1
|
Wang X, Zhong L, Zhang W, Wu P, Wang M, Li D, Dong L, Wang G. CRISPR Digital Sensing: From Micronano-Collaborative Chip to Biomolecular Detection. ACS NANO 2025; 19:20427-20451. [PMID: 40411467 DOI: 10.1021/acsnano.5c03474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2025]
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) sensing technology proved to be valuable during the COVID-19 pandemic through its sensitivity, specificity, robustness, and versatility. However, issues such as overreliance on amplification, susceptibility to false positives, lack of quantification strategies, and complex operation procedures have hindered its broader application in bioanalysis and clinical diagnostics. The collision between micronano-collaborative chips and CRISPR technology has effectively addressed these bottlenecks, offering innovative solutions for diagnosis and treatment. Unlike conventional micronano chips, micronano digital chips enhance CRISPR's response to trace amounts of target molecules by leveraging highly controllable local environments and compartmentalized microreactors. This advancement improves detection efficiency and revolutionizes traditional in vitro bioanalytical processes. First, the working principles, fabrication techniques, and performance metrics of CRISPR-based digital droplet microfluidics and microarray chips are examined. Then, the applications of CRISPR digital sensing chips in bioassays are reviewed, emphasizing their importance in advancing in vitro detection systems for gene editing. Finally, the prospects of CRISPR digital sensing technology are explored, particularly its potential for body surface biomonitoring and its broader development opportunities in the biomedical field.
Collapse
Affiliation(s)
- Xinyi Wang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
- Key Laboratory of Micro-Nano Sensing and IoT of Wenzhou, Wenzhou Institute of Hangzhou Dianzi University, Wenzhou 325038, China
| | - Longjie Zhong
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Wenbin Zhang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
- Key Laboratory of Micro-Nano Sensing and IoT of Wenzhou, Wenzhou Institute of Hangzhou Dianzi University, Wenzhou 325038, China
| | - Pengde Wu
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
- Key Laboratory of Micro-Nano Sensing and IoT of Wenzhou, Wenzhou Institute of Hangzhou Dianzi University, Wenzhou 325038, China
| | - Minghao Wang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
- Key Laboratory of Micro-Nano Sensing and IoT of Wenzhou, Wenzhou Institute of Hangzhou Dianzi University, Wenzhou 325038, China
| | - Dujuan Li
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Linxi Dong
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Gaofeng Wang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
2
|
Haotian R, Zhu Z, Zhang H, Lv T, Tang S, Zhang J, Luo A, Liang A. Engineering conductive covalent-organic frameworks enable highly sensitive and anti-interference molecularly imprinted electrochemical biosensor. Biosens Bioelectron 2025; 273:117195. [PMID: 39862675 DOI: 10.1016/j.bios.2025.117195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Covalent organic frameworks (COFs) have drawn great interest in electrochemical sensing. However, most are integrated as enrichment units or reaction carriers and are co-modified with metal nanomaterials. Few studies use the single pristine COFs as an electrochemical signal amplifier. Aza-fuzed π-conjugated COFs exhibit exceptional signal enhancement and are an effective electron transport layer for electrochemical sensing applications. In this work, different conductive aza-fuzed π-conjugated COFs were optimized by synthetic engineering. Among them, 2D crystalline COF4 with the highest conductivity (240 % via the bare electrodes) was used to modify the screen printing carbon electrode to construct a portable molecularly imprinted electrochemical biosensor for point-of-care glutathione detection. Compared with the conventional strategy of co-modifing with gold nanoparticles, the single conductive COF4 electrochemical sensor exhibited excellent detection performance and better selectivity for thiol interferents. Conductive COFs combining molecularly imprinted polymer provide a promising strategy for constructing low-cost, easy fabrication and operation, highly sensitive and selective electrochemical biosensors.
Collapse
Affiliation(s)
- Ruilin Haotian
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ziyu Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Heao Zhang
- Ruixin Academy of Classic Learning, Beijing Institute of Technology, Beijing, 100081, China
| | - Tianjian Lv
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Shanshan Tang
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiangjiang Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Axin Liang
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
3
|
Wang H, Guo Z, He Z, Lin G, He C, Chen G, Peng Z. Flexible Alternating-Current Electroluminescent Devices for Reliable Identification of Fingerprints. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11888-11897. [PMID: 39950366 DOI: 10.1021/acsami.4c22178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Flexible bioelectronic devices, which can directly detect various external stimuli or biosignals and communicate the information to the users, have been broadly investigated due to the increasing demand for wearable devices. Among them, alternating-current electroluminescence (ACEL) devices are proposed as sensitive sensing systems for various targets, such as fingerprints. Herein, we propose a method for preparing high-performance ACEL devices by using an Ag electrode, polyethylene terephthalate (PET) substrate, FKM/EMI ionogel, and ZnS:Cu/BaTiO3/Ecoflex emissive layer. Their influence has also been studied for achieving high performances. The results demonstrate that the prepared ACEL devices can achieve high performances of emitting bright green and blue light when contacted with various ionic liquids. Significantly, they achieved good sensing performance for detecting Na+ with a limit of detection at 17.1 μM in the linear range of 100-800 mM. Moreover, the ACEL devices can be used for identity recognition, as they are capable of efficient collection and distinguishing of fingerprints. Even the characteristics of fingerprints collected from bending surfaces or contaminated fingers could be distinguished by the naked eyes. Compared with commercial fingerprint devices, our ACEL devices exhibit superior performance in fingerprint identification. High-resolution and three-dimensional image analysis further validates the reliability of our ACEL devices in fingerprint collection and identification. As such, we believe that the designed ACEL devices have very promising application prospects in many fields.
Collapse
Affiliation(s)
- Haifei Wang
- Center for Stretchable Electronics and NanoSensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zenan Guo
- Center for Stretchable Electronics and NanoSensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhaoqiang He
- Center for Stretchable Electronics and NanoSensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Guanhua Lin
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, and Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou 350117, China
| | - Chubin He
- Center for Stretchable Electronics and NanoSensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Gang Chen
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, and Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou 350117, China
| | - Zhengchun Peng
- Center for Stretchable Electronics and NanoSensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
4
|
Ursem RFR, Steijlen A, Parrilla M, Bastemeijer J, Bossche A, De Wael K. Worth your sweat: wearable microfluidic flow rate sensors for meaningful sweat analytics. LAB ON A CHIP 2025; 25:1296-1315. [PMID: 39878525 PMCID: PMC11776456 DOI: 10.1039/d4lc00927d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/16/2025] [Indexed: 01/31/2025]
Abstract
Wearable microfluidic sweat sensors could play a major role in the future of monitoring health and wellbeing. Sweat contains biomarkers to monitor health and hydration status, and it can provide information on drug intake, making it an interesting non-invasive alternative to blood. However, sweat is not created in excess, and this requires smart sweat collection strategies to handle small volumes. Microfluidic solutions are commonly employed which use capillary action or evaporation to drive flow. In current literature about sweat analytics, the emphasis lies predominantly on developing the sensors for measuring the composition of sweat. Yet, solely measuring sweat composition does not suffice, because the composition varies due to inter- and intra-individual differences in sweat rate. The measurement of sweat rate is thus crucial for enabling a reliable interpretation and standardisation of this data. Recently, more wearable sweat sensors, also integrating a means of measuring flow, have been developed. This manuscript reviews state-of-the-art sweat collection strategies and flow rate measuring techniques. Generally, flow rate measurements are performed by impedimetric or capacitive methods. However, these techniques can be impaired due to limited lifetime and signal interference from changing ionic contents in sweat. Discrete measurement techniques, such as impedance measurements of an advancing fluid front with interdigitated electrodes, calorimetric and colorimetric techniques can be very reliable, because they selectively measure flow. However, one should take the available size, intended application and compatibility with other sensors into account. Overall, accurate flow rate sensors integrated in reliable microfluidic sweat sensor platforms will enable the standardisation of sweat measurements to unlock the potential of sweat analytics in advancing physiological research, personalized diagnostics and treatment of diseases.
Collapse
Affiliation(s)
- R F R Ursem
- Electronic Instrumentation, Department of Microelectronics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands.
| | - A Steijlen
- Electronic Instrumentation, Department of Microelectronics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands.
- Antwerp Engineering, Photoelectrochemistry and Sensing (A-PECS), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2010 Antwerp, Belgium
| | - M Parrilla
- Antwerp Engineering, Photoelectrochemistry and Sensing (A-PECS), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2010 Antwerp, Belgium
| | - J Bastemeijer
- Electronic Instrumentation, Department of Microelectronics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands.
| | - A Bossche
- Electronic Instrumentation, Department of Microelectronics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands.
| | - K De Wael
- Antwerp Engineering, Photoelectrochemistry and Sensing (A-PECS), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2010 Antwerp, Belgium
| |
Collapse
|
5
|
Ghorbian M, Ghobaei-Arani M, Babaei MR, Ghorbian S. Nanotechnology and nanosensors in personalized healthcare: A comprehensive review. SENSING AND BIO-SENSING RESEARCH 2025; 47:100740. [DOI: 10.1016/j.sbsr.2025.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
|
6
|
Amjad A, Xian X. Optical sensors for transdermal biomarker detection: A review. Biosens Bioelectron 2025; 267:116844. [PMID: 39406072 DOI: 10.1016/j.bios.2024.116844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
This review has explored optical sensors and their important role in non-invasive transdermal biomarker detection. While electrochemical sensors have been thoroughly studied for biomarker tracking, optical sensors present a compelling alternative due to their high sensitivity and selectivity, multiplex capabilities, cost-efficiency, and small form factor. This review examines the latest advancements in optical sensing technologies for transdermal biomarker detection, such as colorimetry, fluorescence, surface plasmon resonance (SPR), fiber optics, photonic crystals, and Raman spectroscopy. These technologies have been applied in the analysis of biomarkers present in sweat and skin gases, which are essential for non-invasive health monitoring. Furthermore, the review has discussed the challenges and future perspectives of optical sensors in in transdermal biomarker detection. The analysis of various sensor types and their applications highlights the transformative potential of optical sensors in enhancing disease diagnostics and promoting proactive health management.
Collapse
Affiliation(s)
- Amirhossein Amjad
- McComish Department of Electrical Engineering and Computer Science, Jerome J. Lohr College of Engineering, South Dakota State University, Brookings, SD, 57007, USA
| | - Xiaojun Xian
- McComish Department of Electrical Engineering and Computer Science, Jerome J. Lohr College of Engineering, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
7
|
Xuan X, Rojas D, Lozano IMD, Cuartero M, Crespo GA. Demonstration of a Validated Direct Current Wearable Device for Monitoring Sweat Rate in Sports. SENSORS (BASEL, SWITZERLAND) 2024; 24:7243. [PMID: 39599020 PMCID: PMC11598451 DOI: 10.3390/s24227243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Sweat rate magnitude is a desired outcome for any wearable sensing patch dedicated to sweat analysis. Indeed, sweat rate values can be used two-fold: self-diagnosis of dehydration and correction/normalization of other physiological metrics, such as Borg scale, VO2, and different chemical species concentrations. Herein, a reliable sweat rate belt device for sweat rate monitoring was developed. The device measures sweat rates in the range from 1.0 to 5.0 µL min-1 (2 to 10 µL min-1 cm-2), which covers typical values for humans. The working mechanism is based on a new direct current (DC) step protocol activating a series of differential resistance measurements (spatially separated by 800 µm) that is gradually initiated by the action of sweat, which flows along a customized microfluidic track (~600 µm in width, 10 mm in length, and 235 µm in thickness). The device has a volumetric capacity of ~16 µL and an acquisition frequency between 0.010 and 0.043 Hz within the measured sweat rate range. Importantly, instead of using a typical and rather complex AC signal interrogation and acquisition, we put forward the DC approach, offering several benefits, such as simplified circuit design for easier fabrication and lower costs, as well as reduced power consumption and suitability for wearable applications. For the validation, either the commercial sweat collector (colorimetric) or the developed device was performed. In five on-body tests, an acceptable variation of ca. 10% was obtained. Overall, this study demonstrates the potential of the DC-based device for the monitoring of sweat rate and also its potential for implementation in any wearable sweat platform.
Collapse
Affiliation(s)
- Xing Xuan
- UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, Avda. Andres Hernandez Ros 1, 30107 Murcia, Spain; (X.X.); (D.R.); (I.M.D.L.); (M.C.)
| | - Daniel Rojas
- UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, Avda. Andres Hernandez Ros 1, 30107 Murcia, Spain; (X.X.); (D.R.); (I.M.D.L.); (M.C.)
| | - Isabel Maria Diaz Lozano
- UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, Avda. Andres Hernandez Ros 1, 30107 Murcia, Spain; (X.X.); (D.R.); (I.M.D.L.); (M.C.)
| | - Maria Cuartero
- UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, Avda. Andres Hernandez Ros 1, 30107 Murcia, Spain; (X.X.); (D.R.); (I.M.D.L.); (M.C.)
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Gastón A. Crespo
- UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, Avda. Andres Hernandez Ros 1, 30107 Murcia, Spain; (X.X.); (D.R.); (I.M.D.L.); (M.C.)
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| |
Collapse
|
8
|
Maroli G, Rosati G, Suárez-García S, Bedmar-Romero D, Kobrin R, González-Laredo Á, Urban M, Alvárez-Diduk R, Ruiz-Molina D, Merkoçi A. Wearable, battery-free, wireless multiplexed printed sensors for heat stroke prevention with mussel-inspired bio-adhesive membranes. Biosens Bioelectron 2024; 260:116421. [PMID: 38838572 DOI: 10.1016/j.bios.2024.116421] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Wearable technologies are becoming pervasive in our society, and their development continues to accelerate the untapped potential of continuous and ubiquitous sensing, coupled with big data analysis and interpretation, has only just begun to unfold. However, existing wearable devices are still bulky (mainly due to batteries and electronics) and have suboptimal skin contact. In this work, we propose a novel approach based on a sensor network produced through inkjet printing of nanofunctional inks onto a semipermeable substrate. This network enables real-time monitoring of critical physiological parameters, including temperature, humidity, and muscle contraction. Remarkably, our system operates under battery-free and wireless near-field communication (NFC) technology for data readout via smartphones. Moreover, two of the three sensors were integrated onto a naturally adhesive bioinspired membrane. This membrane, developed using an eco-friendly, high-throughput process, draws inspiration from the remarkable adhesive properties of mussel-inspired molecules. The resulting ultra-conformable membrane adheres effortlessly to the skin, ensuring reliable and continuous data collection. The urgency of effective monitoring systems cannot be overstated, especially in the context of rising heat stroke incidents attributed to climate change and high-risk occupations. Heat stroke manifests as elevated skin temperature, lack of sweating, and seizures. Swift intervention is crucial to prevent progression to coma or fatality. Therefore, our proposed system holds immense promise for the monitoring of these parameters on the field, benefiting both the general population and high-risk workers, such as firefighters.
Collapse
Affiliation(s)
- Gabriel Maroli
- Catalan Institute of Nanoscience and Nanotechnology, BIST, and CSIC, Edifici ICN2 Campus UAB, 08193, Bellaterra, Barcelona, Spain; Instituto de Investigaciones en Ingeniería Eléctrica Alfredo Desages (IIIE), Universidad Nacional del Sur - CONICET, Argentina
| | - Giulio Rosati
- Catalan Institute of Nanoscience and Nanotechnology, BIST, and CSIC, Edifici ICN2 Campus UAB, 08193, Bellaterra, Barcelona, Spain.
| | - Salvio Suárez-García
- Catalan Institute of Nanoscience and Nanotechnology, BIST, and CSIC, Edifici ICN2 Campus UAB, 08193, Bellaterra, Barcelona, Spain.
| | - Daniel Bedmar-Romero
- Catalan Institute of Nanoscience and Nanotechnology, BIST, and CSIC, Edifici ICN2 Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Robert Kobrin
- Catalan Institute of Nanoscience and Nanotechnology, BIST, and CSIC, Edifici ICN2 Campus UAB, 08193, Bellaterra, Barcelona, Spain; Joint Department of Biomedical Engineering, NC State & UNC Chapel Hill, USA
| | - Álvaro González-Laredo
- Catalan Institute of Nanoscience and Nanotechnology, BIST, and CSIC, Edifici ICN2 Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Massimo Urban
- Catalan Institute of Nanoscience and Nanotechnology, BIST, and CSIC, Edifici ICN2 Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Ruslan Alvárez-Diduk
- Catalan Institute of Nanoscience and Nanotechnology, BIST, and CSIC, Edifici ICN2 Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology, BIST, and CSIC, Edifici ICN2 Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology, BIST, and CSIC, Edifici ICN2 Campus UAB, 08193, Bellaterra, Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain.
| |
Collapse
|
9
|
Backiyalakshmi G, Snekhalatha U, Salvador AL. Recent advancements in non-invasive wearable electrochemical biosensors for biomarker analysis - A review. Anal Biochem 2024; 692:115578. [PMID: 38801938 DOI: 10.1016/j.ab.2024.115578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
A biomarker is a molecular indicator that can be used to identify the presence or severity of a disease. It may be produced due to biochemical or molecular changes in normal biological processes. In some cases, the presence of a biomarker itself is an indication of the disease, while in other cases, the elevated or depleted level of a particular protein or chemical substance aids in identifying a disease. Biomarkers indicate the progression of the disease in response to therapeutic interventions. Identifying these biomarkers can assist in diagnosing the disease early and providing proper therapeutic treatment. In recent years, wearable electrochemical (EC) biosensors have emerged as an important tool for early detection due to their excellent selectivity, low cost, ease of fabrication, and improved sensitivity. There are several challenges in developing a fully integrated wearable sensor, such as device miniaturization, high power consumption, incorporation of a power source, and maintaining the integrity and durability of the biomarker for long-term continuous monitoring. This review covers the recent advancements in the fabrication techniques involved in device development, the types of sensing platforms utilized, different materials used, challenges, and future developments in the field of wearable biosensors.
Collapse
Affiliation(s)
- G Backiyalakshmi
- Department of Biomedical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - U Snekhalatha
- Department of Biomedical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India; College of Engineering, Architecture and Fine Arts, Batangas State University, Batangas, Philippines.
| | - Anela L Salvador
- College of Engineering, Architecture and Fine Arts, Batangas State University, Batangas, Philippines
| |
Collapse
|
10
|
Huang C, Yang W, Wang H, Huang S, Gao S, Li D, Liu J, Hou S, Feng W, Wang Z, Li F, Hao Z, Zhao X, Hu P, Pan Y. Flexible/Regenerative Nanosensor with Automatic Sweat Collection for Cytokine Storm Biomarker Detection. ACS NANO 2024; 18:21198-21210. [PMID: 39099110 DOI: 10.1021/acsnano.4c04456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The real-time monitoring of low-concentration cytokines such as TNF-α in sweat can aid clinical physicians in assessing the severity of inflammation. The challenges associated with the collection and the presence of impurities can significantly impede the detection of proteins in sweat. This issue is addressed by incorporating a nanosphere array designed for automatic sweat transportation, coupled with a reusable sensor that employs a Nafion/aptamer-modified MoS2 field-effect transistor. The nanosphere array with stepwise wettability enables automatic collection of sweat and blocks impurities from contaminating the detection zone. This device enables direct detection of TNF-α proteins in undiluted sweat, within a detection range of 10 fM to 1 nM. The use of an ultrathin, ultraflexible substrate ensures stable electrical performance, even after up to 30 extreme deformations. The findings indicate that in clinical scenarios, this device could potentially provide real-time evaluation and management of patients' immune status via sweat testing.
Collapse
Affiliation(s)
- Cong Huang
- State Key Laboratory of Robotics and Systems, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| | - Weisong Yang
- State Key Laboratory of Robotics and Systems, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hao Wang
- State Key Laboratory of Robotics and Systems, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| | - Suichu Huang
- State Key Laboratory of Robotics and Systems, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shanshan Gao
- School of Electrical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Dongliang Li
- State Key Laboratory of Robotics and Systems, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jialin Liu
- State Key Laboratory of Robotics and Systems, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Siyu Hou
- State Key Laboratory of Robotics and Systems, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Weihao Feng
- State Key Laboratory of Robotics and Systems, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ziran Wang
- State Key Laboratory of Robotics and Systems, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of High-effciency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Feiran Li
- State Key Laboratory of Robotics and Systems, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| | - Zhuang Hao
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China
| | - Xuezeng Zhao
- State Key Laboratory of Robotics and Systems, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| | - PingAn Hu
- State Key Laboratory of Robotics and Systems, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| | - Yunlu Pan
- State Key Laboratory of Robotics and Systems, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
11
|
Zhang S, He Z, Zhao W, Liu C, Zhou S, Ibrahim OO, Wang C, Wang Q. Innovative Material-Based Wearable Non-Invasive Electrochemical Sweat Sensors towards Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:857. [PMID: 38786813 PMCID: PMC11124380 DOI: 10.3390/nano14100857] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Sweat is an accessible biofluid that provides useful physiological information about the body's biomolecular state and systemic health. Wearable sensors possess various advantageous features, such as lightweight design, wireless connectivity, and compatibility with human skin, that make them suitable for continuous monitoring. Wearable electrochemical sweat sensors can diagnose diseases and monitor health conditions by detecting biomedical signal changes in sweat. This paper discusses the state-of-the-art research in the field of wearable sweat sensors and the materials used in their construction. It covers biomarkers present in sweat, sensing modalities, techniques for sweat collection, and ways to power these sensors. Innovative materials are categorized into three subcategories: sweat collection, sweat detection, and self-powering. These include substrates for sensor fabrication, analyte detection electrodes, absorbent patches, microfluidic devices, and self-powered devices. This paper concludes by forecasting future research trends and prospects in material-based wearable non-invasive sweat sensors.
Collapse
Affiliation(s)
- Sheng Zhang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (S.Z.); (Z.H.); (W.Z.); (C.L.); (S.Z.); (O.O.I.)
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China
| | - Zhaotao He
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (S.Z.); (Z.H.); (W.Z.); (C.L.); (S.Z.); (O.O.I.)
- Polytechnic Institute, Zhejiang University, Hangzhou 310015, China
| | - Wenjie Zhao
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (S.Z.); (Z.H.); (W.Z.); (C.L.); (S.Z.); (O.O.I.)
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chen Liu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (S.Z.); (Z.H.); (W.Z.); (C.L.); (S.Z.); (O.O.I.)
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Shulan Zhou
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (S.Z.); (Z.H.); (W.Z.); (C.L.); (S.Z.); (O.O.I.)
- Polytechnic Institute, Zhejiang University, Hangzhou 310015, China
| | - Oresegun Olakunle Ibrahim
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (S.Z.); (Z.H.); (W.Z.); (C.L.); (S.Z.); (O.O.I.)
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chunge Wang
- School of Mechanical and Energy Engineering, Ningbo Tech University, Ningbo 315100, China;
| | - Qianqian Wang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (S.Z.); (Z.H.); (W.Z.); (C.L.); (S.Z.); (O.O.I.)
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China
| |
Collapse
|
12
|
Liu M, Liu S, Zhang T, Zhou D, Li L, Gao Q, Liu Y, Ge C, Wang Y, Wang M, Wen F, Xiong Z, Zhou Z, Wang S, Zhang T. Adaptively resettable microfluidic patch for sweat rate and electrolytes detection. Biosens Bioelectron 2024; 257:116299. [PMID: 38636318 DOI: 10.1016/j.bios.2024.116299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/07/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Skin-interfaced microfluidic patch has become a reliable device for sweat collection and analysis. However, the intractable problems of emptying the microchannel for reuse, and the channel's volumetric capacity limited by the size of the patch, directly hinder the practical application of sweat sensors. Herein, we report an adaptively resettable microfluidic sweat patch (Art-Sweat patch) capable of continuously monitoring both sweat rate (0.2-4.0 μL min-1) and total ionic charge concentration (10-200 mmol L-1). We develop a platform with a vertical and horizontal microchannel combined strategy, enabling repeatedly filling sweat and emptying the microchannel for autonomously resetting and detecting. The variation in the emptied volume is designed to be adaptively identified by the sensor, resulting in enhanced stability and an enlarged volumetric capacity of over 300 μL. By integrating with self-designed wireless transmission modules, the proposed Art-Sweat patch shows product-level wearability and high performance in monitoring variations in regional sweat rate and concentration for hydration status assessment.
Collapse
Affiliation(s)
- Mengyuan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Siyuan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Tong Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Dengfeng Zhou
- Suzhou Leanstar Electronic Technology Co., Ltd., 99 Jinji Lake Avenue, Suzhou, Jiangsu, 215123, PR China
| | - Lianhui Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Qiang Gao
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Yujie Liu
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Changlei Ge
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Yongfeng Wang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Mingxu Wang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Feng Wen
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Zuoping Xiong
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China; Suzhou Leanstar Electronic Technology Co., Ltd., 99 Jinji Lake Avenue, Suzhou, Jiangsu, 215123, PR China
| | - Zhen Zhou
- Suzhou Leanstar Electronic Technology Co., Ltd., 99 Jinji Lake Avenue, Suzhou, Jiangsu, 215123, PR China
| | - Shuqi Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China.
| | - Ting Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China; Nano-X Vacuum Interconnected Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
13
|
Xu G, Huang X, Shi R, Yang Y, Wu P, Zhou J, He X, Li J, Zen Y, Jiao Y, Zhang B, Li J, Zhao G, Liu Y, Huang Y, Wu M, Zhang Q, Yang Z, Yu X. Triboelectric Nanogenerator Enabled Sweat Extraction and Power Activation for Sweat Monitoring. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202310777] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Indexed: 04/02/2025]
Abstract
AbstractWearable sweat sensors can detect and monitor various substances in sweat, providing valuable information for healthcare monitoring and clinical diagnostics. Recent advances in flexible electronic technologies have enabled the development of wearable sweat sensors that can measure sweat rate and biochemical substances in real time, although several challenges remain, such as power management and sweat extraction issues. Here, a passive sweat extraction strategy as well as a self‐powered monitoring system (SEMS) is reported to be designed for sedentary individuals, i.e., elders. The SEMS system comprises a wearable triboelectric nanogenerator (TENG) for sweat extraction, a sweat‐activated battery (SAB) as the integrated power source, carbachol‐loaded iontophoresis electrodes for sweat extraction, microfluidics with biosensors for detecting physiological information in sweat, and near field communication (NFC)‐based wireless microelectronics for data communication, processing, and collection. By tapping the TENG, sedentary people can passively extract sweat based on the iontophoresis process, allowing the sensors to detect biological information in sweat. The good flexibility of the SEMS device enables real‐time and non‐invasive detection of sweat analytes in a wearable format. This system offers a new strategy of sweat collection and analysis for the elderly group, and therefore can help to understand human physiology and personalize health monitoring deeply.
Collapse
Affiliation(s)
- Guoqiang Xu
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
| | - Xingcan Huang
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
| | - Rui Shi
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
| | - Yawen Yang
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
| | - Pengchen Wu
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
| | - Jingkun Zhou
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
- Hong Kong Center for Cerebra‐Cardiovascular Health Engineering Hong Kong Science Park New Territories Hong Kong 999077 China
| | - Xinxin He
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
| | - Jialin Li
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
| | - Yuyang Zen
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
| | - Yanli Jiao
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
- Hong Kong Center for Cerebra‐Cardiovascular Health Engineering Hong Kong Science Park New Territories Hong Kong 999077 China
| | - Binbin Zhang
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
- Hong Kong Center for Cerebra‐Cardiovascular Health Engineering Hong Kong Science Park New Territories Hong Kong 999077 China
| | - Jiyu Li
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
- Hong Kong Center for Cerebra‐Cardiovascular Health Engineering Hong Kong Science Park New Territories Hong Kong 999077 China
| | - Guangyao Zhao
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
| | - Yiming Liu
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
| | - Ya Huang
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
- Hong Kong Center for Cerebra‐Cardiovascular Health Engineering Hong Kong Science Park New Territories Hong Kong 999077 China
| | - Mengge Wu
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
| | - Qiang Zhang
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
| | - Zhihui Yang
- Department of Pathology The Affiliated Hospital of Southwest Medical University Luzhou Sichuan 646000 China
| | - Xinge Yu
- Department of Biomedical Engineering City University of Hong Kong Kowloong Tong Hong Kong 999077 China
- Hong Kong Center for Cerebra‐Cardiovascular Health Engineering Hong Kong Science Park New Territories Hong Kong 999077 China
| |
Collapse
|
14
|
Zhang Q, Ma S, Zhan X, Meng W, Wang H, Liu C, Zhang T, Zhang K, Su S. Smartphone-based wearable microfluidic electrochemical sensor for on-site monitoring of copper ions in sweat without external driving. Talanta 2024; 266:125015. [PMID: 37541004 DOI: 10.1016/j.talanta.2023.125015] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
The directional movement of liquid without exogenous drive can show great potential in portable electrochemical platforms. Herein, we developed a portable electrochemical platform that drove electrolyte flow by surface tension gradient, which can realize collection of electrolyte, flow preconcentration and electrochemical detection of Cu2+. The induced graphene electrodes (LIG) was fabricated using laser direct writing, and flower cluster shaped ZnO nanorods (FC-ZnONRs) were prepared and modified on LIG, which provided a large amount of space for electrolyte to shuttled between the holes of LIG and ZnO, and increased the electrochemical active sites and electrons transport ability. The effect of surface tension gradients driving fluid flow could accelerate preconcentration, shorten detection time (save 300 s of preconcentration time) and enhance electrochemical responses in synergy with the 3D FC-ZnONRs/LIG. The microfluidic system possessed excellent performance for detection of Cu2+ ranged from 1 μg L-1 to 2100 μg L-1 with a low detection limit (LOD) of 0.0368 μg L-1 and high sensitivity of 0.414 μA (μg L-1)-1 cm-2. Additionally, this portable microfluidic system was successfully worn on the skin for analysing Cu2+ in human sweat, and the results showed good consistency with inductively coupled plasma-mass spectrometry (ICP-MS). This novel sensing system provides a sample collection, rapid detection, low cost and easy-to-operate strategy for heavy metal ions analysis in real samples and shows huge application prospects in point-of-care testing.
Collapse
Affiliation(s)
- Qing Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
| | - Shangshang Ma
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China; School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou, 221100, China.
| | - Xijie Zhan
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
| | - Wanghan Meng
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
| | - Hongyan Wang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
| | - Chao Liu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
| | - Tianren Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
| | - Keying Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China.
| | - Shao Su
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
15
|
Golparvar A, Thenot L, Boukhayma A, Carrara S. Soft Epidermal Paperfluidics for Sweat Analysis by Ratiometric Raman Spectroscopy. BIOSENSORS 2023; 14:12. [PMID: 38248389 PMCID: PMC10812966 DOI: 10.3390/bios14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
The expanding interest in digital biomarker analysis focused on non-invasive human bodily fluids, such as sweat, highlights the pressing need for easily manufactured and highly efficient soft lab-on-skin solutions. Here, we report, for the first time, the integration of microfluidic paper-based devices (μPAD) and non-enhanced Raman-scattering-enabled optical biochemical sensing (Raman biosensing). Their integration merges the enormous benefits of μPAD, with high potential for commercialization and use in resource-limited settings, with biorecognition-element-free (but highly selective) optical Raman biosensing. The introduced thin (0.36 mm), ultra-lightweight (0.19 g), and compact footprint (3 cm2) opto-paperfluidic sweat patch is flexible, stretchable, and conforms, irritation-free, to hairless or minimally haired body regions to enable swift sweat collection. As a great advantage, this new bio-chemical sensory system excels through its absence of onboard biorecognition elements (bioreceptor-free) and omission of plasmonic nanomaterials. The proposed easy fabrication process is adaptable to mass production by following a fully sustainable and cost-effective process utilizing only basic tools by avoiding typically employed printing or laser patterning. Furthermore, efficient collection and transportation of precise sweat volumes, driven exclusively by the wicking properties of porous materials, shows high efficiency in liquid transportation and reduces biosensing latency by a factor of 5 compared to state-of-the-art epidermal microfluidics. The proposed unit enables electronic chip-free and imaging-less visual sweat loss quantification as well as optical biochemical analysis when coupled with Raman spectroscopy. We investigated the multimodal quantification of sweat urea and lactate levels ex vivo (with syntactic sweat including +30 sweat analytes on porcine skin) and achieved a linear dynamic range from 0 to 100 mmol/L during fully dynamic continuous flow characterization.
Collapse
Affiliation(s)
- Ata Golparvar
- Bio/CMOS Interfaces (BCI) Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 2000 Neuchatel, Switzerland
| | - Lucie Thenot
- Bio/CMOS Interfaces (BCI) Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 2000 Neuchatel, Switzerland
| | | | - Sandro Carrara
- Bio/CMOS Interfaces (BCI) Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 2000 Neuchatel, Switzerland
| |
Collapse
|
16
|
Ramalingam M, Jaisankar A, Cheng L, Krishnan S, Lan L, Hassan A, Sasmazel HT, Kaji H, Deigner HP, Pedraz JL, Kim HW, Shi Z, Marrazza G. Impact of nanotechnology on conventional and artificial intelligence-based biosensing strategies for the detection of viruses. DISCOVER NANO 2023; 18:58. [PMID: 37032711 PMCID: PMC10066940 DOI: 10.1186/s11671-023-03842-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Recent years have witnessed the emergence of several viruses and other pathogens. Some of these infectious diseases have spread globally, resulting in pandemics. Although biosensors of various types have been utilized for virus detection, their limited sensitivity remains an issue. Therefore, the development of better diagnostic tools that facilitate the more efficient detection of viruses and other pathogens has become important. Nanotechnology has been recognized as a powerful tool for the detection of viruses, and it is expected to change the landscape of virus detection and analysis. Recently, nanomaterials have gained enormous attention for their value in improving biosensor performance owing to their high surface-to-volume ratio and quantum size effects. This article reviews the impact of nanotechnology on the design, development, and performance of sensors for the detection of viruses. Special attention has been paid to nanoscale materials, various types of nanobiosensors, the internet of medical things, and artificial intelligence-based viral diagnostic techniques.
Collapse
Affiliation(s)
- Murugan Ramalingam
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116 Republic of Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116 Republic of Korea
- BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116 Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116 South Korea
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Atilim University, 06836 Ankara, Turkey
| | - Abinaya Jaisankar
- Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014 India
| | - Lijia Cheng
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
| | - Sasirekha Krishnan
- Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014 India
| | - Liang Lan
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
| | - Anwarul Hassan
- Department of Mechanical and Industrial Engineering, Biomedical Research Center, Qatar University, 2713, Doha, Qatar
| | - Hilal Turkoglu Sasmazel
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Atilim University, 06836 Ankara, Turkey
| | - Hirokazu Kaji
- Department of Biomechanics, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, 101-0062 Japan
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, 78054 Villingen-Schwenningen, Germany
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine, 28029 Madrid, Spain
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116 Republic of Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116 Republic of Korea
- BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116 Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116 South Korea
| | - Zheng Shi
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
| | - Giovanna Marrazza
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
17
|
Liu M, Wang S, Xiong Z, Zheng Z, Ma N, Li L, Gao Q, Ge C, Wang Y, Zhang T. Perspiration permeable, textile embeddable microfluidic sweat sensor. Biosens Bioelectron 2023; 237:115504. [PMID: 37406481 DOI: 10.1016/j.bios.2023.115504] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
Epidermal microfluidic devices are continuously being developed for efficient sweat collection and sweat rate detection. However, most microfluidic designs ignore the use of airtight/adhesive substrate will block the natural perspiration of the covered sweat pores, which will seriously affect normal sweat production and long-term wearable comfort. Herein, we present a Janus textile-embedded microfluidic sensor platform with high breathability and directional sweat permeability for synchronous sweat rate and total electrolyte concentration detection. The device consists of a hollowed-out serpentine microchannel with interdigital electrodes and Janus textile. The dual-mode signal of the sweat rate (0.2-4.0 μL min-1) and total ionic charge concentration (10-200 mmol L-1) can be obtained synchronously by decoupling conductance step signals generated when sweat flows through alternating interdigitated spokes at equal intervals in the microchannel. Meanwhile, the hollowed-out microchannel structure significantly reduces the coverage area of the sensor on the skin, and the Janus textile-embedded device ensures a comfortable skin/device interface (fewer sweat pores are blocked) and improves breathability (503.15 g m-2 d-1) and sweat permeability (directional liquid transportation) during long-term monitoring. This device is washable and reusable, which shows the potential to integrate with clothing and smart textile, and thus facilitate the practicality of wearable sweat sensors for personalized healthcare.
Collapse
Affiliation(s)
- Mengyuan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Shuqi Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China.
| | - Zuoping Xiong
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Zhuo Zheng
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Nan Ma
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Road, Nanjing, Jiangsu, 210094, PR China
| | - Lianhui Li
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Qiang Gao
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Changlei Ge
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Yongfeng Wang
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Ting Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China; Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
18
|
Kikkeri K, Naba FM, Voldman J. Rapid, low-cost fabrication of electronic microfluidics via inkjet-printing and xurography (MINX). Biosens Bioelectron 2023; 237:115499. [PMID: 37473550 DOI: 10.1016/j.bios.2023.115499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/22/2023]
Abstract
Microfluidics has shown great promise for point-of-care assays due to unique chemical and physical advantages that occur at the micron scale. Furthermore, integration of electrodes into microfluidic systems provides additional capabilities for assay operation and electronic readout. However, while these systems are abundant in biological and biomedical research settings, translation of microfluidic devices with embedded electrodes are limited. In part, this is due to the reliance on expensive, inaccessible, and laborious microfabrication techniques. Although innovative prior work has simplified microfluidic fabrication or inexpensively patterned electrodes, low-cost, accessible, and robust methods to incorporate all these elements are lacking. Here, we present MINX, a low-cost <1 USD and rapid (∼minutes) fabrication technique to manufacture microfluidic device with embedded electrodes. We characterize the structures created using MINX, and then demonstrate the utility of the approach by using MINX to implement an electrochemical bead-based biomarker detection assay. We show that the MINX technique enables the scalable, inexpensive fabrication of microfluidic devices with electronic sensors using widely accessible desktop machines and low-cost materials.
Collapse
Affiliation(s)
- Kruthika Kikkeri
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Feven Moges Naba
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Joel Voldman
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
19
|
Tao Q, Liu S, Zhang J, Jiang J, Jin Z, Huang Y, Liu X, Lin S, Zeng X, Li X, Tao G, Chen H. Clinical applications of smart wearable sensors. iScience 2023; 26:107485. [PMID: 37636055 PMCID: PMC10448028 DOI: 10.1016/j.isci.2023.107485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Smart wearable sensors are electronic devices worn on the body that collect, process, and transmit various physiological data. Compared to traditional devices, their advantages in terms of portability and comfort have made them increasingly important in the medical field. This review takes a unique clinical physician's standpoint, diverging from conventional sensor-type-based classifications, and provides a comprehensive overview of the diverse clinical applications of wearable sensors in recent years. In this review, we categorize these applications according to different diseases, encompassing skin diseases and injuries, cardiovascular diseases, abnormal human motion, as well as endocrine and metabolic disorders. Additionally, we discuss the challenges and perspectives hindering the development of sensors for clinical use, emphasizing the critical need for interdisciplinary collaboration between medical and engineering professionals. Overall, this review would serve as an important reference for the future direction of sensor devices in clinical use.
Collapse
Affiliation(s)
- Qingxiao Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Suwen Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingyu Zhang
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
- Shenzhen University Medical School, Shenzhen 518060, China
| | - Jian Jiang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zilin Jin
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuqiong Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shiying Lin
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Zeng
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Xuemei Li
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Guangming Tao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| |
Collapse
|
20
|
Nasrin F, Khoris IM, Chowdhury AD, Muttaqein SE, Park EY. Development of disposable electrode for the detection of mosquito-borne viruses. Biotechnol J 2023; 18:e2300125. [PMID: 37127933 DOI: 10.1002/biot.202300125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023]
Abstract
Development of disposable, rapid, and convenient biosensor with high sensitivity and reliability is the most desired method of viral disease prevention. To achieve this goal, in this work, a practical impedimetric biosensor has been implemented into a disposable electrode on a screen-printed carbon electrode (SPCE) for the detection of two mosquito-borne viruses. The biosensor fabrication has step-wisely carried out on the disposable electrode surface at room temperature: starting from conductive film formation, physical binding of the gold nanoparticles (AuNPs)-polyaniline (PAni) into the conductive film, and biofunctionalization. To get the maximum efficiency of the antibody, biotinylated antibody has been conjugated on the surface of AuNP-PAni/PAni-SPCE via the streptavidin-biotin conjugation method which is a critical factor for the high sensitivity. Using the antibody-antigen interaction, this disposable electrode has designed to detect mosquito-borne infectious viruses, Chikungunya virus (CHIKV), and Zika virus (ZIKV) separately in a wide linear range of 100 fg mL-1 to 1 ng mL-1 with a low detection limit of 1.33 and 12.31 fg mL-1 , respectively.
Collapse
Affiliation(s)
- Fahmida Nasrin
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan
| | - Indra Memdi Khoris
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan
| | - Ankan Dutta Chowdhury
- Amity Institute of Nanotechnology, Amity University Kolkata, Kolkata, West Bengal, India
| | - Sjakurrizal El Muttaqein
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan
| | - Enoch Y Park
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
21
|
Ganesan S, Ramajayam K, Kokulnathan T, Palaniappan A. Recent Advances in Two-Dimensional MXene-Based Electrochemical Biosensors for Sweat Analysis. Molecules 2023; 28:4617. [PMID: 37375172 DOI: 10.3390/molecules28124617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Sweat, a biofluid secreted naturally from the eccrine glands of the human body, is rich in several electrolytes, metabolites, biomolecules, and even xenobiotics that enter the body through other means. Recent studies indicate a high correlation between the analytes' concentrations in the sweat and the blood, opening up sweat as a medium for disease diagnosis and other general health monitoring applications. However, low concentration of analytes in sweat is a significant limitation, requiring high-performing sensors for this application. Electrochemical sensors, due to their high sensitivity, low cost, and miniaturization, play a crucial role in realizing the potential of sweat as a key sensing medium. MXenes, recently developed anisotropic two-dimensional atomic-layered nanomaterials composed of early transition metal carbides or nitrides, are currently being explored as a material of choice for electrochemical sensors. Their large surface area, tunable electrical properties, excellent mechanical strength, good dispersibility, and biocompatibility make them attractive for bio-electrochemical sensing platforms. This review presents the recent progress made in MXene-based bio-electrochemical sensors such as wearable, implantable, and microfluidic sensors and their applications in disease diagnosis and developing point-of-care sensing platforms. Finally, the paper discusses the challenges and limitations of MXenes as a material of choice in bio-electrochemical sensors and future perspectives on this exciting material for sweat-sensing applications.
Collapse
Affiliation(s)
- Selvaganapathy Ganesan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Kalaipriya Ramajayam
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Arunkumar Palaniappan
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
22
|
Zhang Y, Liao J, Li Z, Hu M, Bian C, Lin S. All fabric and flexible wearable sensors for simultaneous sweat metabolite detection and high-efficiency collection. Talanta 2023; 260:124610. [PMID: 37146456 DOI: 10.1016/j.talanta.2023.124610] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Wearable sweat electrochemical sensors have attracted wide attention due to their advantages of non-invasive, portable, real-time monitoring, etc. However, existing sensors still have some problems with efficient sweat collection. Microfluidic channel technology and electrospinning technology are commonly used to collect sweat efficiently, but there are some limitations such as complex channel design and multiple spinning parameters. Besides, existing sensors are mostly based on flexible polymers, such as, PET, PDMS, PI and PI, which have limited wearability and permeability. Based on the above, all fabric and dual-function flexible wearable sweat electrochemical sensor is proposed in this paper. This sensor uses fabric as the raw material to implement the directional transport of sweat and the multi-component integrated detection dual functions. Meanwhile, the high-efficiency collection of sweat is obtained by a Janus fabric, wherein one side of the selected silk is superhydrophobic graft treated and the other side is hydrophilic plasma treated. Therefore, the resulting Janus fabric can effectively transfer sweat from the skin side to the electrode, and the minimum sweat droplet can reach 0.2 μL to achieve micro-volume collection. Besides, the patterned sensor, made of silk-based carbon cloth, is fabricated using a simple laser engraving, which could detect Na+, pH, and glucose instantaneously. As a result, these proposed sensors can achieve good sensing performance and high-efficiency sweat collection dual functionality; moreover, it has good flexibility and comfortable wearability.
Collapse
Affiliation(s)
- Yingwen Zhang
- School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Jianjun Liao
- School of Ecological and Environmental Sciences, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China.
| | - Zehao Li
- School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Mingxu Hu
- School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Chao Bian
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shiwei Lin
- School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| |
Collapse
|
23
|
Yuan X, Li C, Yin X, Yang Y, Ji B, Niu Y, Ren L. Epidermal Wearable Biosensors for Monitoring Biomarkers of Chronic Disease in Sweat. BIOSENSORS 2023; 13:313. [PMID: 36979525 PMCID: PMC10045998 DOI: 10.3390/bios13030313] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Biological information detection technology is mainly used for the detection of physiological and biochemical parameters closely related to human tissues and organ lesions, such as biomarkers. This technology has important value in the clinical diagnosis and treatment of chronic diseases in their early stages. Wearable biosensors can be integrated with the Internet of Things and Big Data to realize the detection, transmission, storage, and comprehensive analysis of human physiological and biochemical information. This technology has extremely wide applications and considerable market prospects in frontier fields including personal health monitoring, chronic disease diagnosis and management, and home medical care. In this review, we systematically summarized the sweat biomarkers, introduced the sweat extraction and collection methods, and discussed the application and development of epidermal wearable biosensors for monitoring biomarkers in sweat in preclinical research in recent years. In addition, the current challenges and development prospects in this field were discussed.
Collapse
Affiliation(s)
- Xichen Yuan
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- MOE Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi’an 710072, China
| | - Chen Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| | - Xu Yin
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yang Yang
- Ministry of Education Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400030, China
| | - Bowen Ji
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yinbo Niu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Li Ren
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| |
Collapse
|
24
|
Zhao L, Rosati G, Piper A, de Carvalho Castro e Silva C, Hu L, Yang Q, Della Pelle F, Alvarez-Diduk RR, Merkoçi A. Laser Reduced Graphene Oxide Electrode for Pathogenic Escherichia coli Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9024-9033. [PMID: 36786303 PMCID: PMC9951213 DOI: 10.1021/acsami.2c20859] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Graphene-based materials are of interest in electrochemical biosensing due to their unique properties, such as high surface areas, unique electrochemical properties, and biocompatibility. However, the scalable production of graphene electrodes remains a challenge; it is typically slow, expensive, and inefficient. Herein, we reported a simple, fast, and maskless method for large-scale, low-cost reduced graphene oxide electrode fabrication; using direct writing (laser scribing and inkjet printing) coupled with a stamp-transferring method. In this process, graphene oxide is simultaneously reduced and patterned with a laser, before being press-stamped onto polyester sheets. The transferred electrodes were characterized by SEM, XPS, Raman, and electrochemical methods. The biosensing utility of the electrodes was demonstrated by developing an electrochemical test for Escherichia coli. These biosensors exhibited a wide dynamic range (917-2.1 × 107 CFU/mL) of low limits of detection (283 CFU/mL) using just 5 μL of sample. The test was also verified in spiked artificial urine, and the sensor was integrated into a portable wireless system driven and measured by a smartphone. This work demonstrates the potential to use these biosensors for real-world, point-of-care applications. Hypothetically, the devices are suitable for the detection of other pathogenic bacteria.
Collapse
Affiliation(s)
- Lei Zhao
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), Edifici ICN2, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Department
of Chemical Engineering, School of Engineering, Universitat Autònoma de Barcelona, Campus UAB, 08193 Bellaterra,
Barcelona, Spain
| | - Giulio Rosati
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), Edifici ICN2, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Andrew Piper
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), Edifici ICN2, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Cecilia de Carvalho Castro e Silva
- MackGraphe-Mackenzie
Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian University, Consolação Street
930, 01302-907 São
Paulo, Brazil
| | - Liming Hu
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), Edifici ICN2, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Department
of Chemical Engineering, School of Engineering, Universitat Autònoma de Barcelona, Campus UAB, 08193 Bellaterra,
Barcelona, Spain
| | - Qiuyue Yang
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), Edifici ICN2, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Department
of Material Science, Universitat Autònoma
de Barcelona, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Flavio Della Pelle
- Faculty
of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, via Renato Balzarini 1, 64100 Teramo, Italy
| | - Ruslán R. Alvarez-Diduk
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), Edifici ICN2, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Arben Merkoçi
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), Edifici ICN2, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Catalan
Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys,
23, 08010 Barcelona, Spain
| |
Collapse
|
25
|
Castro KPR, Colombo RNP, Iost RM, da Silva BGR, Crespilho FN. Low-dimensionality carbon-based biosensors: the new era of emerging technologies in bioanalytical chemistry. Anal Bioanal Chem 2023:10.1007/s00216-023-04578-x. [PMID: 36757464 PMCID: PMC9909134 DOI: 10.1007/s00216-023-04578-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023]
Abstract
Since the last decade, carbon nanomaterials have had a notable impact on different fields such as bioimaging, drug delivery, artificial tissue engineering, and biosensors. This is due to their good compatibility toward a wide range of chemical to biological molecules, low toxicity, and tunable properties. Especially for biosensor technology, the characteristic features of each dimensionality of carbon-based materials may influence the performance and viability of their use. Surface area, porous network, hybridization, functionalization, synthesis route, the combination of dimensionalities, purity levels, and the mechanisms underlying carbon nanomaterial interactions influence their applications in bioanalytical chemistry. Efforts are being made to fully understand how nanomaterials can influence biological interactions, to develop commercially viable biosensors, and to gain knowledge on the biomolecular processes associated with carbon. Here, we present a comprehensive review highlighting the characteristic features of the dimensionality of carbon-based materials in biosensing.
Collapse
Affiliation(s)
- Karla P. R. Castro
- grid.11899.380000 0004 1937 0722São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400 Parque Arnold Schimidt, São Carlos, SP 13566-590 Brazil
| | - Rafael N. P. Colombo
- grid.11899.380000 0004 1937 0722São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400 Parque Arnold Schimidt, São Carlos, SP 13566-590 Brazil
| | - Rodrigo M. Iost
- grid.11899.380000 0004 1937 0722São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400 Parque Arnold Schimidt, São Carlos, SP 13566-590 Brazil
| | - Beatriz G. R. da Silva
- grid.11899.380000 0004 1937 0722São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400 Parque Arnold Schimidt, São Carlos, SP 13566-590 Brazil
| | - Frank N. Crespilho
- grid.11899.380000 0004 1937 0722São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400 Parque Arnold Schimidt, São Carlos, SP 13566-590 Brazil
| |
Collapse
|
26
|
Maroli G, Boyeras S, Giannetta H, Pazos S, Gak J, Oliva AR, Volpe MA, Julian PM, Palumbo F. Analytic circuit model for thermal drying behavior of electronic inks. FRONTIERS IN ELECTRONICS 2023. [DOI: 10.3389/felec.2022.1060197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Understanding the sintering process of conductive inks is a fundamental step in the development of sensors. The intrinsic properties (such as thermal conductivity, resistivity, thermal coefficient, among others) of the printed devices do not correspond to those of the bulk materials. In the field of biosensors porosity plays a predominant role, since it defines the difference between the geometric area of the working electrode and its electrochemical surface area. The analysis reported so far in the literature on the sintering of inks are based on their DC characterization. In this work, the shape and distribution of the nanoparticles that make up the silver ink have been studied employing a transmission electron microscopy. Images of the printed traces have been obtained through a scanning electron microscope at different sintering times, allowing to observe how the material decreases its porosity over time. These structural changes were supported through electrical measurements of the change in the trace impedance as a function of drying time. The resistivity and thermal coefficient of the printed tracks were analyzed and compared with the values of bulk silver. Finally, this work proposes an analytical circuit model of the drying behavior of the ink based on AC characterization at different frequencies. The characterization considers an initial time when the spheric nanoparticles are still surrounded by the capping agent until the conductive trace is obtained. This model can estimate the characteristics that the printed devices would have, whether they are used as biosensors (porous material) or as interconnections (compact material) in printed electronics.
Collapse
|
27
|
Gao F, Liu C, Zhang L, Liu T, Wang Z, Song Z, Cai H, Fang Z, Chen J, Wang J, Han M, Wang J, Lin K, Wang R, Li M, Mei Q, Ma X, Liang S, Gou G, Xue N. Wearable and flexible electrochemical sensors for sweat analysis: a review. MICROSYSTEMS & NANOENGINEERING 2023; 9:1. [PMID: 36597511 PMCID: PMC9805458 DOI: 10.1038/s41378-022-00443-6] [Citation(s) in RCA: 170] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 06/10/2023]
Abstract
Flexible wearable sweat sensors allow continuous, real-time, noninvasive detection of sweat analytes, provide insight into human physiology at the molecular level, and have received significant attention for their promising applications in personalized health monitoring. Electrochemical sensors are the best choice for wearable sweat sensors due to their high performance, low cost, miniaturization, and wide applicability. Recent developments in soft microfluidics, multiplexed biosensing, energy harvesting devices, and materials have advanced the compatibility of wearable electrochemical sweat-sensing platforms. In this review, we summarize the potential of sweat for medical detection and methods for sweat stimulation and collection. This paper provides an overview of the components of wearable sweat sensors and recent developments in materials and power supply technologies and highlights some typical sensing platforms for different types of analytes. Finally, the paper ends with a discussion of the challenges and a view of the prospective development of this exciting field.
Collapse
Affiliation(s)
- Fupeng Gao
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Chunxiu Liu
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Lichao Zhang
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Tiezhu Liu
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Zheng Wang
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Zixuan Song
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Haoyuan Cai
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Zhen Fang
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Jiamin Chen
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Junbo Wang
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Mengdi Han
- Department of Biomedical Engineering, College of Future Technology, Peking University, 100871 Beijing, China
| | - Jun Wang
- Beijing Shuimujiheng Biotechnology Company, 101102 Beijing, China
| | - Kai Lin
- PLA Air Force Characteristic Medical Center, 100142 Beijing, China
| | - Ruoyong Wang
- PLA Air Force Characteristic Medical Center, 100142 Beijing, China
| | - Mingxiao Li
- Institute of Microelectronics of the Chinese Academy of Sciences, 100029 Beijing, China
| | - Qian Mei
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences (CAS), 215163 Suzhou, China
| | - Xibo Ma
- CBSR&NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Shuli Liang
- Functional Neurosurgery Department, Beijing Children’s Hospital, Capital Medical University, 100045 Beijing, China
| | - Guangyang Gou
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Ning Xue
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| |
Collapse
|
28
|
Wei L, He Y, Lv Z, Guo D, Cheng L, Wu H, Liu A. Full-Cut Manufacture of Skin-Interfaced Microfluidic Patch with Copper Electrode for In Situ Admittance Sensing of Sweat Rate. BIOSENSORS 2022; 13:67. [PMID: 36671902 PMCID: PMC9855928 DOI: 10.3390/bios13010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Sweat-rate measurement has received more and more attention, especially for specific groups, such as athletes, soldiers and manual workers, due to their excessive sweat loss under prolonged intense heat stress, which increases the risk of dehydration and electrolyte imbalance. The highly effective manufacture of a sweat-sensing device is essential to its wide range of applications in perspiration-related physiological information detection. In this work, we propose a simple and cost-effective strategy for the manufacture of a microfluidic sweat-rate-sensing patch via laser cutting and transfer printing technology. A copper foil tape is used as the electrode for in situ admittance based sweat-rate-sensing. The detection circuits and measurement conditions are optimized to prevent the negative effect of an electrochemical reaction between a copper electrode and sweat for precise admittance measurement. In vitro and on-body experiments demonstrate that the copper electrode is applicable for admittance-based sweat sensing and is capable of achieving equivalent sensing accuracy as a gold electrode and that the proposed sensor structure can perform consecutive and accurate sweat-rate-sensing and facilitates a significant increase in manufacturing efficiency.
Collapse
Affiliation(s)
- Lei Wei
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
- School of Physics and Electronics Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Yuxin He
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zihan Lv
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Daoyou Guo
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lin Cheng
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Huaping Wu
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Aiping Liu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
29
|
Ibrahim NFA, Sabani N, Johari S, Manaf AA, Wahab AA, Zakaria Z, Noor AM. A Comprehensive Review of the Recent Developments in Wearable Sweat-Sensing Devices. SENSORS (BASEL, SWITZERLAND) 2022; 22:7670. [PMID: 36236769 PMCID: PMC9573257 DOI: 10.3390/s22197670] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Sweat analysis offers non-invasive real-time on-body measurement for wearable sensors. However, there are still gaps in current developed sweat-sensing devices (SSDs) regarding the concerns of mixing fresh and old sweat and real-time measurement, which are the requirements to ensure accurate the measurement of wearable devices. This review paper discusses these limitations by aiding model designs, features, performance, and the device operation for exploring the SSDs used in different sweat collection tools, focusing on continuous and non-continuous flow sweat analysis. In addition, the paper also comprehensively presents various sweat biomarkers that have been explored by earlier works in order to broaden the use of non-invasive sweat samples in healthcare and related applications. This work also discusses the target analyte's response mechanism for different sweat compositions, categories of sweat collection devices, and recent advances in SSDs regarding optimal design, functionality, and performance.
Collapse
Affiliation(s)
- Nur Fatin Adini Ibrahim
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Norhayati Sabani
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Shazlina Johari
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Centre, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Asnida Abdul Wahab
- Department of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Zulkarnay Zakaria
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Sports Engineering Research Center, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Anas Mohd Noor
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| |
Collapse
|
30
|
Maduraiveeran G. Nanomaterials-based portable electrochemical sensing and biosensing systems for clinical and biomedical applications. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractMiniaturized electrochemical sensing systems are employed in day-to-day uses in the several area from public health to scientific applications. A variety of electrochemical sensor and biosensor systems may not be effectively employed in real-world diagnostic laboratories and biomedical industries due to their limitation of portability, cost, analytical period, and need of skilled trainer for operating devices. The design of smart and portable sensors with high sensitivity, good selectivity, rapid measurement, and reusable platforms is the driving strength for sensing glucose, lactate, hydrogen peroxide, nitric oxide, mRNA, etc. The enhancement of sensing abilities of such sensor devices through the incorporation of both novel sensitive nanomaterials and design of sensor strategies are evidenced. Miniaturization, cost and energy efficient, online and quantitative detection and multiple sensing ability are the beneficial of the nanostructured-material-based electrochemical sensor and biosensor systems. Owing to the discriminating catalytic action, solidity and biocompatibility for designing sensing system, nanoscale materials empowered electrochemical detection systems are accomplished of being entrenched into/combined with portable or miniaturized devices for specific applications. In this review, the advance development of portable and smart sensing/biosensing systems derived from nanoscale materials for clinical and biomedical applications is described.
Graphical Abstract
Collapse
|
31
|
Ramachandran B, Liao YC. Microfluidic wearable electrochemical sweat sensors for health monitoring. BIOMICROFLUIDICS 2022; 16:051501. [PMID: 36186757 PMCID: PMC9520469 DOI: 10.1063/5.0116648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Research on remote health monitoring through wearable sensors has attained popularity in recent decades mainly due to aging population and expensive health care services. Microfluidic wearable sweat sensors provide economical, non-invasive mode of sample collection, important physiological information, and continuous tracking of human health. Recent advances in wearable sensors focus on electrochemical monitoring of biomarkers in sweat and can be applicable in various fields like fitness monitoring, nutrition, and medical diagnosis. This review focuses on the evolution of wearable devices from benchtop electrochemical systems to microfluidic-based wearable sensors. Major classification of wearable sensors like skin contact-based and biofluidic-based sensors are discussed. Furthermore, sweat chemistry and related biomarkers are explained in addition to integration of microfluidic systems in wearable sweat sensors. At last, recent advances in wearable electrochemical sweat sensors are discussed, which includes tattoo-based, paper microfluidics, patches, wrist band, and belt-based wearable sensors.
Collapse
Affiliation(s)
- Balaji Ramachandran
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ying-Chih Liao
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
32
|
Zhai J, Luo B, Li A, Dong H, Jin X, Wang X. Unlocking All-Solid Ion Selective Electrodes: Prospects in Crop Detection. SENSORS (BASEL, SWITZERLAND) 2022; 22:5541. [PMID: 35898054 PMCID: PMC9331676 DOI: 10.3390/s22155541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
This paper reviews the development of all-solid-state ion-selective electrodes (ASSISEs) for agricultural crop detection. Both nutrient ions and heavy metal ions inside and outside the plant have a significant influence on crop growth. This review begins with the detection principle of ASSISEs. The second section introduces the key characteristics of ASSISE and demonstrates its feasibility in crop detection based on previous research. The third section considers the development of ASSISEs in the detection of corps internally and externally (e.g., crop nutrition, heavy metal pollution, soil salinization, N enrichment, and sensor miniaturization, etc.) and discusses the interference of the test environment. The suggestions and conclusions discussed in this paper may provide the foundation for additional research into ion detection for crops.
Collapse
Affiliation(s)
- Jiawei Zhai
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Bin Luo
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Aixue Li
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Hongtu Dong
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Xiaotong Jin
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Xiaodong Wang
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| |
Collapse
|