1
|
Saha P, van der Vlies AJ, Aditya T, Dighe K, Hicks SD, Pan D. Anti-miR oligo-mediated detection of human salivary microRNAs for mild traumatic brain injury. Biosens Bioelectron 2025; 278:117333. [PMID: 40056568 DOI: 10.1016/j.bios.2025.117333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/15/2025] [Accepted: 03/01/2025] [Indexed: 03/10/2025]
Abstract
Mild traumatic brain injury (mTBI), often resulting from traffic accidents, workplace incidents, sports, or recreational activities, is a neurological condition that significantly impacts the daily lives of many individuals. The absence of reliable biomarkers and the non-specific nature of mTBI symptoms pose challenges for accurate diagnosis, leading to undetected cases and potential long-term consequences. Current diagnostic approaches, including neuroimaging, serum biomarkers, and cognitive assessments, suffer from cost, invasiveness, and sensitivity limitations. To address this, we developed a novel electrochemical detection platform for salivary microRNAs (miRNAs), offering a rapid, non-invasive, and cost-effective alternative for mTBI diagnosis. Key challenges in point-of-care miRNA detection lie in low abundance, short length, sequence complementarity, degradation, and amplification-free detection with high sensitivity and specificity. This platform technology introduces a de novo-synthesized, conductive carboxyl-functionalized thiophene polymer (AAOT:PSS)-coated gold electrode, enabling the covalent attachment of streptavidin-linked, biotinylated anti-miRNAs with methylene blue as the electrochemical reporter. This system successfully detected picomolar concentrations of mTBI-associated miRNAs (miR-let7a, miR-30e, miR-21) in saliva, outperforming traditional methods and establishing salivary miRNAs as highly reliable biomarkers for mTBI. Our approach leverages the mTBI-induced upregulation of miR-let7a, miR-30e, miR-21 as proof-of-concept targets with scope of multiplexing while achieving 100% sensitivity and specificity in patient-derived samples validated via PCR and clinical assessments.
Collapse
Affiliation(s)
- Pranay Saha
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - André J van der Vlies
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Teresa Aditya
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ketan Dighe
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Steven D Hicks
- Department of Pediatrics, Penn State Health Children's Hospital, Hershey, PA, 17033, USA
| | - Dipanjan Pan
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; Huck Institutes of the Life Sciences, 101 Huck Life Sciences Building, University Park, PA, 16802, USA; Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
2
|
Liang X, Wang L, Xu L, Chi H, Lin W. Development of a novel NIR-II fluorescence probe for monitoring serum albumin fluctuation in cerebra neurotoxicity induced by manganese exposure. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136936. [PMID: 39709813 DOI: 10.1016/j.jhazmat.2024.136936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Manganese is essential for various biological functions; however, excessive exposure can lead to significant health risks, particularly brain neurotoxicity. Understanding manganese-induced alterations in brain serum protein levels and brain function is crucial for elucidating the mechanisms underlying manganese neurotoxicity. To address this, we developed a novel NIR-II fluorescent probe, RSM, characterized by robust binding to serum albumin and high sensitivity. Using RSM, we observed that heightened BSA uptake in cells exposed to elevated manganese concentrations relative to those exposed to lower levels. Furthermore, we successfully detected changes in serum albumin levels induced by manganese neurotoxicity in brain tissue through in situ NIR-II fluorescence imaging. Our findings establish an association between augmented manganese-induced neurotoxicity and elevated serum albumin content in the brain. This work provides a valuable tool for further investigating the mechanisms of toxic molecules.
Collapse
Affiliation(s)
- Xing Liang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Luolin Wang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Lizhen Xu
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Hanwen Chi
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
3
|
K M N, Karmakar S, Sahoo B, Mishrra N, Moitra P. Use of Quantum Dots as Nanotheranostic Agents: Emerging Applications in Rare Genetic Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407353. [PMID: 39828615 DOI: 10.1002/smll.202407353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Rare genetic diseases (RGDs) affect a small percentage of the global population but collectively have a substantial impact due to their diverse manifestations. Although the precise reasons behind these diseases remain unclear, roughly 80% of cases are genetically linked. Recent efforts focus on understanding pathology and developing new diagnostic and therapeutic approaches for RGDs. However, there persists a gap between fundamental research and clinical therapeutic approaches, where advancements in nanotechnology offer promising improvements. In this context, nanosized light-emitting quantum dots (QDs), ranging from 2-10 nm, are promising materials for diverse applications. Their size-tunable light emission, high quantum yield, and photostability allow for precise tracking of cargo. Additionally, QDs can be functionalized with therapeutic agents, antibodies, or peptides to target specific cellular pathways, enhancing treatment efficacy while minimizing side effects. By combining diagnostic and therapeutic capabilities in a single platform, QDs thus offer a versatile and powerful approach to tackle rare genetic disorders. Despite several reviews on various therapeutic applications of QDs, their utilization in the specific domain of RGDs is not well documented. This review highlight QDs' potential in diagnosing and treating certain RGDs and addresses the challenges limiting their application.
Collapse
Affiliation(s)
- Neethu K M
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur, Odisha, 760010, India
| | - Shyamal Karmakar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur, Odisha, 760010, India
| | - Baishakhi Sahoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur, Odisha, 760010, India
| | - Navniet Mishrra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur, Odisha, 760010, India
| | - Parikshit Moitra
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur, Odisha, 760010, India
| |
Collapse
|
4
|
Roy S, Pattanaik PP, K M N, Moitra P, Dandela R. Rational design and syntheses of naphthalimide-based fluorescent probes for targeted detection of diabetes biomarkers. Bioorg Chem 2025; 154:108013. [PMID: 39652983 DOI: 10.1016/j.bioorg.2024.108013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 01/15/2025]
Abstract
Diabetes poses serious health risks, leading to complications such as liver damage, renal issues, and heart inflammation. Diagnosis typically relies on blood sugar level testing, but qualitative markers like obesity and fatigue often manifest only after prolonged illness. To address the delay in diagnosis, the development of fluorescent probes has drawn the key attention. This review examines the recent advancements especially on Naphthalimide (NM) based fluorescent construct for detecting biomolecular changes related to diabetes and its complications. For the first time this review discusses the synthetic methods and design principles for these probes, providing valuable insights for researchers focused on diabetes treatment and probe development, and laying the groundwork for future clinical applications of these probes in early diabetes diagnosis and intervention.
Collapse
Affiliation(s)
- Sanjukta Roy
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India
| | - Piyusa Priyadarsan Pattanaik
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India
| | - Neethu K M
- Department of Chemical Sciences, Indian Institute of Science and Education Research Berhampur, Odisha 760003, India
| | - Parikshit Moitra
- Department of Chemical Sciences, Indian Institute of Science and Education Research Berhampur, Odisha 760003, India.
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
5
|
Gupta R, Paul K. Investigating the Serum Albumin Binding Behavior of Naphthalimide Based Fluorophore Conjugates: Spectroscopic and Molecular Docking Approach. ChemMedChem 2024; 19:e202400114. [PMID: 38676621 DOI: 10.1002/cmdc.202400114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
In the present study, naphthalimide-pyrazole-benzothiazole based fluorescent analogs were synthesized by substituting different primary and secondary amines on the naphthalimide nucleus and were evaluated for their sensitivity and selectivity towards serum albumin. Among various synthesized analogues compound 25 showed the most significant change with serum albumin and was further studied for selective detection and mode of interaction with serum albumin. Here, we compared the binding interaction of fluorescent probe 25 for variation/detection of two 76 % structurally resembling proteins HSA and BSA, by spectroscopic experiments. The compound shows more selectivity for HSA and BSA with a higher binding constant and evident visible change in the emission spectra of two serum albumins among different bioanalytes. The mode of interaction of 25 with human serum albumin and bovine serum albumin was investigated by FT-IR, circular dichroism, and DLS techniques to find out the change in the microenvironment and variation in the structure of serum albumin proteins. Higher binding affinity and specific selectivity of 25 with a limit of detection of 0.69 μM and 1.4 μM towards HSA and BSA compared to other bioanalytes make it a significant fluorescent probe for quantitatively detecting serum albumins at the very early stage of many fatal diseases.
Collapse
Affiliation(s)
- Rohini Gupta
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147001, India
| | - Kamaldeep Paul
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147001, India
| |
Collapse
|
6
|
Li N, Chen Z, Zhan Y, Deng W, Lv T, Xu Z, Wang L, Liu B. Anti-cancer drug axitinib: a unique tautomerism-induced dual-emissive probe for protein analysis. Chem Commun (Camb) 2024; 60:6138-6141. [PMID: 38804199 DOI: 10.1039/d4cc01944j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
A commercial anti-cancer drug, axitinib, exhibits very stable dual emissions for discrimination of human serum albumin.
Collapse
Affiliation(s)
- Na Li
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, PR China.
| | - Zihao Chen
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, PR China.
| | - Yilin Zhan
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, PR China.
| | - Weihua Deng
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, PR China.
| | - Taoyuze Lv
- School of Physics, The University of Sydney, NSW 2006, Australia
| | - Zhongyong Xu
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, PR China.
| | - Lei Wang
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, PR China.
| | - Bin Liu
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
7
|
Farka Z, Vytisková K, Makhneva E, Zikmundová E, Holub D, Buday J, Prochazka D, Novotný K, Skládal P, Pořízka P, Kaiser J. Comparison of single and double pulse laser-induced breakdown spectroscopy for the detection of biomolecules tagged with photon-upconversion nanoparticles. Anal Chim Acta 2024; 1299:342418. [PMID: 38499415 DOI: 10.1016/j.aca.2024.342418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/28/2024] [Accepted: 02/25/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Laser-induced breakdown spectroscopy (LIBS) is a well-recognized analytical technique used for elemental analysis. This method is gaining considerable attention also in biological applications thanks to its ability for spatial mapping and elemental imaging. The implementation of LIBS in the biomedical field is based on the detection of metals or other elements that either naturally occur in the samples or are present artificially. The artificial implementation of nanoparticle labels (Tag-LIBS) enables the use of LIBS as a readout technique for immunochemical assays. However, one of the biggest challenges for LIBS to meet immunoassay readout standards is its sensitivity. RESULTS This paper focuses on the improvement of LIBS sensitivity for the readout of nanoparticle-based immunoassays. First, the LIBS setup was optimized on photon-upconversion nanoparticle (UCNP) droplets deposited on the microtiter plate wells. Two collection optics systems were compared, with single pulse (SP) and collinear double pulse (DP) LIBS arrangements. By deploying the second laser pulse, the sensitivity was improved up to 30 times. The optimized SP and DP setups were then employed for the indirect detection of human serum albumin based on immunoassay with UCNP-based labels. Compared to our previous LIBS study, the detection limit was enhanced by two orders of magnitude, from 10 ng mL-1 to 0.29 ng mL-1. In addition, two other immunochemical methods were used for reference, based on the readout of upconversion luminescence of UCNPs and absorbance measurement with enzyme labels. Finally, the selectivity of the assay was tested and the practical potential of Tag-LIBS was demonstrated by the successful analysis of urine samples. SIGNIFICANCE AND NOVELTY In this work, we improved the sensitivity of the Tag-LIBS method by combining new labels based on UCNPs with the improved collection optics and collinear DP configuration. In the instrumental setup optimization, the DP LIBS showed better sensitivity and signal-to-noise ratio than SP. The optimizations allowed the LIBS readout to surpass the sensitivity of enzyme immunoassay, approaching the qualities of upconversion luminescence readout, which is nowadays a state-of-the-art readout technique.
Collapse
Affiliation(s)
- Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Karolína Vytisková
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Ekaterina Makhneva
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Eva Zikmundová
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Daniel Holub
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69, Brno, Czech Republic
| | - Jakub Buday
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69, Brno, Czech Republic
| | - David Prochazka
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69, Brno, Czech Republic
| | - Karel Novotný
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Pavel Pořízka
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69, Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69, Brno, Czech Republic
| |
Collapse
|
8
|
Li W, Liu G, He F, Hou S. Molecularly imprinted electrochemiluminescence sensor based on a novel luminol derivative for detection of human serum albumin via click reaction. Mikrochim Acta 2024; 191:151. [PMID: 38386184 DOI: 10.1007/s00604-024-06215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024]
Abstract
A novel luminol derivative of N-(1,4-dioxo-1,2,3,4-tetrahydrophthalazin-5-yl)acrylamide (DTA) with excellent luminescence efficiency was designed and synthesized. Furthermore, a molecularly imprinted electrochemiluminescence sensor (MIECLS) was fabricated to detect ultratrace levels of human serum albumin (HSA) with high sensitivity and selectivity via a click reaction. The molecularly imprinted polymers (MIPs) were formed on the electrode surface via electropolymerization with HSA as a template molecule and catechol as a monomer. In the detection process, the -SH group of HSA on the electrode and the C = C bond of acryloyl group in DTA formed a new C-S bond via the Michael addition reaction to construct the MIECLS. The higher the concentration of HSA, the greater electrochemiluminescence (ECL) intensity measured. Taking advantage of MIECLS for ECL detection (scanning potential, - 0.4 to 0.5 V), there was a good linear relationship between ECL intensity and the logarithm of HSA concentration in the range 5 × 10-9 to 1 × 10-13 mg mL-1. The limit of detection (LOD) of the sensor was 1.05 × 10-15 mg mL-1. The sensor exhibited outstanding selectivity and stability. The sensor was applied to detect HSA in human serum with good recoveries of 97.7-105.2%. The concentration of HSA was detected by electrochemical method using the gating effect of MIP.
Collapse
Affiliation(s)
- Wei Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Guangyan Liu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China.
| | - Fang He
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Shili Hou
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China.
| |
Collapse
|
9
|
Liu S, Xia J, Jiang D, Li Q, Pan X, Dong X, Wang J, Liu Y, Dong Y. Detection of human serum albumin using a rare-earth nanosheet fluorescent probe based on intensity and lifetime signals. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123046. [PMID: 37390718 DOI: 10.1016/j.saa.2023.123046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 07/02/2023]
Abstract
Human serum albumin (HSA) is an important biomarker for early disease diagnosis. Therefore, the detection of HSA in biological samples is important. In this study, for the sensitive detection of HSA, a fluorescent probe based on Eu(III)-doped yttrium hydroxide nanosheets was designed and sensitized by α-thiophenformyl acetone trifluoride as an antenna. The morphology and structure of the as-prepared nanosheet fluorescent probe were studied by transmission electron microscopy and atomic force microscopy. A detailed investigation of the fluorescence properties of the as-obtained nanosheet probe revealed that the Eu(III) emission intensity was linearly and selectively enhanced by the consecutive addition of HSA. Furthermore, the lifetime signal of this probe was enhanced with increasing concentration. The sensitivity of the nanosheet probe to HSA is discussed based on the results of ultraviolet-visible, fluorescence, and infrared spectral analyses, the findings demonstrate that the nanosheet fluorescent probe we prepared is a highly sensitive and selective tool for detecting HSA concentration with a high intensity and a large lifetime change.
Collapse
Affiliation(s)
- Susu Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 Zhongshanbei Road, Shanghai 200062, China
| | - Jinfeng Xia
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Danyu Jiang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Qiang Li
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 Zhongshanbei Road, Shanghai 200062, China.
| | - Xin Pan
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 Zhongshanbei Road, Shanghai 200062, China
| | - Xueting Dong
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 Zhongshanbei Road, Shanghai 200062, China
| | - Jiuxia Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 Zhongshanbei Road, Shanghai 200062, China
| | - Yue Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 Zhongshanbei Road, Shanghai 200062, China
| | - Yuchen Dong
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 Zhongshanbei Road, Shanghai 200062, China
| |
Collapse
|
10
|
Divya, Darshna, Sammi A, Chandra P. Design and development of opto-electrochemical biosensing devices for diagnosing chronic kidney disease. Biotechnol Bioeng 2023; 120:3116-3136. [PMID: 37439074 DOI: 10.1002/bit.28490] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/03/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
Chronic kidney disease (CKD) is emerging as one of the major causes of the increase in mortality rate and is expected to become 5th major cause by 2050. Many studies have shown that it is majorly related to various risk factors, and thus becoming one of the major health issues around the globe. Early detection of renal disease lowers the overall burden of disease by preventing individuals from developing kidney impairment. Therefore, diagnosis and prevention of CKD are becoming the major challenges, and in this situation, biosensors have emerged as one of the best possible solutions. Biosensors are becoming one of the preferred choices for various diseases diagnosis as they provide simpler, cost-effective and precise methods for onsite detection. In this review, we have tried to discuss the globally developed biosensors for the detection of CKD, focusing on their design, pattern, and applicability in real samples. Two major classifications of biosensors based on transduction systems, that is, optical and electrochemical, for kidney disease have been discussed in detail. Also, the major focus is given to clinical biomarkers such as albumin, creatinine, and others related to kidney dysfunction. Furthermore, the globally developed sensors for the detection of CKD are discussed in tabulated form comparing their analytical performance, response time, specificity as well as performance in biological fluids.
Collapse
Affiliation(s)
- Divya
- Laboratory of Bio-Physio Sensors and Nanobioengineering School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Darshna
- Laboratory of Bio-Physio Sensors and Nanobioengineering School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Aditi Sammi
- Laboratory of Bio-Physio Sensors and Nanobioengineering School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| |
Collapse
|
11
|
Shu W, Yu J, Wang H, Yu A, Xiao L, Li Z, Zhang H, Zhang Y, Wu Y. Rational design of a reversible fluorescent probe for sensing GSH in mitochondria. Anal Chim Acta 2022; 1220:340081. [DOI: 10.1016/j.aca.2022.340081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/01/2022]
|