1
|
Xing R, Xue T, Li H, Zhou Y, Chen X, Hu S. Synthesis of multi-template imprinted mesoporous silica nanoparticles via micelle-based interface imprinting strategy for specific and efficient extraction of five cinnamic acid derivatives from traditional Chinese medicines. Talanta 2025; 294:128180. [PMID: 40262352 DOI: 10.1016/j.talanta.2025.128180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
Cinnamic acid derivatives, a crucial group of active components in traditional Chinese medicines (TCMs), encompass chlorogenic acid, caffeic acid, 4-hydroxycinnamic acid, ferulic acid, and cinnamic acid. These compounds exhibit a wide array of pharmacological activities, such as free radical scavenging, antioxidation, antibacterial effects, and antitumor activity. However, traditional separation and detection methods often suffer from poor selectivity, low extraction efficiencies, and insufficient sensitivity, thus limiting their applicability in studying the complex and diverse active component groups in TCMs. Herein, we proposed a novel micelle-based interface imprinting strategy by integrating multi-template imprinting with mesoporous silica. Specifically, caffeic acid, serving as an epitope template for chlorogenic acid, along with 4-hydroxycinnamic acid, ferulic acid, and cinnamic acid, collectively constituted a multi-template system. Micelles were generated using a cationic surfactant cetyltrimethylammonium bromide, which confined the four template molecules to the micelle surface through electrostatic attraction. Aminopropyltriethoxysilane, 3-ureidopropyltriethoxysilane, and benzyltriethoxysilane were selected as functional monomers, while tetraethyl orthosilicate were selected as both a cross-linker and a silicon source for the synthesis of multi-template imprinted mesoporous silica nanoparticles (MTIMSNs). The MTIMSNs demonstrated high specificity and impressive adsorption capacity for chlorogenic acid, caffeic acid, 4-hydroxycinnamic acid, ferulic acid, and cinnamic acid, with maximum cross-reactivities of 8.8 %, 7.6 %, 6.8 %, 9.5 %, and 11.5 %, respectively, and corresponding adsorption capacities of 3.712, 4.114, 4.843, 3.517, and 2.814 mg/g, respectively. The MTIMSNs-based affinity extraction coupled with high performance liquid chromatography have been successfully applied to the determination of the five cinnamic acid derivatives in Taraxaci Herba.
Collapse
Affiliation(s)
- Rongrong Xing
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China; Drug Quality Control Research Center, Shanxi Medical University, Taiyuan, 030001, China.
| | - Tingyu Xue
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China; Drug Quality Control Research Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Huangjin Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China; Drug Quality Control Research Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Yifei Zhou
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China; Drug Quality Control Research Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Xuan Chen
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China; Drug Quality Control Research Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Shuang Hu
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China; Drug Quality Control Research Center, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
2
|
Liustrovaite V, Ratautaite V, Ramanaviciene A, Ramanavicius A. Detection of the SARS-CoV-2 nucleoprotein by electrochemical biosensor based on molecularly imprinted polypyrrole formed on self-assembled monolayer. Biosens Bioelectron 2025; 272:117092. [PMID: 39787822 DOI: 10.1016/j.bios.2024.117092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/12/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025]
Abstract
Herein, we report the development and characterisation of an electrochemical biosensor with a polypyrrole (Ppy)-based molecularly imprinted polymer (MIP) for the serological detection of the recombinant nucleocapsid protein of SARS-CoV-2 (rN). The electrochemical biosensor utilises a Ppy-based MIP formed on a self-assembled monolayer (SAM) at the gold interface to enhance Ppy layer stability on the screen-printed electrode (SPE). Electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV) were employed for the electrochemical characterisation of screen-printed gold electrodes (SPGEs) modified with MIP or non-imprinted polymer (NIP) layers. Removing the rN protein template from the MIP layer increased electron transfer and decreased impedance, indicating the specificity of molecular imprinting. The electrochemical biosensor with a Ppy-based MIP exhibited higher sensitivity than the NIP counterpart, demonstrating its potential for selective rN protein detection. The limit of detection 0.4 nM and 0.2 nM and the limit of quantification 1.3 nM and 0.66 nM values obtained through SWV and EIS, respectively, highlight the biosensor's ability to detect low target protein concentrations. The specificity test confirmed minimal nonspecific binding, reinforcing the reliability of the novel electrochemical sensor with a Ppy-based MIP.
Collapse
Affiliation(s)
- Viktorija Liustrovaite
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko St. 24, LT-03225, Vilnius, Lithuania; Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko St. 24, LT-03225, Vilnius, Lithuania
| | - Vilma Ratautaite
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko St. 24, LT-03225, Vilnius, Lithuania; Department of Nanotechnology, State Research Institute Center for Physical and Technological Sciences (FTMC), Sauletekio Ave. 3, LT-10257, Vilnius, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko St. 24, LT-03225, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko St. 24, LT-03225, Vilnius, Lithuania; Department of Nanotechnology, State Research Institute Center for Physical and Technological Sciences (FTMC), Sauletekio Ave. 3, LT-10257, Vilnius, Lithuania.
| |
Collapse
|
3
|
Moradi F, Akbari-Adergani B, Azar PA, Givianrad MH. Rapid mimetic micro-contact nano-fluorosensor based on molecularly imprinted polymers for the detection of amygdalin in biological matrices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1021-1031. [PMID: 39757852 DOI: 10.1039/d4ay01269k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
In this study, a mimetic fluorescence nanosensor based on a molecularly imprinted polymer was designed for the detection of amygdalin (AMG). Its characteristics and functional performance were investigated and recorded using ATR-FTIR, AFM and porosity tests. This designed sensor is considered superior to other reported techniques due to its low material consumption during both manufacturing and operation as well as its low cost and desirable performance characteristics, such as short response time, high stability and an appropriate detection limit. In situ surface imprinting was employed by incorporating methacrylic acid as the functional monomer, 2H-chromen-2-one as the fluorescence monomer, AMG as the template molecule, ethylene glycol dimethacrylate as the crosslinking agent, 2,2'-azobis(isobutyronitrile) as the initiator and a glass slide as the sensor medium. The detection mechanism relied on a reduction in the intensity of the fluorescence signal upon exposure to a solution containing AMG. The optimum monomer-to-crosslinking agent ratio was found to be 1 : 6, with a pH value of 4.5 being the most favorable. Mercury porosity test results showed that over 91% of the pores formed on the surface of the imprinted slides were in the range of 20-66 nm. Linearity analysis was performed by plotting a calibration curve for the nano-fluorosensor within the concentration range of 0.62-40 μg mL-1, yielding a detection limit (LOD) of 0.19 μg mL-1 and a limit of quantification (LOQ) of 0.62 μg mL-1. The response time of the sensor was evaluated over the range of 5-150 seconds in buffer solution, urine and serum matrices, with 75 seconds as the optimal value. In general, the performance characteristics of the designed fluorosensor demonstrated its suitability for the selective detection of AMG in the biological matrices.
Collapse
Affiliation(s)
- Fatemeh Moradi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Behrouz Akbari-Adergani
- Water Safety Research Center, Food and Drug Administration, Ministry of Health and Medical Education, P. O. Box 1113615911, Tehran, Iran.
| | - Parviz Aberoomand Azar
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
4
|
Dong H, Tong L, Cheng M, Hou S. Utilizing electrospun molecularly imprinted membranes for food industry: Opportunities and challenges. Food Chem 2024; 460:140695. [PMID: 39098194 DOI: 10.1016/j.foodchem.2024.140695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
Molecularly imprinted polymers (MIPs) have been widely studied in environmental protection and food industry, owing to their excellent specific recognition and structural stability. However, MIPs prepared by conventional methods suffer from low adsorption capacity and slow mass transfer rate. To date, the combination of electrostatic spinning technology and molecular imprinting technology has been proposed to prepare molecularly imprinted membranes (MIMs) with specific recognition capability, and has shown great attraction in the separation and detection of food additives, as well as the extraction and release of active ingredients. In recent years, MIPs and electrostatic spinning technologies have been investigated and evaluated. However, there is no review of electrostatically spun MIMs for food field. In this review, we focus on the fabrication methods and applications of electrostatically spun MIMs in the food, discuss the challenges in practical food applications, and emphasize the promising applications of electrostatically spun MIMs in food field.
Collapse
Affiliation(s)
- Hao Dong
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| | - Liping Tong
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| | - Mengmeng Cheng
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| | - Shifeng Hou
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China; Key Laboratory of Agricultural Membrane Application of Ministry of Agriculture and Rural Affairs, Taian 271018, Shandong, PR China.
| |
Collapse
|
5
|
Marinangeli A, Chianella I, Radicchi E, Maniglio D, Bossi AM. Molecularly Imprinted Polymers Electrochemical Sensing: The Effect of Inhomogeneous Binding Sites on the Measurements. A Comparison between Imprinted Polyaniline versus nanoMIP-Doped Polyaniline Electrodes for the EIS Detection of 17β-Estradiol. ACS Sens 2024; 9:4963-4973. [PMID: 39206707 DOI: 10.1021/acssensors.4c01787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Molecularly imprinted polymers (MIPs) are synthetic receptors made by template-assisted synthesis. MIPs might be ideal receptors for sensing devices, given the possibility to custom-design selectivity and affinity toward a targeted analyte and their robustness and ability to withstand harsh conditions. However, the synthesis of MIP is an inherently random process that produces a statistical distribution of binding sites, characterized by a variety of affinities. This is verified both for bulk MIP materials and for MIP's thin layers. In the present work, we aimed at assessing the effects of inhomogeneous versus homogeneous imprinted binding sites on electrochemical sensing measurements, and the possible implications on the sensor's performance. In the example of an Electrochemical Impedance Spectroscopy (EIS) sensor for the 17β-estradiol (E2) hormone, the scenario of inhomogeneous binding sites was studied by modifying electrodes with an E2-MIP polyaniline (PANI) thin layer, called the "Imprinted PANI layer". In contrast, the condition of discrete and uniform binding sites was epitomized by electrodes modified with a thin PANI layer purposedly doped with E2-MIP nanoparticles (nanoMIPs), which were referred to as "nanoMIP-doped PANI". The behaviors of the two EIS sensors were compared. Interestingly, the sensitivity of the nanoMIP-doped PANI was almost twice with respect to that of the imprinted PANI layer, strongly suggesting that the homogeneity of the binding sites has a fundamental role in the sensor's development. The nanoMIP-doped PANI sensor, which showed a response for E2 in the range 36.7 pM-36.7 nM and had a limit of detection of 2.86 pg/mL, was used to determine E2 in wastewater.
Collapse
Affiliation(s)
- Alice Marinangeli
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Iva Chianella
- Surface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, U.K
| | - Eros Radicchi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Devid Maniglio
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, Povo, 38123 Trento, Italy
| | - Alessandra Maria Bossi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
6
|
Gagliani F, Di Giulio T, Asif MI, Malitesta C, Mazzotta E. Boosting Electrochemical Sensing Performances Using Molecularly Imprinted Nanoparticles. BIOSENSORS 2024; 14:358. [PMID: 39056634 PMCID: PMC11274585 DOI: 10.3390/bios14070358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Nanoparticles of molecularly imprinted polymers (nanoMIPs) combine the excellent recognition ability of imprinted polymers with specific properties related to the nanosize, such as a high surface-to-volume ratio, resulting in highly performing recognition elements with surface-exposed binding sites that promote the interaction with the target and, in turn, binding kinetics. Different synthetic strategies are currently available to produce nanoMIPs, with the possibility to select specific conditions in relation to the nature of monomers/templates and, importantly, to tune the nanoparticle size. The excellent sensing properties, combined with the size, tunability, and flexibility of synthetic protocols applicable to different targets, have enabled the widespread use of nanoMIPs in several applications, including sensors, imaging, and drug delivery. The present review summarizes nanoMIPs applications in sensors, specifically focusing on electrochemical detection, for which nanoMIPs have been mostly applied. After a general survey of the most widely adopted nanoMIP synthetic approaches, the integration of imprinted nanoparticles with electrochemical transducers will be discussed, representing a key step for enabling a reliable and stable sensor response. The mechanisms for electrochemical signal generation will also be compared, followed by an illustration of nanoMIP-based electrochemical sensor employment in several application fields. The high potentialities of nanoMIP-based electrochemical sensors are presented, and possible reasons that still limit their commercialization and issues to be resolved for coupling electrochemical sensing and nanoMIPs in an increasingly widespread daily-use technology are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Elisabetta Mazzotta
- Laboratorio di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Via Monteroni, 73100 Lecce, Italy; (F.G.); (T.D.G.); (M.I.A.); (C.M.)
| |
Collapse
|
7
|
Min T, Qiu S, Bai Y, Cao H, Guo J, Su Z. Cilostazol Attenuates Hepatic Steatosis and Intestinal Disorders in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2024; 25:6280. [PMID: 38892467 PMCID: PMC11172724 DOI: 10.3390/ijms25116280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases in the world, which begins with liver lipid accumulation and is associated with metabolic syndrome. Also, the name chosen to replace NAFLD was metabolic dysfunction-associated steatotic liver disease (MASLD). We performed focused drug screening and found that Cilostazol effectively ameliorated hepatic steatosis and might offer potential for NAFLD treatment. Our aim was to investigate the therapeutic effects of Cilostazol on the glycolipid metabolism and intestinal flora in NAFLD mice and explore the specific mechanism. In this study, 7-week-old male C57BL/6J mice were fed a high-fat diet (HFD) for 8 weeks to induce NAFLD, and then treated with intragastric administration for 12 weeks. The results showed that Cilostazol inhibited liver lipid de novo synthesis by regulating the AMPK-ACC1/SCD1 pathway and inhibited liver gluconeogenesis by the AMPK-PGC1α-G6P/PEPCK pathway. Cilostazol improved the intestinal flora diversity and intestinal microbial composition in the NAFLD mice, and specifically regulated Desulfovibrio and Akkermansia. In addition, Cilostazol increased the level of short-chain fatty acids in the NAFLD mice to a level similar to that in the blank Control group. Cilostazol reduces liver lipid accumulation in NAFLD mice by improving glucose and lipid metabolism disorders and intestinal dysfunction, thereby achieving the purpose of treating NAFLD.
Collapse
Affiliation(s)
- Tianqi Min
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (T.M.); (S.Q.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shuting Qiu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (T.M.); (S.Q.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China;
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (T.M.); (S.Q.)
| |
Collapse
|
8
|
Abukattab SM, Beltagi AM, Elfiky MN, El-Desoky HS. Fabrication and characterization of a novel strontium oxide-polythiophene core–shell nanocomposite for in-vitro electrochemical detection of antiplatelet cilostazol drug in formulation and human plasma. Microchem J 2024; 197:109877. [DOI: 10.1016/j.microc.2023.109877] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Silva AT, Figueiredo R, Azenha M, Jorge PA, Pereira CM, Ribeiro JA. Imprinted Hydrogel Nanoparticles for Protein Biosensing: A Review. ACS Sens 2023; 8:2898-2920. [PMID: 37556357 PMCID: PMC10463276 DOI: 10.1021/acssensors.3c01010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
Over the past decade, molecular imprinting (MI) technology has made tremendous progress, and the advancements in nanotechnology have been the major driving force behind the improvement of MI technology. The preparation of nanoscale imprinted materials, i.e., molecularly imprinted polymer nanoparticles (MIP NPs, also commonly called nanoMIPs), opened new horizons in terms of practical applications, including in the field of sensors. Currently, hydrogels are very promising for applications in bioanalytical assays and sensors due to their high biocompatibility and possibility to tune chemical composition, size (microgels, nanogels, etc.), and format (nanostructures, MIP film, fibers, etc.) to prepare optimized analyte-responsive imprinted materials. This review aims to highlight the recent progress on the use of hydrogel MIP NPs for biosensing purposes over the past decade, mainly focusing on their incorporation on sensing devices for detection of a fundamental class of biomolecules, the peptides and proteins. The review begins by directing its focus on the ability of MIPs to replace biological antibodies in (bio)analytical assays and highlight their great potential to face the current demands of chemical sensing in several fields, such as disease diagnosis, food safety, environmental monitoring, among others. After that, we address the general advantages of nanosized MIPs over macro/micro-MIP materials, such as higher affinity toward target analytes and improved binding kinetics. Then, we provide a general overview on hydrogel properties and their great advantages for applications in the field of Sensors, followed by a brief description on current popular routes for synthesis of imprinted hydrogel nanospheres targeting large biomolecules, namely precipitation polymerization and solid-phase synthesis, along with fruitful combination with epitope imprinting as reliable approaches for developing optimized protein-imprinted materials. In the second part of the review, we have provided the state of the art on the application of MIP nanogels for screening macromolecules with sensors having different transduction modes (optical, electrochemical, thermal, etc.) and design formats for single use, reusable, continuous monitoring, and even multiple analyte detection in specialized laboratories or in situ using mobile technology. Finally, we explore aspects about the development of this technology and its applications and discuss areas of future growth.
Collapse
Affiliation(s)
- Ana T. Silva
- CIQUP/IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| | - Rui Figueiredo
- CIQUP/IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| | - Manuel Azenha
- CIQUP/IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| | - Pedro A.S. Jorge
- INESC
TEC−Institute for Systems and Computer Engineering, Technology
and Science, Faculty of Sciences, University
of Porto, 4169-007 Porto, Portugal
- Department
of Physics and Astronomy, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| | - Carlos M. Pereira
- CIQUP/IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| | - José A. Ribeiro
- CIQUP/IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| |
Collapse
|
10
|
Electrochemical and thermal detection of allergenic substance lysozyme with molecularly imprinted nanoparticles. Anal Bioanal Chem 2023:10.1007/s00216-023-04638-2. [PMID: 36905407 PMCID: PMC10329058 DOI: 10.1007/s00216-023-04638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/25/2023] [Indexed: 03/12/2023]
Abstract
Lysozyme (LYZ) is a small cationic protein which is widely used for medical treatment and in the food industry to act as an anti-bacterial agent; however, it can trigger allergic reactions. In this study, high-affinity molecularly imprinted nanoparticles (nanoMIPs) were synthesized for LYZ using a solid-phase approach. The produced nanoMIPs were electrografted to screen-printed electrodes (SPEs), disposable electrodes with high commercial potential, to enable electrochemical and thermal sensing. Electrochemical impedance spectroscopy (EIS) facilitated fast measurement (5-10 min) and is able to determine trace levels of LYZ (pM) and can discriminate between LYZ and structurally similar proteins (bovine serum albumin, troponin-I). In tandem, thermal analysis was conducted with the heat transfer method (HTM), which is based on monitoring the heat transfer resistance at the solid-liquid interface of the functionalized SPE. HTM as detection technique guaranteed trace-level (fM) detection of LYZ but needed longer analysis time compared to EIS measurement (30 min vs 5-10 min). Considering the versatility of the nanoMIPs which can be adapted to virtually any target of interest, these low-cost point-of-care sensors hold great potential to improve food safety.
Collapse
|
11
|
Jyoti, Rybakiewicz-Sekita R, Żołek T, Maciejewska D, Gilant E, Buś-Kwaśnik K, Kutner A, Noworyta KR, Kutner W. Cilostazol-imprinted polymer film-coated electrode as an electrochemical chemosensor for selective determination of cilostazol and its active primary metabolite. J Mater Chem B 2022; 10:6707-6715. [PMID: 34927660 DOI: 10.1039/d1tb02186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An electrochemical chemosensor for cilostazol (CIL) determination was devised, engineered, and tested. For that, a unique conducting film of the functionalized thiophene-appended carbazole-based polymer, molecularly imprinted with cilostazol (MIP-CIL), was potentiodynamically deposited on a Pt disk electrode by oxidative electropolymerization. Thanks to electro-oxidation potentials lower than that of CIL, the carbazole monomers outperformed pyrrole, thiophene, and phenol monomers, in this electropolymerization. The pre-polymerization complexes quantum-mechanical and molecular dynamics analysis allowed selecting the most appropriate monomer from the three thiophene-appended carbazoles examined. The electrode was then used as a selective CIL chemosensor in the linear dynamic concentration range of 50 to 924 nM with a high apparent imprinting factor, IF = 10.6. The MIP-CIL responded similarly to CIL and CIL's pharmacologically active primary metabolite, 3,4-dehydrocilostazol (dhCIL), thus proving suitable for their determination together. Simulated models of the MIP cavities binding of the CIL, dhCIL, and interferences' molecules allowed predicting chemosensor selectivity. The MIP film sorption of CIL and dhCIL was examined using DPV by peak current data fitting with the Langmuir (L), Freundlich (F), and Langmuir-Freundlich (LF) isotherms. The LF isotherm best described this sorption with the sorption equilibrium constant (KLF) for CIL and dhCIL of 12.75 × 10-6 and 0.23 × 10-6 M, respectively. Moreover, the chemosensor cross-reactivity to common interferences study resulted in the selectivity to cholesterol and dehydroaripiprazole of 1.52 and 8.0, respectively. The chemosensor proved helpful in determining CIL and dhCIL in spiked human plasma with appreciable recovery (99.3-134.1%) and limit of detection (15 nM).
Collapse
Affiliation(s)
- Jyoti
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Renata Rybakiewicz-Sekita
- Faculty of Mathematics and Natural Sciences, School of Sciences, Institute of Chemical Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-815 Warsaw, Poland.,Laboratory of Organic Electronics, Linköping University, Bredgatan 33, 602 21 Norrköping, Sweden
| | - Teresa Żołek
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
| | - Dorota Maciejewska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
| | - Edyta Gilant
- Łukasiewicz Research Network - Industrial Chemistry Institute, Rydygiera 8, 01-793, Warsaw, Poland
| | - Katarzyna Buś-Kwaśnik
- Łukasiewicz Research Network - Industrial Chemistry Institute, Rydygiera 8, 01-793, Warsaw, Poland
| | - Andrzej Kutner
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Krzysztof R Noworyta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland. .,Faculty of Mathematics and Natural Sciences, School of Sciences, Institute of Chemical Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-815 Warsaw, Poland
| |
Collapse
|
12
|
Jyoti, Żołek T, Maciejewska D, Gilant E, Gniazdowska E, Kutner A, Noworyta KR, Kutner W. Polytyramine Film-Coated Single-Walled Carbon Nanotube Electrochemical Chemosensor with Molecularly Imprinted Polymer Nanoparticles for Duloxetine-Selective Determination in Human Plasma. ACS Sens 2022; 7:1829-1836. [PMID: 35549160 PMCID: PMC9315955 DOI: 10.1021/acssensors.2c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We devised, fabricated, and tested differential pulse voltammetry (DPV) and impedance spectroscopy (EIS) chemosensors for duloxetine (DUL) antidepressant determination in human plasma. Polyacrylic nanoparticles were synthesized by precipitation polymerization and were molecularly imprinted with DUL (DUL-nanoMIPs). Then, together with the single-walled carbon nanotube (SWCNT) scaffolds, they were uniformly embedded in polytyramine films, i.e., nanoMIPs-SWCNT@(polytyramine film) surface constructs, deposited on gold electrodes by potentiodynamic electropolymerization. These constructs constituted recognition units of the chemosensors. The molecular dynamics (MD) designing of DUL-nanoMIPs helped select the most appropriate functional and cross-linking monomers and determine the selectivity of the chemosensor. Three different DUL-nanoMIPs and non-imprinted polymer (nanoNIPs) were prepared with these monomers. DUL-nanoMIPs, synthesized from respective methacrylic acid and ethylene glycol dimethyl acrylate as the functional and cross-linking monomers, revealed the highest affinity to the DUL analyte. The linear dynamic concentration range, extending from 10 pM to 676 nM DUL, and the limit of detection (LOD), equaling 1.6 pM, in the plasma were determined by the DPV chemosensor, outperforming the EIS chemosensor. HPLC-UV measurements confirmed the results of DUL electrochemical chemosensing.
Collapse
Affiliation(s)
- Jyoti
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Teresa Żołek
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Dorota Maciejewska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Edyta Gilant
- Łukasiewicz Research Network−Industrial Chemistry Institute, Rydygiera 8, 01-793 Warsaw, Poland
| | - Elzbieta Gniazdowska
- Łukasiewicz Research Network−Industrial Chemistry Institute, Rydygiera 8, 01-793 Warsaw, Poland
| | - Andrzej Kutner
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Krzysztof R. Noworyta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-815 Warsaw, Poland
| |
Collapse
|
13
|
Wang S, Wang C, Xin Y, Li Q, Liu W. Core-shell nanocomposite of flower-like molybdenum disulfide nanospheres and molecularly imprinted polymers for electrochemical detection of anti COVID-19 drug favipiravir in biological samples. Mikrochim Acta 2022; 189:125. [PMID: 35229221 PMCID: PMC8885316 DOI: 10.1007/s00604-022-05213-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022]
Abstract
A novel electrochemical sensor is reported for the detection of the antiviral drug favipiravir based on the core-shell nanocomposite of flower-like molybdenum disulfide (MoS2) nanospheres and molecularly imprinted polymers (MIPs). The MoS2@MIP core-shell nanocomposite was prepared via the electrodeposition of a MIP layer on the MoS2 modified electrode, using o-phenylenediamine as the monomer and favipiravir as the template. The selective binding of target favipiravir at the MoS2@MIP core-shell nanocomposite produced a redox signal in a concentration dependent manner, which was used for the quantitative analysis. The preparation process of the MoS2@MIP core-shell nanocomposite was optimized. Under the optimal conditions, the sensor exhibited a wide linear response range of 0.01 ~ 100 nM (1.57*10-6 ~ 1.57*10-2 μg mL-1) and a low detection limit of 0.002 nM (3.14*10-7 μg mL-1). Application of the sensor was demonstrated by detecting favipiravir in a minimum amount of 10 μL biological samples (urine and plasma). Satisfied results in the recovery tests indicated a high potential of favipiravir monitoring in infectious COVID-19 samples.
Collapse
Affiliation(s)
- Shuang Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Chen Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yuxiao Xin
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Qiuyun Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Weilu Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
14
|
Adsorption of 4,4'-diaminodiphenyl ether on molecularly imprinted polymer and its application in an interfacial potentiometry with double poles sensor. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01979-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|