1
|
Gao Y, Wang J, Mu X, Liu B, Xia M, Wang F, Tong Z. Carbon quantum dots in spectrofluorimetric analysis: A comprehensive review of synthesis, mechanisms and multifunctional applications. Talanta 2025; 293:128066. [PMID: 40194462 DOI: 10.1016/j.talanta.2025.128066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
Carbon quantum dots (CQDs), as a representative nanomaterial, have demonstrated promising applications in fluorescence analysis owing to their unique optical properties, low cytotoxicity and exceptional biocompatibility. This review systematically summarizes recent advances in synthesis strategies, detection mechanisms and applications of CQDs for sensing metal ions (e.g., Hg2+, Fe3+, Cu2+), small molecules (e.g., biomolecules, pharmaceuticals, azo dyes) and proteins. Hybridization of CQDs with functional materials has been shown to significantly enhance their photoluminescence properties while optimizing detection sensitivity and selectivity. The article critically examines fundamental detection mechanisms, especially fluorescence quenching and further outlines design strategies for fluorescence probes based on "on-off" switching or ratio signaling. Moreover, current challenges are analyzed, such as the need for synthetic protocol standardization, in-depth exploration of heteroatom-doped CQDs, expansion of detectable analytes and rational design of fluorescence turn-on probes. Future prospects in environmental monitoring, biomedical diagnostics and pharmaceutical analysis are also highlighted. This comprehensive review offers critical insights to guide the rational design and application of advanced CQD-based hybrid systems.
Collapse
Affiliation(s)
- Yunfei Gao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jiang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xihui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fengyun Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
2
|
Sanjay KU, Vinay CM, Prabhu NB, Rai PS. Emerging trends in nucleic acid and peptide aptamers in plant science research. PLANTA 2025; 261:63. [PMID: 39979676 PMCID: PMC11842496 DOI: 10.1007/s00425-025-04637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/03/2025] [Indexed: 02/22/2025]
Abstract
MAIN CONCLUSION Aptamer technology has significantly advanced the field of plant research, emerging as a tool for enhancing agricultural productivity, plant growth, and environmental monitoring. Aptamers are short nucleotide or amino acid sequences that can bind to a range of target molecules with high affinity and selectivity. In recent years, these affinity molecules have piqued the interest of researchers across various scientific fields, including pharmaceuticals, analytical chemistry, and plant science. Advancements in aptamer technology have significantly broadened the horizons of plant science, particularly in the areas of plant analyte detection, pathogen targeting, and protein function analysis. Despite the use of various other bioassays and molecular techniques for plant analyte detection, the small size, chemical stability, and cost-effective synthesis of aptamers make them invaluable tools for unravelling the complexities of plant cells. Here, we discuss the progress in the development of nucleic acid and peptide aptamers and summarize their applications in plant biotechnology. The principles and signalling methods of various aptamer-based biosensors and their prospects as biotechnological tools for functional genomic studies, pathogen resistance, and bioimaging are discussed. Finally, the present challenges and future perspectives of aptamer-based technology in plant research are also summarized.
Collapse
Affiliation(s)
- Kannath U Sanjay
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Chigateri M Vinay
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Navya B Prabhu
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
3
|
Naqvi SMZA, Zhao J, Tahir MN, Awais M, Zhang Y, Wu J, Ahmed S, Li L, Raghavan V, Hu J. Ultra-Sensitive Abscisic Acid Detection Using Gold and 4-Mercaptopyridine Perovskite-Engineered Robust Nanofibers (GLAMPER-NFs) under Surface-Enhanced Raman Spectroscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:861-872. [PMID: 39692123 DOI: 10.1021/acs.jafc.4c08229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
This study explores the development and application of gold and 4-mercaptopyridine (MPY) perovskite-engineered robust nanofibers (GLAMPER-NFs) for the ultrasensitive detection of Abscisic acid (ABA) under Raman spectroscopy, a crucial plant hormone. The GLAMPER-NFs composite material, consisting of MAPbCl3 nanofibers integrated with MPY-coated gold nanostructures, demonstrates exceptional performance in surface-enhanced Raman scattering (SERS)-based sensing. The study elucidates the material structure and properties through comprehensive characterization using scanning electron microscopy (SEM), UV-vis spectroscopy, fluorescence spectroscopy, Fourier transform infrared, and Raman spectroscopy. The SEM analysis reveals uniform nanofibers with diameter of 107.8 ± 3.06 nm, while spectroscopic studies confirm the successful synthesis and integration of the composite components. The SERS-based detection of ABA showcases remarkable sensitivity, with a linear detection range (R2 = 0.9957) spanning 7 orders of magnitude (10-14-10-7 M) and presented a limit of detection of 10-11 and enhancement factor of 1.08 × 107. This surpasses the performance of existing sensing platforms, demonstrating clear spectral responses even at femtomolar concentrations. The synergistic effects of the perovskite structure, plasmonic gold nanoparticles, and MPY linking molecules contributed exceptional sensing capabilities to the GLAMPER-NFs material. Fluorescence studies further corroborate the sensitivity and provide insights into the photophysical interactions between ABA and the composite material. This research advances the understanding of perovskite-based hybrid materials and presents a promising GLAMPER-NFs as SERS substrate for ultrasensitive plant hormone detection, with potential applications in agricultural monitoring and plant science research.
Collapse
Affiliation(s)
- Syed Muhammad Zaigham Abbas Naqvi
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
- Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou 450002, China
- State Key Laboratory of wheat and Maize Crap Science, Zhengzhou 450002, China
| | - Jingkai Zhao
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Muhammad Naveed Tahir
- Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Muhammad Awais
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
- Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou 450002, China
- State Key Laboratory of wheat and Maize Crap Science, Zhengzhou 450002, China
| | - Yanyan Zhang
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
- Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou 450002, China
- State Key Laboratory of wheat and Maize Crap Science, Zhengzhou 450002, China
| | - Junfeng Wu
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
- Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou 450002, China
- State Key Laboratory of wheat and Maize Crap Science, Zhengzhou 450002, China
| | - Shakeel Ahmed
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
- Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou 450002, China
- State Key Laboratory of wheat and Maize Crap Science, Zhengzhou 450002, China
| | - Linze Li
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
- Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou 450002, China
- State Key Laboratory of wheat and Maize Crap Science, Zhengzhou 450002, China
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agriculture and Environmental Studies, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada H9X 3 V9
| | - Jiandong Hu
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
- Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou 450002, China
- State Key Laboratory of wheat and Maize Crap Science, Zhengzhou 450002, China
| |
Collapse
|
4
|
Liu Y, Liao A, Chen S, Xu Y, Zhou JJ, Wu J. Fluorescent Probes Visualize Phytohormone: Research Status and Opportunities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27619-27638. [PMID: 39588791 DOI: 10.1021/acs.jafc.4c06407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Phytohormones, as crucial regulatory factors in plant growth and development, have garnered increased interest in improving crop stress resistance. It is essential to comprehend the distribution of phytohormones in plants to assess their health status and investigate their functions. This knowledge also serves as a guide for developing and using plant growth regulators. The advancement of fluorescent probe technology, along with the wide range of fluorophores and improvements in imaging methods, has made it a successful approach for monitoring phytohormones in plants. This technique has been confirmed to be effective in plants, particularly in detecting the response of fluorescent probes to phytohormones. In this Perspective, we highlight the utility of fluorescent probes in measuring and visualizing the distribution of phytohormones in plants under external stress. However, the visualization of phytohormones with high spatial resolution and the achievement of high biocompatibility in living plants have posed significant challenges for researchers. Nonetheless, there are also many untapped opportunities in this field. This paper seeks to delve into the potential for further discussion on the subject.
Collapse
Affiliation(s)
- Yaming Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Anjing Liao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shunhong Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ying Xu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jing-Jiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jian Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
5
|
Tan P, Chen Y, Chang H, Liu T, Wang J, Lu Z, Sun M, Su G, Wang Y, Wang HD, Leung C, Rao H, Wu C. Deep learning assisted logic gates for real-time identification of natural tetracycline antibiotics. Food Chem 2024; 454:139705. [PMID: 38820637 DOI: 10.1016/j.foodchem.2024.139705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 06/02/2024]
Abstract
The overuse and misuse of tetracycline (TCs) antibiotics, including tetracycline (TTC), oxytetracycline (OTC), doxycycline (DC), and chlortetracycline (CTC), pose a serious threat to human health. However, current rapid sensing platforms for tetracyclines can only quantify the total amount of TCs mixture, lacking real-time identification of individual components. To address this challenge, we integrated a deep learning strategy with fluorescence and colorimetry-based multi-mode logic gates in our self-designed smartphone-integrated toolbox for the real-time identification of natural TCs. Our ratiometric fluorescent probe (CD-Au NCs@ZIF-8) encapsulated carbon dots and Au NCs in ZIF-8 to prevent false negative or positive results. Additionally, our independently developed WeChat app enabled linear quantification of the four natural TCs using the fluorescence channels. The colorimetric channels were also utilized as outputs of logic gates to achieve real-time identification of the four individual natural tetracyclines. We anticipate this strategy could provide a new perspective for effective control of antibiotics.
Collapse
Affiliation(s)
- Ping Tan
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, China
| | - Yuhui Chen
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, China
| | - Hongrong Chang
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, China
| | - Tao Liu
- College of Information Engineering, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, China
| | - Jian Wang
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, China.
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, China
| | - Huimin David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Xingda Road, South District, Taichung 402, Taiwan, China
| | - Chunghang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, China.
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, China.
| |
Collapse
|
6
|
Wen Y, Li J, Gong W, Yu Z, Wang H, Lu S, Li H, Wang J, Sun B. A Smartphone-Integrated Ratiometric Fluorescence Sensor for the Ultrasensitive and Selective Detection of 5-Heneicosylresorcinol in Whole Wheat Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21276-21286. [PMID: 39284571 DOI: 10.1021/acs.jafc.4c05220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Precise on-site monitoring of alkylresorcinols, a vital biomarker, is crucial for verifying whole wheat foods and accurately quantifying the whole wheat content in various consumer and industrial products. Herein, for the first time, we introduce a novel ratiometric fluorescence sensor (CDs@ZIF-8/CdTe@MIP) for ultrasensitive and selective detection of alkylresorcinols. 5-Heneicosylresorcinol (C21:0 AR), the primary alkylresorcinol homologue in whole wheat grains, was selected as the target analyte. This analyte was specifically and selectively recognized by the incorporation of a molecularly imprinted polymer (MIP) layer. Within this nanoreactor, blue-emitting carbon dots embedded in zeolitic imidazolate framework-8 (CDs@ZIF-8) and orange-emitting CdTe quantum dots served as the self-calibration signal and response signal, respectively. Exploiting a photoinduced electron transfer effect between CdTe and C21:0 AR, the established fluorescence sensor exhibited remarkable sensing performance, offering wide linear responses in 0.005-1 μg·mL-1 and 1-80 μg·mL-1 concentration ranges, and achieving a low detection limit of 1.14 ng·mL-1. The proposed assay effectively detected C21:0 AR in real samples, including 8 whole wheat foods and 19 whole wheat grains, demonstrating good recoveries and relative standard deviation. Furthermore, an intelligent sensing platform was established by integrating CDs@ZIF-8/CdTe@MIP with a smartphone-assisted device, thus validating the feasibility of visual and on-site monitoring of C21:0 AR. Because of its rapid response, portability, cost-effectiveness, superior sensitivity, and high selectivity, the proposed sensor serves as a reliable method for the analysis of C21:0 AR, thus having substantial potential for on-site monitoring of whole wheat foods.
Collapse
Affiliation(s)
- Yangyang Wen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Jie Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Weiwei Gong
- School of Light Industry Science and Engineering, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Zhenjia Yu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Hailin Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Shiyi Lu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Hongyan Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Jing Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| |
Collapse
|
7
|
Yu L, Yang Y, Jiang X, Li Y, He X, Chen L, Zhang Y. A self-calibrating ratiometric fluorescence sensor with photonic crystal-based signal amplification for the detection of tetracycline in food. Food Chem 2024; 451:139418. [PMID: 38677133 DOI: 10.1016/j.foodchem.2024.139418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
A dual-color ratiometric fluorescence sensor based on photonic crystals (PCs) was developed to detect tetracycline (TC) in food. PC was fabricated via self-assembly of carbon dots (CDs)-loaded SiO2 nanoparticles. Gold nanoclusters (AuNCs) and copper ions (Cu2+) were then adsorbed onto the PC for sensor fabrication. The fluorescence of AuNCs was amplified by the PC with an enhancement ratio of 7.6, providing higher sensitivity. The fluorescence of AuNCs was quenched by Cu2+, whereas that of CDs remained unchanged as an internal reference. TC restored the fluorescence of AuNCs owing to its complexation with Cu2+, resulting in a change in the fluorescence intensity ratio. The sensor exhibited a good linear relationship with TC concentrations ranging from 0.1 to 10 μM, with a detection limit of 34 nM. Furthermore, the sensor was applied for TC detection in food with satisfactory recoveries and relative standard deviations, revealing great potential in practical application.
Collapse
Affiliation(s)
- Licheng Yu
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China..
| | - Yi Yang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Xiaowen Jiang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yijun Li
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.; National Demonstration Center for Experimental Chemistry Education (Nankai University), Tianjin 300071, China..
| | - Xiwen He
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China..
| | - Langxing Chen
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China..
| | - Yukui Zhang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116011, China.
| |
Collapse
|
8
|
Li L, Wang H, Fang J. Encapsulating Fe 3O 4 Nanoparticles and Carbon Dots in a Metal-Organic Framework for Magnetic Fluorescent Taggants. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42623-42631. [PMID: 39090771 DOI: 10.1021/acsami.4c07120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Magnetic fluorescent composite nanomaterials have broad application prospects in the fields of biological imaging, anticounterfeiting identification, suspicious object tracking, and identification of latent fingerprints in forensic medicine. For an effective taggant, a clearly visible identifying mark is necessary to enable observers to capture labeling information quickly and accurately, even from a distance. The preparation method of magnetic fluorescent composite materials is complicated and usually needs different surface modification and assembly processes. The limited loading capacity of fluorescent materials also limits the fluorescence properties of the composite, so it is difficult to produce obvious fluorescence as a taggant to meet the requirements of visible labeling. In this study, a core-shell structure of a magnetic fluorescent composite was prepared by using the metal-organic framework ZIF-8 as the host of fluorescent materials and an encapsulation shell coated on the Fe3O4 nanoparticles. The porous ZIF-8 is beneficial for increasing the loading capacity of fluorescent materials to ensure the fluorescence performance of the composite materials. Further modification of the composite surface prevented the desorption of fluorescent materials from the pores of ZIF-8, enabling the samples to maintain good fluorescence properties even after multiple washing cycles. The preparation method is simple, rapid, and cost-effective, and the prepared magnetic fluorescent composite nanomaterial has high magnetic separation performance and fluorescence performance, making it a promising material for identification, marking, and tracking.
Collapse
Affiliation(s)
- Lingwei Li
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huan Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jixiang Fang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
9
|
Tang L, Zhang Z, Sun L, Gao X, Zhao X, Chen X, Zhu X, Li A, Sun L. In Vivo Detection of Abscisic Acid in Tomato Leaves Based on a Disposable Stainless Steel Electrochemical Immunosensor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17666-17674. [PMID: 39051566 DOI: 10.1021/acs.jafc.4c03594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Abscisic acid (ABA) plays an important regulatory role in plants. It is very critical to obtain the dynamic changes of ABA in situ for botanical research. Herein, coupled with paper-based analysis devices, electrochemical immunoelectrodes based on disposable stainless steels sheet were developed for ABA detection in plants in situ. The stainless steel sheets were modified with carbon cement, ferrocene-graphene oxide-multi walled carbon nanotubes nanocomposites, and ABA antibodies. The system can detect the ABA in the range of 1 nM to 100 μM, with a limit of detection of 100 pM. The ABA content in tomato leaves under high salinity was detected in situ. The trend of ABA changes was similar to the expression of SlNCED1 and SlNCED2. Overall, this study offers an approach for in situ detection of ABA in plants, which will help to study the regulation mechanism of ABA in plants and to promote the development of precision agriculture.
Collapse
Affiliation(s)
- Lingjuan Tang
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
- Analysis and Testing Center, Nantong University, Nantong, Jiangsu 226019, China
| | - Zhiyao Zhang
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Ling Sun
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Xu Gao
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Xinyue Zhao
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Xinru Chen
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Xingyu Zhu
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Aixue Li
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lijun Sun
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| |
Collapse
|
10
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
11
|
Shi Y, Li W, Hu X, Zhang X, Huang X, Li Z, Zhai X, Shen T, Shi J, He Y, Zou X. A novel sustainable biomass-based fluorescent probe for sensitive detection of salicylic acid in rice. Food Chem 2024; 434:137260. [PMID: 37713760 DOI: 10.1016/j.foodchem.2023.137260] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023]
Abstract
Herein, a ratiometric fluorescent probe was developed for sensitive detection of salicylic acid (SA) in rice using silk-derived carbon quantum dots @ Curcumin @ iron-based metal organic framework (SCQDs@Cur@Fe-MOFs). Fe-MOFs with porous structure not only provided holes for SCQDs to evade self-aggregation of SCQDs, but Fe2+ ions from MOFs was ingeniously employed to capture active sites of Cur, solving the problem of lacking sufficient specificity of Cur to SA while converting weak response signal to amplified "turn on" mode. Upon exposed to SA, the probe interacted with SA to form Cur-Fe2+-SA ternary complex, which inhibited the internal filtration effect between Cur and SCQDs, and triggered a cascade of response signaling. With this strategy, the proposed probe achieved sensitive determination of salicylic acid in rice with detection limit as low as 0.14 μmol/L. This study provides unique insight into constructing economical and eco-friendly fluorescent sensor for SA detection with superior performance.
Collapse
Affiliation(s)
- Yongqiang Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenting Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xuetao Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaodong Zhai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tingting Shen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Joint Laboratory of China-UK on Food Nondestructive Sensing, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Joint Laboratory of China-UK on Food Nondestructive Sensing, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
12
|
Gazizadeh M, Dehghan G, Soleymani J. Detection of pioglitazone based on dual-emission ratiometric fluorescence probe consisting of ZIF8 and to L-ASC-AuNP/DA nanoparticles. Mikrochim Acta 2023; 191:30. [PMID: 38095752 DOI: 10.1007/s00604-023-06082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023]
Abstract
A simple and sensitive dual-emission ratiometric fluorescent probe was developed using zeolitic imidazolate framework 8 (ZIF8) and L-ascorbic acid Au-doped dopamine nanoparticles (ZIF8/L-ASC-AuNP/DA NP) for the determination of pioglitazone (Pio), an oral hypoglycemic agent and insulin sensitizer, in real samples. The prepared system was based on the Pio-enhanced dual-emission intensity of ZIF8/L-ASC-AuNP/DA NP. The potential impact of various parameters on the system's emission intensity was tested. According to the findings, there is a strong linear correlation between the system's turn-on fluorescence intensity and Pio concentrations in the range 0.3 nM to 30.0 μM. The obtained value for the limit of detection (LOD) was 0.14 nM. In addition, the intra- and inter-day accuracy of the nanoprobe was studied and the findings revealed satisfactory precision and accuracy of the system. The short-term and freeze-thaw stability of Pio in plasma samples was evaluated and the results indicated the high stability of the developed nanoprobe under the test conditions. Pio was accurately detected in human plasma samples under ideal conditions with analytical recoveries in the range 86.0 - 109.3%. The results showed that the devised probe may be employed as an easy, sensitive, and precise approach for detecting Pio in real samples.
Collapse
Affiliation(s)
- Masoud Gazizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, 5166616471, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, 5166616471, Iran.
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran.
| |
Collapse
|
13
|
Shi Y, Kong D, Li W, Wei Y, Wei X, Qu F, Zhang Y, Nie P, Feng X, He Y. A novel ratiometric fluorescent probe for sensitive detection of jasmonic acid in crops. Anal Chim Acta 2023; 1244:340844. [PMID: 36737147 DOI: 10.1016/j.aca.2023.340844] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/15/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Herein, a novel ratiometric fluorescent probe was proposed for sensitive detection of jasmonic acid (JA) based on NCQDs@Co-MOFs@MIPs. The prepared NCQDs, with uniquely dual-emissive performance, are insensitive to JA due to electrostatic repulsion. Interestingly, the introduction of Co-MOFs not only avoided the self-aggregation of NCQDs, but changed the surface charge of NCQDs and triggered the response of NCQDs to JA. More importantly, the imprinted recognition sites from MIPs provided "key-lock" structures to specifically capture JA molecules, greatly improving the selectivity of the probe to JA. Under the synergistic actions of Co-MOFs and MIPs, JA can interact with NCQDs through photo-induced electron transfer (PET), resulting in the changes on emission intensity of the probe at Em = 367 nm and 442 nm. Based on the observations, the quantification of JA was realized in the range of 1-800 ng/mL with the limit of detection (LOD) of 0.35 ng/mL. In addition, the probe was used for detecting JA in rice with satisfactory analysis results, indicating the probe holds great potential for monitoring JA levels in crops. Overall, this strategy provides new insights into the construction of practical probes for sensitive detection of plant hormones in crops.
Collapse
Affiliation(s)
- Yongqiang Shi
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Dandan Kong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wenting Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yuzhen Wei
- School of Information Engineering, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Xiao Wei
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Fangfang Qu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yahui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Pengcheng Nie
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xuping Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Huanan Industrial Technology Research Institute of Zhejiang University, Guangzhou, Guangdong, 510700, China.
| |
Collapse
|
14
|
Liu F, Yuan Y, Zhang W, Fu Y, Yang M, Yang G, Liu H, Shen H, Li L. A highly sensitive and specific fluorescent strategy for the detection of Visfatin based on nonlinear hybridization chain reaction. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
15
|
Bifunctional photoelectrochemical aptasensor based on heterostructured Ag 3PO 4/Ag/TiO 2 nanorod array for determination of two tumor markers. Mikrochim Acta 2023; 190:85. [PMID: 36749408 DOI: 10.1007/s00604-023-05654-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Constructing of heterostructures can significantly improve the photoelectrical (PEC) response signal by promoting the migration and suppressing the recombination of photogenerated carries. A bifunctional PEC sensing platform was designed for simultaneous high-performance detection of mucin-1 (MUC1) and carcinoembryonic antigen (CEA), which was based on generated Z-scheme heterostructured Ag3PO4/Ag/TiO2 nanorod arrays (NAs) and enzyme-mediated catalytic precipitation by alkaline phosphatase (ALP) and Au/hollow Co3O4 polyhedron. The proposed aptasensor displayed linear ranges of 1.0-100 ng mL-1 and 0.1-50 ng mL-1 for MUC1 and CEA with limit of detections of 0.430 and 0.058 ng mL-1, respectively. This strategy offers potential applications for early diagnosis, monitoring progression, and even evaluating the prognosis of breast cancer in practice.
Collapse
|
16
|
Lu ZG, Shen J, Yang J, Wang JW, Zhao RC, Zhang TL, Guo J, Zhang X. Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduct Target Ther 2023; 8:39. [PMID: 36650130 PMCID: PMC9844208 DOI: 10.1038/s41392-022-01298-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Nucleic acid drugs have the advantages of rich target selection, simple in design, good and enduring effect. They have been demonstrated to have irreplaceable superiority in brain disease treatment, while vectors are a decisive factor in therapeutic efficacy. Strict physiological barriers, such as degradation and clearance in circulation, blood-brain barrier, cellular uptake, endosome/lysosome barriers, release, obstruct the delivery of nucleic acid drugs to the brain by the vectors. Nucleic acid drugs against a single target are inefficient in treating brain diseases of complex pathogenesis. Differences between individual patients lead to severe uncertainties in brain disease treatment with nucleic acid drugs. In this Review, we briefly summarize the classification of nucleic acid drugs. Next, we discuss physiological barriers during drug delivery and universal coping strategies and introduce the application methods of these universal strategies to nucleic acid drug vectors. Subsequently, we explore nucleic acid drug-based multidrug regimens for the combination treatment of brain diseases and the construction of the corresponding vectors. In the following, we address the feasibility of patient stratification and personalized therapy through diagnostic information from medical imaging and the manner of introducing contrast agents into vectors. Finally, we take a perspective on the future feasibility and remaining challenges of vector-based integrated diagnosis and gene therapy for brain diseases.
Collapse
Affiliation(s)
- Zhi-Guo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Jie Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jing-Wen Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Rui-Chen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Tian-Lu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
17
|
Li J, Liu B, Liu L, Zhang N, Liao Y, Zhao C, Cao M, Zhong Y, Chai D, Chen X, Zhang D, Wang H, He Y, Li Z. Fluorescence-based aptasensors for small molecular food contaminants: From energy transfer to optical polarization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121872. [PMID: 36152504 DOI: 10.1016/j.saa.2022.121872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Small molecular food contaminants, such as mycotoxins, pesticide residues and antibiotics, are highly probable to be passively introduced in food at all stages of its processing, including planting, harvest, production, transportation and storage. Owing to the high risks caused by the unknowing intake and accumulation in human, there is an urgent need to develop rapid, sensitive and efficient methods to monitor them. Fluorescence-based aptasensors provide a promising platform for this area owing to its simple operation, high sensitivity, wide application range and economical practicability. In this paper, the common sorts of small molecular contaminants in foods, namely mycotoxins, pesticides, antibiotics, etc, are briefly introduced. Then, we make a comprehensive review, from fluorescence resonance energy transfer (in turn-on, turn-off, and ratiometric mode, as well as energy upconversion) to fluorescence polarization, of the fluorescence-based aptasensors for the determination of these food contaminants reported in the last five years. The principle of signal generation, the advances of each sort of fluorescent aptasensors, as well as their applications are introduced in detail. Additionally, we also discussed the challenges and perspectives of the fluorescent aptasensors for small molecular food contaminants. This work will offer systematic overview and inspiration for amateurs, researchers and developers of fluorescence-based aptasensors for the detection of small molecules.
Collapse
Affiliation(s)
- Jingrong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Boshi Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Li Liu
- Library of Tianjin Medical University, Tianjin 300070, China
| | - Nan Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yumeng Liao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunyu Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Manzhu Cao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuxuan Zhong
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Danni Chai
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoyu Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yongzhi He
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
18
|
Tang S, Wu X, Zhao P, Tang K, Chen Y, Fu J, Lei H, Yang Z, Zhang Z. Ratiometric Fluorescence Capillary Sensor-Integrated Molecular Imprinting for Simultaneous Detection of Two Biological Indicators of Parkinson's Disease. Anal Chem 2022; 94:17223-17231. [PMID: 36449628 DOI: 10.1021/acs.analchem.2c03926] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
This work proposed ratiometric fluorescence capillary sensing system-integrated molecular imprinting with highly sensitive and selective detection for two biological indicators of Parkinson's disease (homovanillic acid (HVA) and Al3+). In this research, the silicon carbon quantum dot and the near-infrared CdTe quantum dot as luminescence sources were doped to an imprinted layer, which was attached to the inner surface wall of an amino-functionalized capillary. The fluorescence emissions of the ratiometric fluorescence capillary-imprinted sensor at 434 and 707 nm were quenched by HVA, and only the fluorescence emission at 434 nm was quenched by Al3+. Ratiometric fluorescence capillary sensing system-integrated molecular imprinting was used to detect simultaneously HVA and Al3+ with linearity over 1.0 × 10-9-2.5 × 10-7 and 1.0 × 10-9-1.1 × 10-7 M, respectively. The sensor showcased detection limitations of 8.7 × 10-10 and 9.8 × 10-10 M, indicating that the ratiometric fluorescence capillary sensing system-integrated molecular imprinting had great potential application for detecting HVA and Al3+ in serum and urine samples. The ratiometric fluorescence capillary sensing system-integrated molecular imprinting achieved highly sensitive and selective detection of HVA and Al3+ with a microvolume test dosage of 18 μL, which provided a new way for early diagnosis and disease monitoring of Parkinson's disease.
Collapse
Affiliation(s)
- Sisi Tang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan 416000, China
| | - Xiaodan Wu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan 416000, China
| | - Pengfei Zhao
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan 416000, China
| | - Kangling Tang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan 416000, China
| | - Yu Chen
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan 416000, China
| | - Jinli Fu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan 416000, China
| | - Huibin Lei
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan 416000, China
| | - Zhaoxia Yang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan 416000, China
| | - Zhaohui Zhang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan 416000, China.,School of Pharmaceutical Sciences, Jishou University, Jishou, Hunan 416000, P.R. China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
19
|
Hu R, Shi J, Tian C, Chen X, Zuo H. Nucleic Acid Aptamers for Pesticides, Toxins, and Biomarkers in Agriculture. Chempluschem 2022; 87:e202200230. [PMID: 36410759 DOI: 10.1002/cplu.202200230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/17/2022] [Indexed: 01/31/2023]
Abstract
Nucleic acid aptamers are short single-stranded DNA/RNA (ssDNA/RNA) oligonucleotides that can selectively bind to the targets. They are widely used in medicine, biosensing, and diagnostic assay. They have also been identified and extensively used for various targets in agriculture. In this review we summarize the progress of nucleic acid aptamers on pesticides (herbicides, insecticides, and fungicides), toxins, specific biomarkers of crops, and plant growth regulators in agricultural field in recent years. The basic process of aptamer selection, the already identified DNA/RNA aptamers and the aptasensors are discussed. We also discuss the future perspectives and the challenges for aptamer development in agriculture.
Collapse
Affiliation(s)
- Rongping Hu
- Sichuan Institute of Edible Fungi, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, P. R. China
| | - Jun Shi
- Mianyang Academy of Agricultural Sciences, Crop Characteristic Resources Creation, and Utilization Key Laboratory of Sichuan Province, Mianyang, Sichuan, 621023 (P. R., China
| | - Cheng Tian
- Key Laboratory of Luminescence Analysis, and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Xiaojuan Chen
- Sichuan Institute of Edible Fungi, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, P. R. China
| | - Hua Zuo
- Key Laboratory of Luminescence Analysis, and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
20
|
Fu J, Zhou S, Wu X, Tang S, Zhao P, Tang K, Chen Y, Yang Z, Zhang Z, Chen H. Down/up-conversion dual-mode ratiometric fluorescence imprinted sensor embedded with metal-organic frameworks for dual-channel multi-emission multiplexed visual detection of thiamphenicol. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119762. [PMID: 35835275 DOI: 10.1016/j.envpol.2022.119762] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/23/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
The establishment of a fluorescence sensing system for sensitive and selective visual detection of trace antibiotics is of great significance to food safety and human health risk assessment. A simple and rapid one-pot strategy was developed successfully to synthesize a down/up-conversion dual-excitation multi-emission fluorescence imprinted sensor for dual-channel thiamphenicol (TAP) detection. In this strategy, the metal-organic frameworks were in situ incorporated into the fluorescence imprinted sensor, guiding the coordination induced emission of abiotic carbon dots and signal-amplification effect of fluorescence sensing. Under dual-excitation (370 nm and 780 nm), the fluorescence imprinted sensor exhibited a dual-channel fluorescence response toward TAP with two-part linear ranges of 5.0 nM-6.0 μM and 6.0 μM-26.0 μM. Significantly, the fluorescence color ranged from blue to purple to red can be observed with the naked eye. The results of the dual-channel TAP determination in actual samples by the fluorescence imprinted sensor indicated that the fluorescence imprinted sensor provided a sensitive, selective, and multiplexed visual detection of TAP in complex sample.
Collapse
Affiliation(s)
- Jinli Fu
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Shu Zhou
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Xiaodan Wu
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Sisi Tang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Pengfei Zhao
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Kangling Tang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Yu Chen
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Zhaoxia Yang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Zhaohui Zhang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China; School of Pharmaceutical Sciences, Jishou University, Jishou, 416000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China.
| | - Hongjun Chen
- School of Pharmaceutical Sciences, Jishou University, Jishou, 416000, PR China
| |
Collapse
|
21
|
Dual modes of fluorescence sensing and smartphone readout for sensitive and visual detection of mercury ions in Porphyra. Anal Chim Acta 2022; 1226:340153. [DOI: 10.1016/j.aca.2022.340153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022]
|
22
|
Wu M, Yin C, Jiang X, Sun Q, Xu X, Ma Y, Liu X, Niu N, Chen L. Biocompatible Abscisic Acid-Sensing Supramolecular Hybridization Probe for Spatiotemporal Fluorescence Imaging in Plant Tissues. Anal Chem 2022; 94:8999-9008. [PMID: 35707963 DOI: 10.1021/acs.analchem.2c01050] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Achieving detection of the phytohormone abscisic acid (ABA) is of critical importance for understanding plant growth and development. We report a hybrid supramolecular fluorescent probe that uses bovine serum albumin (BSA) as a host. Aggregation-induced emission of fluorescent chromophores (AIEgens) enables luminescence in the presence of BSA. ABA and its aptamer act as a switch to trigger this fluorescent system, the strategy that exhibits high sensitivity to abscisic acid with a detection limit of 0.098 nM. The probe test strip also enables visualization of ABA content from plants by colorimetric observation with the naked eye. In particular, the high biocompatibility and small molecular size of the prepared fluorescent probe allow for effective monitoring of ABA in plant tissues by fluorescence imaging. This strategy provides a new perspective to achieve the detection of endogenous and exogenous ABA in plants and has important implications for plant biology research.
Collapse
Affiliation(s)
- Meng Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Chenhui Yin
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xinxin Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Qijun Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xiaoyu Xu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Yanmei Ma
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xinjian Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Na Niu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Ligang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
23
|
Shi Y, Wu Q, Li W, Lin L, Qu F, Shen C, Wei Y, Nie P, He Y, Feng X. Ultra-sensitive detection of hydrogen peroxide and levofloxacin using a dual-functional fluorescent probe. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128605. [PMID: 35286934 DOI: 10.1016/j.jhazmat.2022.128605] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Herein, a flower-shaped fluorescent probe was proposed for hydrogen peroxide (H2O2) and levofloxacin (LVF) sensing based on MoOx QDs@Co/Zn-MOFs with porous structure. Both MoOx QDs and Co/Zn-MOFs exhibited peroxidase-like properties, and the combination of them greatly aroused the synergistic catalytic capabilities between them. In o-Phenylenediamine (OPD)-H2O2 system, MoOx QDs@Co/Zn-MOFs efficiently catalyzed H2O2 to produce •OH and then oxidized OPD to its oxidation product (OxOPD). The OxOPD could not only emit blue fluorescence, but also inhibit the fluorescent intensity of MoOx QDs through fluorescence resonance energy transfer (FRET). Moreover, when introducing LVF into the system, the fluorescent intensities of MoOx QDs increased along with the aggregation of themselves while that of OxOPD remained unchanged, which was explained by the joint behavior of FRET and photo-induced electron transfer (PET) instead of the conventional aggregation-induced emission enhancement (AIEE). With these observation, the proposed probe was employed for H2O2 and LVF determination in biological samples with the limit of detection (LOD) of 32.60 pmol/L and 0.85 μmol/L, respectively, suggesting the method holds great promises for trace H2O2 and LVF monitoring in eco-environment.
Collapse
Affiliation(s)
- Yongqiang Shi
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qicong Wu
- School of Life and Environmental Science,Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wenting Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lei Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fangfang Qu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chenjia Shen
- School of Life and Environmental Science,Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yuzhen Wei
- School of Information Engineering, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Pengcheng Nie
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Huanan Industrial Technology Research Institute of Zhejiang University, Guangzhou, Guangdong 510700, China
| | - Xuping Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
24
|
Fu J, Zhou S, Tang S, Wu X, Zhao P, Tang K, Chen Y, Yang Z, Zhang Z. Imparting down/up-conversion dual channels fluorescence to luminescence metal-organic frameworks by carbon dots-induced for fluorescence sensing. Talanta 2022; 242:123283. [DOI: 10.1016/j.talanta.2022.123283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
|
25
|
Wu G, Dou X, Li D, Xu S, Zhang J, Ding Z, Xie J. Recent Progress of Fluorescence Sensors for Histamine in Foods. BIOSENSORS 2022; 12:161. [PMID: 35323431 PMCID: PMC8945960 DOI: 10.3390/bios12030161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 05/03/2023]
Abstract
Biological amines are organic nitrogen compounds that can be produced by the decomposition of spoiled food. As an important biological amine, histamine has played an important role in food safety. Many methods have been used to detect histamine in foods. Compared with traditional analysis methods, fluorescence sensors as an adaptable detection tool for histamine in foods have the advantages of low cost, convenience, less operation, high sensitivity, and good visibility. In terms of food safety, fluorescence sensors have shown great utilization potential. In this review, we will introduce the applications and development of fluorescence sensors in food safety based on various types of materials. The performance and effectiveness of the fluorescence sensors are discussed in detail regarding their structure, luminescence mechanism, and recognition mechanism. This review may contribute to the exploration of the application of fluorescence sensors in food-related work.
Collapse
Affiliation(s)
- Gan Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (G.W.); (X.D.); (D.L.)
| | - Xilin Dou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (G.W.); (X.D.); (D.L.)
| | - Dapeng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (G.W.); (X.D.); (D.L.)
| | - Shihan Xu
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; (S.X.); (J.Z.)
| | - Jicheng Zhang
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; (S.X.); (J.Z.)
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (G.W.); (X.D.); (D.L.)
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (G.W.); (X.D.); (D.L.)
| |
Collapse
|
26
|
Zhang Y, Hou D, Wang Z, Cai N, Au C. Nanomaterial-Based Dual-Emission Ratiometric Fluorescent Sensors for Biosensing and Cell Imaging. Polymers (Basel) 2021; 13:2540. [PMID: 34372142 PMCID: PMC8348892 DOI: 10.3390/polym13152540] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022] Open
Abstract
Owing to the unique optophysical properties of nanomaterials and their self-calibration characteristics, nanomaterial-based (e.g., polymer dots (Pdots) quantum dots (QDs), silicon nanorods (SiNRs), and gold nanoparticle (AuNPs), etc.) ratiometric fluorescent sensors play an essential role in numerous biosensing and cell imaging applications. The dual-emission ratiometric fluorescence technique has the function of effective internal referencing, thereby avoiding the influence of various analyte-independent confounding factors. The sensitivity and precision of the detection can therefore be greatly improved. In this review, the recent progress in nanomaterial-based dual-emission ratiometric fluorescent biosensors is systematically summarized. First, we introduce two general design approaches for dual-emission ratiometric fluorescent sensors, involving ratiometric fluorescence with changes of one response signal and two reversible signals. Then, some recent typical examples of nanomaterial-based dual-emission ratiometric fluorescent biosensors are illustrated in detail. Finally, probable challenges and future outlooks for dual-emission ratiometric fluorescent nanosensors for biosensing and cell imaging are rationally discussed.
Collapse
Affiliation(s)
- Yanan Zhang
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China; (D.H.); (C.A.)
| | - Dajun Hou
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China; (D.H.); (C.A.)
| | - Zelong Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China;
| | - Ning Cai
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China;
| | - Chaktong Au
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China; (D.H.); (C.A.)
| |
Collapse
|