the accurate and reliable detection and analysis of target biomarkers beyond individual devices. Finally, the challenges and opportunities related to advanced biosensors and bioelectronics for biomedical applications are discussed.
Collapse
Affiliation(s)
- Pasha W Sayyad
- Department of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Sang-Joon Park
- Department of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Tae-Jun Ha
- Department of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
12
|
Zeng X, Li X, Zhang Y, Wang C, Liu Y, Hou C, Huo D. Simultaneous detection of tyrosine and uric acid in sweat using CoWO 4@CNT with a hydrogel modified electrochemical biosensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5902-5908. [PMID: 39158376 DOI: 10.1039/d4ay01070a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The levels of uric acid (UA) and tyrosine (Tyr) in sweat reflect a person's overall health. However, simultaneously identifying several components in sweat remains challenging. Here, we achieve simultaneous detection of UA and Tyr by synthesizing CoWO4@CNT in a single step using a hydrothermal method. CoWO4's high catalytic efficacy and large CNT reaction area allow the detection of 1-1000 μM UA (LOD = 0.14 μM) and 5-1000 μM Tyr (LOD = 4.2 μM). To increase sweat collection, we developed a polydopamine-polyacrylamide (PDA-PAM) hydrogel with a sweat absorption rate of up to 226%. Finally, by monitoring sweat at various times of day, our sensors can discriminate between UA and Tyr in real sweat, and the results are consistent with the individuals' activity levels. Overall, the effective electrocatalytically active materials and PDA-PAM hydrogel improve the detection of UA and Tyr. The remarkable performance of CoWO4@CNT in real samples shows that it has the potential to improve health detection and real-time sweat analysis.
Collapse
Affiliation(s)
- Xin Zeng
- Key Laboratory for Biological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Xuheng Li
- Key Laboratory for Biological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Yong Zhang
- Key Laboratory for Biological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Cuncun Wang
- Key Laboratory for Biological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Yiyi Liu
- Key Laboratory for Biological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China
| | - Danqun Huo
- Key Laboratory for Biological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China
| |
Collapse
|
13
|
Dyshko K, Nicodemus MP, Otterstetter R, Ghadimi H, Daniels S, Fulmer MS, Cheney Z, Ellis R, Stege V, Monty CN. Evaluation of a wearable fabric-based sensor for accurate sodium determination in sweat during exercise. Eur J Appl Physiol 2024; 124:1347-1353. [PMID: 38019318 DOI: 10.1007/s00421-023-05364-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/17/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION Newly developed wearable fabric sensors (WFS) can increase the ease and accuracy of sweat sodium measurements by performing simultaneous sampling and analysis on the body during exercise. PURPOSE Determine the accuracy of a WFS for measurement of sodium concentration in sweat. METHODS Subjects wore a WFS prototype and sweat collectors on their forearm during cycle ergometry. Subjects exercised at a moderate intensity (~ 65% heart rate reserve) for 30-60 min. Sweat samples were collected and analyzed using a commercial sweat sodium analyzer (SSA) every 10-15 min. WFS were adhered with an armband and connected to custom built electronics. Accuracy was determined by comparing predicted WFS concentration to the actual concentration from the commercial SSA and analyzed statistically using ANOVA and Bland-Altman plots. RESULTS A total of 19 subjects completed the study. The average sweat sodium concentration was 59 mM ± 22 mM from a SSA compared with 54 mM ± 22 mM from the WFS. Overall, the average accuracy of the WFS was 88% in comparison to the SSA with p = 0.45. A line of best fit comparing predicted versus actual sweat sodium concentration had a slope of 0.99, intercept of - 4.46, and an r2 of 0.90. Bland-Altman analysis showed the average concentration difference between the WFS and the SSA was 5.35 mM, with 99% of data points between ± 1.96 times the standard deviation. CONCLUSION The WFS accurately predicted sweat sodium concentration during moderate intensity cycle ergometry. With the need for precise assessment of sodium loss, especially during long duration exercise, this novel analysis method can benefit athletes and coaches. Further research involving longer duration and more intense exercise is warranted.
Collapse
Affiliation(s)
- Kristina Dyshko
- RooSense LLC, 1802 E. 25th Street, Cleveland, OH, 44115, USA
| | | | - Ronald Otterstetter
- School of Exercise and Nutrition Sciences, College of Health and Human Sciences, The University of Akron, 302 E. Buchtel Ave, Akron, OH, 44325, USA
| | - Hanieh Ghadimi
- RooSense LLC, 1802 E. 25th Street, Cleveland, OH, 44115, USA
| | - Shelby Daniels
- RooSense LLC, 1802 E. 25th Street, Cleveland, OH, 44115, USA
| | | | - Zachary Cheney
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - Rebecca Ellis
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - Victoria Stege
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - Chelsea N Monty
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, Cleveland, OH, 44115, USA.
| |
Collapse
|
14
|
Zhao H, Zhang L, Deng T, Li C. Microfluidic Sensing Textile for Continuous Monitoring of Sweat Glucose at Rest. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19605-19614. [PMID: 38568178 DOI: 10.1021/acsami.4c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Wearable sweat sensors have received considerable attention due to their great potential for noninvasive continuous monitoring of an individual's health status applications. However, the low secretion rate and fast evaporation of sweat pose challenges in collecting sweat from sedentary individuals for noninvasive analysis of body physiology. Here, we demonstrate wearable textiles for continuous monitoring of sweat at rest using the combination of a heating element and a microfluidic channel to increase localized skin sweat secretion rates and combat sweat evaporation, enabling accurate and stable monitoring of trace amounts of sweat. The Janus sensing yarns with a glucose sensing sensitivity of 36.57 mA cm-2 mM-1 are embroidered into the superhydrophobic heated textile to collect sweat directionally, resulting in improved sweat collection efficiency of up to 96 and 75% retention. The device also maintains a highly durable sensing performance, even in dynamic deformation, recycling, and washing. The microfluidic sensing textile can be further designed into a wireless sensing system that enables sedentary-compatible sweat analysis for the continuous, real-time monitoring of body glucose levels at rest.
Collapse
Affiliation(s)
- He Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Ling Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Tianbo Deng
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Chunzhong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
15
|
Ma X, Wu X, Luo W, Liu Z, Wang F, Yu H. Large-Scale Wearable Textile-Based Sweat Sensor with High Sensitivity, Rapid Response, and Stable Electrochemical Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18202-18212. [PMID: 38551998 DOI: 10.1021/acsami.4c01521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Textile-based sweat sensors display great potential to enhance wearable comfort and health monitoring; however, their widespread application is severely hindered by the intricate manufacturing process and electrochemical characteristics. To address this challenge, we combined both impregnation coating technology and conjugated electrospinning technology to develop an electro-assisted impregnation core-spinning technology (EAICST), which enables us to simply construct a sheath-core electrochemical sensing yarn (TPFV/CPP yarn) via coating PEDOT:PSS-coated carbon fibers (CPP) with polyurethane (TPU)/polyacrylonitrile (PAN)/poloxamer (F127)/valinomycin as shell. The TPFV/CPP yarn was sewn into the fabric and integrated with a sensor to achieve a detachable feature and efficiently monitor K+ levels in sweat. By introducing EAICST, a speed of 10 m/h can be realized in the continuous preparation of the TPFV/CPP yarn, while the interconnected pores in the yarn sheath enable it to quickly capture and diffuse sweat. Besides, the sensor exhibited excellent sensitivity (54.26 mV/decade), fast response (1.7 s), anti-interference, and long-term stability (5000 s or more). Especially, it also possesses favorable washability and wear resistance properties. Taken together, this study provides a crucial technical foundation for the development of advanced wearable devices designed for sweat analysis.
Collapse
Affiliation(s)
- Xiangda Ma
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Xueqi Wu
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Wencan Luo
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Zijin Liu
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Fei Wang
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Hui Yu
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
16
|
Ding Y, Jiang J, Wu Y, Zhang Y, Zhou J, Zhang Y, Huang Q, Zheng Z. Porous Conductive Textiles for Wearable Electronics. Chem Rev 2024; 124:1535-1648. [PMID: 38373392 DOI: 10.1021/acs.chemrev.3c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Over the years, researchers have made significant strides in the development of novel flexible/stretchable and conductive materials, enabling the creation of cutting-edge electronic devices for wearable applications. Among these, porous conductive textiles (PCTs) have emerged as an ideal material platform for wearable electronics, owing to their light weight, flexibility, permeability, and wearing comfort. This Review aims to present a comprehensive overview of the progress and state of the art of utilizing PCTs for the design and fabrication of a wide variety of wearable electronic devices and their integrated wearable systems. To begin with, we elucidate how PCTs revolutionize the form factors of wearable electronics. We then discuss the preparation strategies of PCTs, in terms of the raw materials, fabrication processes, and key properties. Afterward, we provide detailed illustrations of how PCTs are used as basic building blocks to design and fabricate a wide variety of intrinsically flexible or stretchable devices, including sensors, actuators, therapeutic devices, energy-harvesting and storage devices, and displays. We further describe the techniques and strategies for wearable electronic systems either by hybridizing conventional off-the-shelf rigid electronic components with PCTs or by integrating multiple fibrous devices made of PCTs. Subsequently, we highlight some important wearable application scenarios in healthcare, sports and training, converging technologies, and professional specialists. At the end of the Review, we discuss the challenges and perspectives on future research directions and give overall conclusions. As the demand for more personalized and interconnected devices continues to grow, PCT-based wearables hold immense potential to redefine the landscape of wearable technology and reshape the way we live, work, and play.
Collapse
Affiliation(s)
- Yichun Ding
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Jinxing Jiang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yingsi Wu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yaokang Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Junhua Zhou
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yufei Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| | - Zijian Zheng
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
17
|
Wu ZQ, Cao XQ, Hua Y, Yu CM. A Bifunctional Wearable Sensor Based on a Nanoporous Membrane for Simultaneous Detection of Sweat Lactate and Temperature. Anal Chem 2024. [PMID: 38320230 DOI: 10.1021/acs.analchem.3c05216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Wearable sensors for non-invasive, real-time detection of sweat lactate have far-reaching implications in the fields of health care and exercise physiological responses. Here, we propose a wearable electrochemical sensor with gold nanoelectrode arrays fabricated on the nanoporous polycarbonate (PC) membrane by encapsulating lactate oxidase (LOx) in chitosan (CS) hydrogel for detecting body temperature and sweat lactate concurrently. Flexible gold nanoporous electrodes not only enhance electrode area but also offer a nanoconfined space to accelerate the catalytic reaction of LOx and control substrate concentration on the surface of LOx to decrease substrate inhibition. The proposed sensor has a long durability of 13 days and better selectivity for the detection of sweat lactate over a wide linear range (0.01-35 mM) with a low detection limit (0.144 μM). Furthermore, temperature-dependent transmembrane currents passing through the sensor are used to estimate body temperature. We then use multiple linear regression to adjust the effect of temperature on lactate detection and succeed in monitoring lactate molecules in sweat and body temperature during exercise.
Collapse
Affiliation(s)
- Zeng-Qiang Wu
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Xiao-Qing Cao
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Yu Hua
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Chun-Mei Yu
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| |
Collapse
|
18
|
Muñoz-Urtubia N, Vega-Muñoz A, Estrada-Muñoz C, Salazar-Sepúlveda G, Contreras-Barraza N, Salinas-Martínez N, Méndez-Celis P, Carmelo-Adsuar J. Wearable biosensors for human health: A bibliometric analysis from 2007 to 2022. Digit Health 2024; 10:20552076241256876. [PMID: 38882252 PMCID: PMC11179482 DOI: 10.1177/20552076241256876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024] Open
Abstract
Objective This study aimed to determine the status of scientific production on biosensor usage for human health monitoring. Methods We used bibliometrics based on the data and metadata retrieved from the Web of Science between 2007 and 2022. Articles unrelated to health and medicine were excluded. The databases were processed using the VOSviewer software and auxiliary spreadsheets. Data extraction yielded 275 articles published in 161 journals, mainly concentrated on 13 journals and 881 keywords plus. Results The keywords plus of high occurrences were estimated at 27, with seven to 30 occurrences. From the 1595 identified authors, 125 were consistently connected in the coauthorship network in the total set and were grouped into nine clusters. Using Lotka's law, we identified 24 prolific authors, and Hirsch index analysis revealed that 45 articles were cited more than 45 times. Crosses were identified between 17 articles in the Hirsch index and 17 prolific authors, highlighting the presence of a large set of prolific authors from various interconnected clusters, a triad, and a solitary prolific author. Conclusion An exponential trend was observed in biosensor research for health monitoring, identifying areas of innovation, collaboration, and technological challenges that can guide future research on this topic.
Collapse
Affiliation(s)
- Nicolás Muñoz-Urtubia
- International Graduate School, University of Extremadura, Caceres, Spain
- Instituto de Ciencias de la Educación, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandro Vega-Muñoz
- Facultad de Medicina y Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
- Facultad de Ciencias Empresariales, Universidad Arturo Prat, Iquique, Chile
| | - Carla Estrada-Muñoz
- Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Guido Salazar-Sepúlveda
- Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Facultad de Ingeniería y Negocios, Universidad de Las Américas, Concepción, Chile
| | | | - Nicolás Salinas-Martínez
- Facultad de Ciencias Económicas, Administrativas y Contables, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | | | | |
Collapse
|
19
|
Yang M, Sun N, Lai X, Zhao X, Zhou W. Advances in Non-Electrochemical Sensing of Human Sweat Biomarkers: From Sweat Sampling to Signal Reading. BIOSENSORS 2023; 14:17. [PMID: 38248394 PMCID: PMC10813192 DOI: 10.3390/bios14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024]
Abstract
Sweat, commonly referred to as the ultrafiltrate of blood plasma, is an essential physiological fluid in the human body. It contains a wide range of metabolites, electrolytes, and other biologically significant markers that are closely linked to human health. Compared to other bodily fluids, such as blood, sweat offers distinct advantages in terms of ease of collection and non-invasive detection. In recent years, considerable attention has been focused on wearable sweat sensors due to their potential for continuous monitoring of biomarkers. Electrochemical methods have been extensively used for in situ sweat biomarker analysis, as thoroughly reviewed by various researchers. This comprehensive review aims to provide an overview of recent advances in non-electrochemical methods for analyzing sweat, including colorimetric methods, fluorescence techniques, surface-enhanced Raman spectroscopy, and more. The review covers multiple aspects of non-electrochemical sweat analysis, encompassing sweat sampling methodologies, detection techniques, signal processing, and diverse applications. Furthermore, it highlights the current bottlenecks and challenges faced by non-electrochemical sensors, such as limitations and interference issues. Finally, the review concludes by offering insights into the prospects for non-electrochemical sensing technologies. By providing a valuable reference and inspiring researchers engaged in the field of sweat sensor development, this paper aspires to foster the creation of innovative and practical advancements in this domain.
Collapse
Affiliation(s)
- Mingpeng Yang
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Nan Sun
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
| | - Xiaochen Lai
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Xingqiang Zhao
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Wangping Zhou
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| |
Collapse
|
20
|
Ma X, Zhou Q, Gao B. Recent advances of biosensors on microneedles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5711-5730. [PMID: 37873722 DOI: 10.1039/d3ay01745a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Biosensors have attracted a considerable attention in recent years due to their enormous potential to provide insights into the physical condition of individuals. However, the widespread use of biosensors has experienced difficulties regarding the stability of the biological response and the poor miniaturization and portability of biosensors. Hence, there is an urgent need for more reliable biosensor devices. Microneedle (MN) technology has become a revolutionary approach to biosensing strategies, setting new horizons for improving existing biosensors. MN-based biosensors allow for painless injection, and in situ extraction or monitoring. However, the accuracy and practicality of detection need to be improved. This review begins by discussing the classification of MNs, manufacturing methods and other design parameters to develop a more accurate MN-based detection sensing system. Herein, we categorize and analyze the energy supply of wearable biosensors. Specifically, we describe the detection methods of MN biosensors, such as electrochemical, optical, nucleic acid recognition and immunoassays, and how MNs can be combined with these methods to detect biomarkers. Furthermore, we provide a detailed overview of the latest applications (drug release, drug detection, etc.). The MN-based biosensors are followed by a summary of key challenges and opportunities in the field.
Collapse
Affiliation(s)
- Xiaoming Ma
- Department of Orthopedics, Taizhou People's Hospital, 366 Taihu Road, Taizhou, Jiangsu Province, People's Republic of China.
| | - Qian Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
21
|
Tian H, Wang L, Yang W, Li K, Zhang Q, Li Y, Wang H, Hou C. Hierarchical Fermat helix-structured electrochemical sensing fibers enable sweat capture and multi-biomarker monitoring. MATERIALS HORIZONS 2023; 10:5192-5201. [PMID: 37725333 DOI: 10.1039/d3mh00989k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Wearable electrochemical sensors have shown potential for personal health monitoring due to their ability to detect biofluids non-invasively at the molecular level. Smart fibers with high flexibility and comfort are currently ideal for fabricating electrochemical sensors, but little research has focused on fluid transport at the human-machine interface, which is of great significance for continuous and stable monitoring and skin comfort. Here, we report an electrochemical sensing fiber with a special core-sheath structure, whose outer layer is wound by nanofibers with a hierarchical Fermat helix structure which has excellent moisture conductivity, and the inner layer is based on CNT fibers covered by three-dimensional reduced graphene oxide folds which have good sensing properties after modification of active materials such as enzymes and selective membranes. This kind of fiber enables efficient sweat capture, and thus only 0.1 μL of sweat is required to activate the device, and it responds very quickly (1.5 s). The fibers were further integrated into a garment to build a wireless sweat detection system, enabling stable monitoring of six physiological markers in sweat (glucose, lactate, Na+, K+, Ca2+, and pH). This work provides a feasible proposal for future personalized medicine and the construction of "smart sensing garments".
Collapse
Affiliation(s)
- Hang Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Lichao Wang
- School of Medical Imageology, Wannan Medical College, Wuhu 241002, P. R. China
| | - Weifeng Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, P. R. China.
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, P. R. China.
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| |
Collapse
|
22
|
Zhang Y, Liao J, Li Z, Hu M, Bian C, Lin S. All fabric and flexible wearable sensors for simultaneous sweat metabolite detection and high-efficiency collection. Talanta 2023; 260:124610. [PMID: 37146456 DOI: 10.1016/j.talanta.2023.124610] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Wearable sweat electrochemical sensors have attracted wide attention due to their advantages of non-invasive, portable, real-time monitoring, etc. However, existing sensors still have some problems with efficient sweat collection. Microfluidic channel technology and electrospinning technology are commonly used to collect sweat efficiently, but there are some limitations such as complex channel design and multiple spinning parameters. Besides, existing sensors are mostly based on flexible polymers, such as, PET, PDMS, PI and PI, which have limited wearability and permeability. Based on the above, all fabric and dual-function flexible wearable sweat electrochemical sensor is proposed in this paper. This sensor uses fabric as the raw material to implement the directional transport of sweat and the multi-component integrated detection dual functions. Meanwhile, the high-efficiency collection of sweat is obtained by a Janus fabric, wherein one side of the selected silk is superhydrophobic graft treated and the other side is hydrophilic plasma treated. Therefore, the resulting Janus fabric can effectively transfer sweat from the skin side to the electrode, and the minimum sweat droplet can reach 0.2 μL to achieve micro-volume collection. Besides, the patterned sensor, made of silk-based carbon cloth, is fabricated using a simple laser engraving, which could detect Na+, pH, and glucose instantaneously. As a result, these proposed sensors can achieve good sensing performance and high-efficiency sweat collection dual functionality; moreover, it has good flexibility and comfortable wearability.
Collapse
Affiliation(s)
- Yingwen Zhang
- School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Jianjun Liao
- School of Ecological and Environmental Sciences, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China.
| | - Zehao Li
- School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Mingxu Hu
- School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Chao Bian
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shiwei Lin
- School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| |
Collapse
|
23
|
Yuan X, Li C, Yin X, Yang Y, Ji B, Niu Y, Ren L. Epidermal Wearable Biosensors for Monitoring Biomarkers of Chronic Disease in Sweat. BIOSENSORS 2023; 13:313. [PMID: 36979525 PMCID: PMC10045998 DOI: 10.3390/bios13030313] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Biological information detection technology is mainly used for the detection of physiological and biochemical parameters closely related to human tissues and organ lesions, such as biomarkers. This technology has important value in the clinical diagnosis and treatment of chronic diseases in their early stages. Wearable biosensors can be integrated with the Internet of Things and Big Data to realize the detection, transmission, storage, and comprehensive analysis of human physiological and biochemical information. This technology has extremely wide applications and considerable market prospects in frontier fields including personal health monitoring, chronic disease diagnosis and management, and home medical care. In this review, we systematically summarized the sweat biomarkers, introduced the sweat extraction and collection methods, and discussed the application and development of epidermal wearable biosensors for monitoring biomarkers in sweat in preclinical research in recent years. In addition, the current challenges and development prospects in this field were discussed.
Collapse
Affiliation(s)
- Xichen Yuan
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- MOE Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi’an 710072, China
| | - Chen Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| | - Xu Yin
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yang Yang
- Ministry of Education Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400030, China
| | - Bowen Ji
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yinbo Niu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Li Ren
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| |
Collapse
|
24
|
Yoon ES, Park HJ, Kil MS, Kim J, Lee KG, Choi BG. Preparation of nanopillar array electrode of iridium oxide for high performance of
pH
sensor and its real‐time sweat monitoring. B KOREAN CHEM SOC 2023. [DOI: 10.1002/bkcs.12689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Eun Seop Yoon
- Department of Chemical Engineering Kangwon National University Samcheok South Korea
| | - Hong Jun Park
- Department of Chemical Engineering Kangwon National University Samcheok South Korea
| | - Min Sik Kil
- Department of Chemical Engineering Kangwon National University Samcheok South Korea
| | - Jueun Kim
- Center for Nano Bio Development National NanoFab Center Daejeon South Korea
| | - Kyoung G. Lee
- Center for Nano Bio Development National NanoFab Center Daejeon South Korea
| | - Bong Gill Choi
- Center for Nano Bio Development National NanoFab Center Daejeon South Korea
| |
Collapse
|
25
|
Son SU, Jang S, Lim J, Seo SB, Kang T, Jung J, Oh SY, Yoon SW, Yong D, Lee J, Lim EK. Conductive Thread-Based Immunosensor for Pandemic Influenza A (H1N1) Virus Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7759-7766. [PMID: 36748606 DOI: 10.1021/acsami.2c19403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Infectious agents such as viruses pose significant threats to human health, being transmitted via direct contact as well as airborne transmission without direct contact, thus requiring rapid detection to prevent the spread of infectious diseases. In this study, we developed a conductive thread-based immunosensor (CT-IS), a biosensor to easily detect the presence of airborne viruses. CT-IS utilizes an antibody that specifically recognizes the HA protein of the pandemic influenza A (pH1N1) virus, which is incorporated into the conductive thread. The antigen-antibody interaction results in increased strain on the conductive thread in the presence of the pH1N1 virus, resulting in increased electrical resistance of the CT-IS. We evaluated the performance of this sensor using the HA protein and the pH1N1 virus, in addition to samples from patients infected with the pH1N1 virus. We observed a significant change in resistance in the pH1N1-infected patient samples (positive: n = 11, negative: n = 9), whereas negligible change was observed in the control samples (patients not infected with the pH1N1 virus; negative). Hence, the CT-IS is a lightweight fiber-type sensor that can be used as a wearable biosensor by combining it with textiles, to detect the pH1N1 virus in a person's vicinity.
Collapse
Affiliation(s)
- Seong Uk Son
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Soojin Jang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jaewoo Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seung Beom Seo
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seo Yeong Oh
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sun-Woo Yoon
- Department of Biological Sciences and Biotechnology, Andong National University, Andong 36729, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jaejong Lee
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
26
|
Khumngern S, Jeerapan I. Advances in wearable electrochemical antibody-based sensors for cortisol sensing. Anal Bioanal Chem 2023:10.1007/s00216-023-04577-y. [PMID: 36781449 DOI: 10.1007/s00216-023-04577-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
Cortisol is a crucial hormone involving many physiological processes. Hence, cortisol detection is essential. This review highlights the key progress made on wearable electrochemical sensors using antibodies. It covers the design, principle, and electroanalytical methodology for detecting cortisol noninvasively. This article also analyzes and collects the analytical performances of electrochemical cortisol sensors. The development of these sensors continues to face challenges such as biofouling, sample management, sensitivity, flexibility, stability, and recognition layer performance. It is also necessary to develop a sensitive electrode and material. This article also presents potential strategies for designing antibody electrodes and provides examples of sensing systems. Additionally, it discusses the challenges in translating research into practical applications.
Collapse
Affiliation(s)
- Suntisak Khumngern
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand.,Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Itthipon Jeerapan
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand. .,Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand. .,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand.
| |
Collapse
|
27
|
Chen L, Ghiasvand A, Paull B. Applications of thread-based microfluidics: Approaches and options for detection. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
28
|
Das R, Nag S, Banerjee P. Electrochemical Nanosensors for Sensitization of Sweat Metabolites: From Concept Mapping to Personalized Health Monitoring. Molecules 2023; 28:1259. [PMID: 36770925 PMCID: PMC9920341 DOI: 10.3390/molecules28031259] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Sweat contains a broad range of important biomarkers, which may be beneficial for acquiring non-invasive biochemical information on human health status. Therefore, highly selective and sensitive electrochemical nanosensors for the non-invasive detection of sweat metabolites have turned into a flourishing contender in the frontier of disease diagnosis. A large surface area, excellent electrocatalytic behavior and conductive properties make nanomaterials promising sensor materials for target-specific detection. Carbon-based nanomaterials (e.g., CNT, carbon quantum dots, and graphene), noble metals (e.g., Au and Pt), and metal oxide nanomaterials (e.g., ZnO, MnO2, and NiO) are widely used for modifying the working electrodes of electrochemical sensors, which may then be further functionalized with requisite enzymes for targeted detection. In the present review, recent developments (2018-2022) of electrochemical nanosensors by both enzymatic as well as non-enzymatic sensors for the effectual detection of sweat metabolites (e.g., glucose, ascorbic acid, lactate, urea/uric acid, ethanol and drug metabolites) have been comprehensively reviewed. Along with this, electrochemical sensing principles, including potentiometry, amperometry, CV, DPV, SWV and EIS have been briefly presented in the present review for a conceptual understanding of the sensing mechanisms. The detection thresholds (in the range of mM-nM), sensitivities, linear dynamic ranges and sensing modalities have also been properly addressed for a systematic understanding of the judicious design of more effective sensors. One step ahead, in the present review, current trends of flexible wearable electrochemical sensors in the form of eyeglasses, tattoos, gloves, patches, headbands, wrist bands, etc., have also been briefly summarized, which are beneficial for on-body in situ measurement of the targeted sweat metabolites. On-body monitoring of sweat metabolites via wireless data transmission has also been addressed. Finally, the gaps in the ongoing research endeavors, unmet challenges, outlooks and future prospects have also been discussed for the development of advanced non-invasive self-health-care-monitoring devices in the near future.
Collapse
Affiliation(s)
- Riyanka Das
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Somrita Nag
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Priyabrata Banerjee
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
29
|
Yin J, Li J, Reddy VS, Ji D, Ramakrishna S, Xu L. Flexible Textile-Based Sweat Sensors for Wearable Applications. BIOSENSORS 2023; 13:bios13010127. [PMID: 36671962 PMCID: PMC9856321 DOI: 10.3390/bios13010127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/12/2023]
Abstract
The current physical health care system has gradually evolved into a form of virtual hospitals communicating with sensors, which can not only save time but can also diagnose a patient's physical condition in real time. Textile-based wearable sensors have recently been identified as detection platforms with high potential. They are developed for the real-time noninvasive detection of human physiological information to comprehensively analyze the health status of the human body. Sweat comprises various chemical compositions, which can be used as biomarkers to reflect the relevant information of the human physiology, thus providing references for health conditions. Combined together, textile-based sweat sensors are more flexible and comfortable than other conventional sensors, making them easily integrated into the wearable field. In this short review, the research progress of textile-based flexible sweat sensors was reviewed. Three mechanisms commonly used for textile-based sweat sensors were firstly contrasted with an introduction to their materials and preparation processes. The components of textile-based sweat sensors, which mainly consist of a sweat transportation channel and collector, a signal-selection unit, sensing elements and sensor integration and communication technologies, were reviewed. The applications of textile-based sweat sensors with different mechanisms were also presented. Finally, the existing problems and challenges of sweat sensors were summarized, which may contribute to promote their further development.
Collapse
Affiliation(s)
- Jing Yin
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Jingcheng Li
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Vundrala Sumedha Reddy
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Dongxiao Ji
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Seeram Ramakrishna
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
30
|
Shen Y, Liu C, He H, Zhang M, Wang H, Ji K, Wei L, Mao X, Sun R, Zhou F. Recent Advances in Wearable Biosensors for Non-Invasive Detection of Human Lactate. BIOSENSORS 2022; 12:1164. [PMID: 36551131 PMCID: PMC9776101 DOI: 10.3390/bios12121164] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Lactate, a crucial product of the anaerobic metabolism of carbohydrates in the human body, is of enormous significance in the diagnosis and treatment of diseases and scientific exercise management. The level of lactate in the bio-fluid is a crucial health indicator because it is related to diseases, such as hypoxia, metabolic disorders, renal failure, heart failure, and respiratory failure. For critically ill patients and those who need to regularly control lactate levels, it is vital to develop a non-invasive wearable sensor to detect lactate levels in matrices other than blood. Due to its high sensitivity, high selectivity, low detection limit, simplicity of use, and ability to identify target molecules in the presence of interfering chemicals, biosensing is a potential analytical approach for lactate detection that has received increasing attention. Various types of wearable lactate biosensors are reviewed in this paper, along with their preparation, key properties, and commonly used flexible substrate materials including polydimethylsiloxane (PDMS), polyethylene terephthalate (PET), paper, and textiles. Key performance indicators, including sensitivity, linear detection range, and detection limit, are also compared. The challenges for future development are also summarized, along with some recommendations for the future development of lactate biosensors.
Collapse
Affiliation(s)
- Yutong Shen
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Chengkun Liu
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Haijun He
- Engineering Research Center for Knitting Technology of the Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Mengdi Zhang
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Hao Wang
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Keyu Ji
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Liang Wei
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Xue Mao
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Runjun Sun
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Fenglei Zhou
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| |
Collapse
|
31
|
Wang J, Wang L, Li G, Yan D, Liu C, Xu T, Zhang X. Ultra-Small Wearable Flexible Biosensor for Continuous Sweat Analysis. ACS Sens 2022; 7:3102-3107. [PMID: 36218347 DOI: 10.1021/acssensors.2c01533] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the field of wearable sensing, small and precise sensors can greatly reduce the burden on the wearer and improve the sense of experience, which is the future direction of sensing development. Herein, we introduce an ultra-small wearable biosensor system that integrates an MS02 chip for real-time and highly accurate sweat detection. The whole system mainly includes flexible electrodes and a printed circle board (PCB). The size of the PCB is only 1.5 cm × 0.8 cm, which greatly minimizes the size of the sweat system and improves wearing comfort. Notably, this miniaturized system is comparable to a commercial electrochemical workstation, ensuring the reliability and accuracy of real-time analysis. The core processing MS02 chip, with a dimension of 1.2 mm × 1.1 mm, is used to perform electrochemical signal processing. By performing electrochemical characterization and measurements of the ultra-small wearable biosensor system, on-body monitoring of four biomarkers (glucose, lactate, Na+, and K+) in sweat of human volunteers has been successfully achieved. With the help of this electrochemical sensor system, mass of biochemical data from perspiration can be acquired to better understand the body's response to daily activities, which will facilitate the early prediction of abnormal physiological changes in the future.
Collapse
Affiliation(s)
- Jing Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.,School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Lirong Wang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Guanhua Li
- Shenzhen Refresh Intelligent Technology Co. Ltd., Shenzhen, Guangdong 518000, PR China
| | - Dan Yan
- Shenzhen Refresh Intelligent Technology Co. Ltd., Shenzhen, Guangdong 518000, PR China
| | - Conghui Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.,Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
| | - Tailin Xu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.,School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China.,Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
| | - Xueji Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.,School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China.,Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
32
|
A Study of the Performance Degradation of Conductive Threads Based on the Effects of Tensile Forces and Repeated Washing. Polymers (Basel) 2022; 14:polym14214581. [PMID: 36365576 PMCID: PMC9656624 DOI: 10.3390/polym14214581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 12/03/2022] Open
Abstract
In recent years, after the ongoing success in the creation of portable electronic devices, an increasing effort has been put in creating wearable devices capable of sensing multiple parameters while being imperceptible to the user. A field that has recently gained attention due to this is that of textile electronics. For this purpose, one of the most commonly used materials is conductive threads, capable of sustaining an electrical connection, while at the same time being part of a garment. As research on the performance and stability of such threads is scarce, the aim of this work is to study the effects of tension on readily available conductive threads and to verify their suitability and reliability for e-textile applications. After testing seven commercially available threads, this study demonstrates that the nominal parameters provided by the manufacturers are not in line with experimentation, and that both embroidery and washing have an impact on their performance.
Collapse
|
33
|
Zheng H, Chen H, Pu Z, Li D. A breathable flexible glucose biosensor with embedded electrodes for long-term and accurate wearable monitoring. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
|
35
|
Ramachandran B, Liao YC. Microfluidic wearable electrochemical sweat sensors for health monitoring. BIOMICROFLUIDICS 2022; 16:051501. [PMID: 36186757 PMCID: PMC9520469 DOI: 10.1063/5.0116648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Research on remote health monitoring through wearable sensors has attained popularity in recent decades mainly due to aging population and expensive health care services. Microfluidic wearable sweat sensors provide economical, non-invasive mode of sample collection, important physiological information, and continuous tracking of human health. Recent advances in wearable sensors focus on electrochemical monitoring of biomarkers in sweat and can be applicable in various fields like fitness monitoring, nutrition, and medical diagnosis. This review focuses on the evolution of wearable devices from benchtop electrochemical systems to microfluidic-based wearable sensors. Major classification of wearable sensors like skin contact-based and biofluidic-based sensors are discussed. Furthermore, sweat chemistry and related biomarkers are explained in addition to integration of microfluidic systems in wearable sweat sensors. At last, recent advances in wearable electrochemical sweat sensors are discussed, which includes tattoo-based, paper microfluidics, patches, wrist band, and belt-based wearable sensors.
Collapse
Affiliation(s)
- Balaji Ramachandran
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ying-Chih Liao
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
36
|
Yue X, Xu F, Zhang L, Ren G, Sheng H, Wang J, Wang K, Yu L, Wang J, Li G, Lu G, Yu HD. Simple, Skin-Attachable, and Multifunctional Colorimetric Sweat Sensor. ACS Sens 2022; 7:2198-2208. [PMID: 35903889 DOI: 10.1021/acssensors.2c00581] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In situ analysis of sweat provides a simple, convenient, cost-effective, and noninvasive approach for the early diagnosis of physical illness in humans and is particularly useful in family care. In this study, a flexible and skin-attachable colorimetric sweat sensor for multiplexed analysis is developed using a simple, cost-effective, and convenient method. The obtained sweat sensor can be used to simultaneously detect glucose, lactate, urea, and pH value in sweat, as well as sweat loss and skin temperature. Only 2.5 μL of sweat is enough for the whole test, and the sweat loss and chemical-sensing results can be read out conveniently by naked eyes or a smartphone. In addition, body temperature can also be detected with an additional electrical circuit. Our sweat sensor provides a new, cost-effective, and convenient approach for in vitro diagnosis of multiple components in sweat, and the easy fabrication and cost-effectiveness make our sensor commercializable in the near future.
Collapse
Affiliation(s)
- Xiaoping Yue
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Feiyang Xu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Linrong Zhang
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Guozhang Ren
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Huixiang Sheng
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jin Wang
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Kaili Wang
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Liuyingzi Yu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Junjie Wang
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Gongqiang Li
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Gang Lu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Hai-Dong Yu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China.,Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| |
Collapse
|
37
|
Singh A, Sharma A, Arya S. Human sweat-based wearable glucose sensor on cotton fabric for real-time monitoring. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00320-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AbstractIn this work, a human sweat-based wearable sensor for real-time glucose monitoring has been fabricated on a cotton substrate after treating it with a two-step polymerization of pyrrole. The pyrrole-treated fabric was coated with solution of copper sulphate pentahydrate to grow Cu layer. The cotton/pyrrole/Cu fabric was treated with the solutions of copper acetate and manganese acetate to form Cu–Mn transition-metal alloy via electrochemical deposition technique. Results indicate that the developed sensor is reliable with glucose detection limit of 125 µM and 378 µM. In addition, the sensor output ranged between 50 and 400 µM glucose with coefficient of correlation, R2 = 0.983, indicating a linear range of output current. The sensor's response is not significantly affected by interferents. The developed sensor is also validated on human sweat with satisfactory results.
Collapse
|
38
|
Hydrophilic metal-organic frameworks integrated uricase for wearable detection of sweat uric acid. Anal Chim Acta 2022; 1208:339843. [DOI: 10.1016/j.aca.2022.339843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 12/14/2022]
|
39
|
Ghoorchian A, Kamalabadi M, Moradi M, Madrakian T, Afkhami A, Bagheri H, Ahmadi M, Khoshsafar H. Wearable Potentiometric Sensor Based on Na 0.44MnO 2 for Non-invasive Monitoring of Sodium Ions in Sweat. Anal Chem 2022; 94:2263-2270. [PMID: 35050594 DOI: 10.1021/acs.analchem.1c04960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Here, we present a wearable potentiometric ion sensor for real-time monitoring of sodium ions (Na+) in human sweat samples using Na0.44MnO2 as the sensing material. Na0.44MnO2 is an attractive material for developing wearable electrochemical sensors due to its good Na+ incorporation ability, electrical conductivity, stability, and low fabrication cost. In the first step, the analytical performance of the electrode prepared using Na0.44MnO2 is presented. Then, a miniaturized potentiometric cell integrated into a wearable substrate is developed, which reveals a Nernstian response (58 mV dec-1). We achieved the detection of Na+ in the linear ranges of 0.21-24.54 mmol L-1, which is well within the physiological range of Na+. Finally, for on-body sweat analysis, the potentiometric sensor is fully integrated into a headband textile. This platform can be employed for non-invasive analysis of Na+ in human sweat for healthcare and disease diagnosis.
Collapse
Affiliation(s)
- Arash Ghoorchian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran
| | - Mahdie Kamalabadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran
| | - Mahdi Moradi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran
| | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran.,Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7135646141, Iran
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran.,D-8 International University, Hamedan 6517838695, Iran
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran
| | - Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran.,Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7135646141, Iran
| | - Hosein Khoshsafar
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran
| |
Collapse
|
40
|
Pillai S, Upadhyay A, Sayson D, Nguyen BH, Tran SD. Advances in Medical Wearable Biosensors: Design, Fabrication and Materials Strategies in Healthcare Monitoring. Molecules 2021; 27:165. [PMID: 35011400 PMCID: PMC8746599 DOI: 10.3390/molecules27010165] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
In the past decade, wearable biosensors have radically changed our outlook on contemporary medical healthcare monitoring systems. These smart, multiplexed devices allow us to quantify dynamic biological signals in real time through highly sensitive, miniaturized sensing platforms, thereby decentralizing the concept of regular clinical check-ups and diagnosis towards more versatile, remote, and personalized healthcare monitoring. This paradigm shift in healthcare delivery can be attributed to the development of nanomaterials and improvements made to non-invasive biosignal detection systems alongside integrated approaches for multifaceted data acquisition and interpretation. The discovery of new biomarkers and the use of bioaffinity recognition elements like aptamers and peptide arrays combined with the use of newly developed, flexible, and conductive materials that interact with skin surfaces has led to the widespread application of biosensors in the biomedical field. This review focuses on the recent advances made in wearable technology for remote healthcare monitoring. It classifies their development and application in terms of electrochemical, mechanical, and optical modes of transduction and type of material used and discusses the shortcomings accompanying their large-scale fabrication and commercialization. A brief note on the most widely used materials and their improvements in wearable sensor development is outlined along with instructions for the future of medical wearables.
Collapse
Affiliation(s)
- Sangeeth Pillai
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (S.P.); (A.U.); (D.S.)
| | - Akshaya Upadhyay
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (S.P.); (A.U.); (D.S.)
| | - Darren Sayson
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (S.P.); (A.U.); (D.S.)
| | - Bich Hong Nguyen
- Department of Pediatrics, CHU Sainte Justine Hospital, Montreal, QC H3T 1C5, Canada;
| | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (S.P.); (A.U.); (D.S.)
| |
Collapse
|
41
|
Osmotically Enabled Wearable Patch for Sweat Harvesting and Lactate Quantification. MICROMACHINES 2021; 12:mi12121513. [PMID: 34945363 PMCID: PMC8705979 DOI: 10.3390/mi12121513] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 01/10/2023]
Abstract
Lactate is an essential biomarker for determining the health of the muscles and oxidative stress levels in the human body. However, most of the currently available sweat lactate monitoring devices require external power, cannot measure lactate under low sweat rates (such as in humans at rest), and do not provide adequate information about the relationship between sweat and blood lactate levels. Here, we discuss the on-skin operation of our recently developed wearable sweat sampling patch. The patch combines osmosis (using hydrogel discs) and capillary action (using paper microfluidic channel) for long-term sweat withdrawal and management. When subjects are at rest, the hydrogel disc can withdraw fluid from the skin via osmosis and deliver it to the paper. The lactate amount in the fluid is determined using a colorimetric assay. During active sweating (e.g., exercise), the paper can harvest sweat even in the absence of the hydrogel patch. The captured fluid contains lactate, which we quantify using a colorimetric assay. The measurements show the that the total number of moles of lactate in sweat is correlated to sweat rate. Lactate concentrations in sweat and blood correlate well only during high-intensity exercise. Hence, sweat appears to be a suitable biofluid for lactate quantification. Overall, this wearable patch holds the potential of providing a comprehensive analysis of sweat lactate trends in the human body.
Collapse
|
42
|
Cesarelli G, Donisi L, Coccia A, Amitrano F, D’Addio G, Ricciardi C. The E-Textile for Biomedical Applications: A Systematic Review of Literature. Diagnostics (Basel) 2021; 11:diagnostics11122263. [PMID: 34943500 PMCID: PMC8700039 DOI: 10.3390/diagnostics11122263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/10/2021] [Accepted: 11/29/2021] [Indexed: 01/24/2023] Open
Abstract
The use of e-textile technologies spread out in the scientific research with several applications in both medical and nonmedical world. In particular, wearable technologies and miniature electronics devices were implemented and tested for medical research purposes. In this paper, a systematic review regarding the use of e-textile for clinical applications was conducted: the Scopus and Pubmed databases were investigate by considering research studies from 2010 to 2020. Overall, 262 papers were found, and 71 of them were included in the systematic review. Of the included studies, 63.4% focused on information and communication technology studies, while the other 36.6% focused on industrial bioengineering applications. Overall, 56.3% of the research was published as an article, while the remainder were conference papers. Papers included in the review were grouped by main aim into cardiological, muscular, physical medicine and orthopaedic, respiratory, and miscellaneous applications. The systematic review showed that there are several types of applications regarding e-textile in medicine and several devices were implemented as well; nevertheless, there is still a lack of validation studies on larger cohorts of subjects since the majority of the research only focuses on developing and testing the new device without considering a further extended validation.
Collapse
Affiliation(s)
- Giuseppe Cesarelli
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, 80125 Naples, Italy;
- Bioengineering Unit, Institute of Care and Scientific Research Maugeri, 82037 Pavia, Italy; (L.D.); (A.C.); (G.D.); (C.R.)
| | - Leandro Donisi
- Bioengineering Unit, Institute of Care and Scientific Research Maugeri, 82037 Pavia, Italy; (L.D.); (A.C.); (G.D.); (C.R.)
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Armando Coccia
- Bioengineering Unit, Institute of Care and Scientific Research Maugeri, 82037 Pavia, Italy; (L.D.); (A.C.); (G.D.); (C.R.)
- Department of Electrical Engineering and Information Technologies, University of Naples “Federico II”, 80125 Naples, Italy
| | - Federica Amitrano
- Bioengineering Unit, Institute of Care and Scientific Research Maugeri, 82037 Pavia, Italy; (L.D.); (A.C.); (G.D.); (C.R.)
- Department of Electrical Engineering and Information Technologies, University of Naples “Federico II”, 80125 Naples, Italy
- Correspondence:
| | - Giovanni D’Addio
- Bioengineering Unit, Institute of Care and Scientific Research Maugeri, 82037 Pavia, Italy; (L.D.); (A.C.); (G.D.); (C.R.)
| | - Carlo Ricciardi
- Bioengineering Unit, Institute of Care and Scientific Research Maugeri, 82037 Pavia, Italy; (L.D.); (A.C.); (G.D.); (C.R.)
- Department of Electrical Engineering and Information Technologies, University of Naples “Federico II”, 80125 Naples, Italy
| |
Collapse
|
43
|
Abstract
Skin-like electronics are developing rapidly to realize a variety of applications such as wearable sensing and soft robotics. Hydrogels, as soft biomaterials, have been studied intensively for skin-like electronic utilities due to their unique features such as softness, wetness, biocompatibility and ionic sensing capability. These features could potentially blur the gap between soft biological systems and hard artificial machines. However, the development of skin-like hydrogel devices is still in its infancy and faces challenges including limited functionality, low ambient stability, poor surface adhesion, and relatively high power consumption (as ionic sensors). This review aims to summarize current development of skin-inspired hydrogel devices to address these challenges. We first conduct an overview of hydrogels and existing strategies to increase their toughness and conductivity. Next, we describe current approaches to leverage hydrogel devices with advanced merits including anti-dehydration, anti-freezing, and adhesion. Thereafter, we highlight state-of-the-art skin-like hydrogel devices for applications including wearable electronics, soft robotics, and energy harvesting. Finally, we conclude and outline the future trends.
Collapse
Affiliation(s)
- Binbin Ying
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, ON M5S 3G8, Canada
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, QC H3A 0C3, Canada
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, ON M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
44
|
Yan T, Zhang G, Chai H, Qu L, Zhang X. Flexible Biosensors Based on Colorimetry, Fluorescence, and Electrochemistry for Point-of-Care Testing. Front Bioeng Biotechnol 2021; 9:753692. [PMID: 34650963 PMCID: PMC8505690 DOI: 10.3389/fbioe.2021.753692] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/13/2021] [Indexed: 12/24/2022] Open
Abstract
With the outbreak and pandemic of COVID-19, point-of-care testing (POCT) systems have been attracted much attention due to their significant advantages of small batches of samples, user-friendliness, easy-to-use and simple detection. Among them, flexible biosensors show practical significance as their outstanding properties in terms of flexibility, portability, and high efficiency, which provide great convenience for users. To construct highly functional flexible biosensors, abundant kinds of polymers substrates have been modified with sufficient properties to address certain needs. Paper-based biosensors gain considerable attention as well, owing to their foldability, lightweight and adaptability. The other important flexible biosensor employs textiles as substrate materials, which has a promising prospect in the area of intelligent wearable devices. In this feature article, we performed a comprehensive review about the applications of flexible biosensors based on the classification of substrate materials (polymers, paper and textiles), and illustrated the strategies to design effective and artificial sensing platforms, including colorimetry, fluorescence, and electrochemistry. It is demonstrated that flexible biosensors play a prominent role in medical diagnosis, prognosis, and healthcare.
Collapse
Affiliation(s)
- Tingyi Yan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao, China
| | - Guangyao Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao, China
| | - Huining Chai
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Lijun Qu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
45
|
Cheng Y, Wang K, Xu H, Li T, Jin Q, Cui D. Recent developments in sensors for wearable device applications. Anal Bioanal Chem 2021; 413:6037-6057. [PMID: 34389877 DOI: 10.1007/s00216-021-03602-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 01/23/2023]
Abstract
Wearable devices are a new means of human-computer interaction with different functions, underlying principles, and forms. They have been widely used in the medical and health fields, in applications including physiological signal monitoring; sports; and environmental detection, while subtly affecting people's lives and work. Wearable sensors as functional components of wearable devices have become a research focus. In this review, we systematically summarize recent progress in the development of wearable sensors and related devices. Wearable sensors in medical health applications, according to the principle of measurement, are divided into physical and chemical quantity detection. These sensors can monitor and measure specific parameters, thereby enabling continuously improvements in the quality and feasibility of medical treatment. Through the detection of human movement, such as breathing, heartbeat, or bending, wearable sensors can evaluate body movement and monitor an individual's physical performance and health status. Wearable devices detecting aspects of the environment while maintaining high adaptability to the human body can be used to evaluate environmental quality and obtain more accurate environmental information. The ultimate goal of this review is to provide new insights and directions for the future development and broader application of wearable devices in various fields.Graphical abstract.
Collapse
Affiliation(s)
- Yuemeng Cheng
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kan Wang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hao Xu
- School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tangan Li
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qinghui Jin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.,Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|