1
|
Li Y, Zhang X, Wang Y, Mu X, Tu Y, Sun P, Wang Y, Yang G, Kang L, Wu C, Zhang J. Photoactivated Nanowires as In Situ Transmembrane Electron Tunnels for Dual-Model Monitoring of Intracellular Biomarkers. Anal Chem 2025. [PMID: 40237383 DOI: 10.1021/acs.analchem.4c06279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The insertion of a single nanoelectrode into the cell or fluorescence detection has enabled the nondestructive tracking of intracellular biomarkers. However, the reliance on extremely expensive micromanipulators or intricate fluorescent probes has limited their widespread application. To address this challenge, we propose a novel strategy that employs modified multiwalled carbon nanotubes (MWCNTs) as artificial transmembrane electron tunnels. These MWCNTs can be spontaneously and nondestructively semiembedded within cells while exhibiting remarkable conductivity. When the photosensitive electrodes on the cell surface are illuminated, photogenerated electron-hole pairs are produced. The holes can enter the cell through the nanowires, thus promoting oxidation reactions with target molecules and generating real-time electrical signals for monitoring intracellular biomarkers. Meanwhile, the engineered recognition element on the nanowire transitions to an excited state and subsequently returns to the ground state through electrochemiluminescence (ECL), enabling in situ visualization of intracellular biomarkers. This groundbreaking approach not only eliminates the need for micromanipulators and fluorescent probes but also enables simultaneous electrical and optical monitoring of intracellular biomarker levels, significantly reducing false-positive risks. This innovation was validated to be feasible using NADH as an intracellular target molecule, marking a shift in intracellular sensing strategies.
Collapse
Affiliation(s)
- Ying Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Xiwen Zhang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Yiyu Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Xue Mu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Yuanbo Tu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Peng Sun
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Yaolong Wang
- KPC Biotechnology (Lufeng) Co., Ltd., Kunming 650106, China
| | - Gongjun Yang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, Camperdown, NSW 2006, Australia
| | - Chunyong Wu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Junying Zhang
- Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
2
|
Chen J, Pan J, Duan M, Fan F, Liu J, Hu W, Yu D, Sun Z, Sheng X, Tan Y, Tan Y, Sun X, Tang N, Wang W, Tang W, Ye N, Chen J, Liu Z, Yuan D. In situ images of Cd 2+ in rice reveal Cd 2+ protective mechanism using DNAzyme fluorescent probe. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136650. [PMID: 39603121 DOI: 10.1016/j.jhazmat.2024.136650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
As a common pollutant, cadmium (Cd) poses a serious threat to the growth and development of plants. Currently, there is no effective method to elucidate the protective mechanism of Cd2+ in plant cells. For the first time, we designed a Cd2+ fluorescent probe to observe the adsorption and sequestration of Cd2+ in rice cell walls and vacuoles. Specifically, Cd2+ is blocked by the Casparian strip and electrostatically attracted to hemicellulose, which is abundantly adsorbed and fixed to the cell walls of the endodermis. For Cd2+ that successfully entered the endodermis, one part entered the cells and was compartmentalised and fixed in the vacuoles, while the other part entered the vascular bundles and precipitated in the cell walls of the sclerenchyma through the ion exchange effect. Furthermore, with prolonged exposure to Cd2+, compartmentalised bodies that were strongly labelled by fluorescence gradually appeared in the vacuoles, which were assumed to be a new heavy metal protective mechanism activated by plants in response to continuous Cd2+ exposure. In conclusion, this study provides an innovative and effective method for the detection of adsorption, transportation, and accumulation of Cd2+ in plant tissues, which can be employed for the rapid identification of crops with low Cd accumulation.
Collapse
Affiliation(s)
- Jin Chen
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiafeng Pan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Meijuan Duan
- Hunan Agricultural University, Changsha 410128, China
| | - Fan Fan
- Hunan Agricultural University, Changsha 410128, China
| | - Jianbing Liu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Wenjie Hu
- Hunan Agricultural University, Changsha 410128, China
| | - Dong Yu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhizhong Sun
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xiabing Sheng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yanning Tan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yongjun Tan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xuewu Sun
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ning Tang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Weiping Wang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Wenbang Tang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Nenghui Ye
- Hunan Agricultural University, Changsha 410128, China
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China.
| | - Zhi Liu
- Hunan Agricultural University, Changsha 410128, China.
| | - Dingyang Yuan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
3
|
Yan P, Huang J, Wu G, Zhang Y, Mo Z, Xu K, Ling M, Dong S, Xu L, Li H. Construction of a In 2O 3/ultrathin g-C 3N 4 S-scheme heterojunction for sensitive photoelectrochemical aptasensing of diazinon. J Colloid Interface Sci 2025; 679:653-661. [PMID: 39388951 DOI: 10.1016/j.jcis.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
A single semiconductor-based photoelectrochemical (PEC) aptasensor usually faces a challenge of low sensitivity due to poor solar energy utilization and a high photogenerated carrier recombination rate. Herein, an ultra-thin carbon nitride nanosheet-coated In2O3 (In2O3/CNS) S-type heterojunction-based PEC aptasensor has been established to achieve highly sensitive detection of diazinon (DZN) pesticide in water environment. Construction of S-type heterojunction induces a band shift and an electric field effect, enhancing light utilization and accelerating directional transmission of carriers, leading to outstanding PEC performance. The creation of internal electric field at interface ensures stable carrier transport. Additionally, ultrathin CNS structure can effectively shorten the transport path of carriers. The close coating of In2O3 and CNS promotes the transfer of charge. The synergistic effects amplify the sensor's response, ultimately enabling the effective detection of DZN residue over a wide detection range (0.98 ∼ 980.0 pg mL-1), a low detection limit (0.33 pg mL-1, S/N = 3) and excellent accuracy in practical application (RSD < 5 %). This work provides a reference for the construction of a new S-type heterojunction-based PEC sensor.
Collapse
Affiliation(s)
- Pengcheng Yan
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Yongkang Jiaxiao Electric Welding Automation Equipment Co., Ltd, Jinhua 321300, Zhejiang, PR China
| | - Jing Huang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Guanyu Wu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Yu Zhang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Zhao Mo
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Keqiang Xu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224007, Jiangsu, PR China
| | - Min Ling
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Sihua Dong
- YTO Group Corporation Dongfanghong (Henan) Agricultural Service Technology Co., Ltd., Luoyang 471033, PR China
| | - Li Xu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| | - Henan Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
4
|
Mao D, Tang X, Zhang R, Hu S, Gou H, Zhang P, Li W, Pan Q, Shen B, Zhu X. Multichrome encoding-based multiplexed, spatially resolved imaging reveals single-cell RNA epigenetic modifications heterogeneity. Nat Commun 2025; 16:958. [PMID: 39843433 PMCID: PMC11754832 DOI: 10.1038/s41467-025-56331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
Understanding the heterogeneity of epigenetic modifications within single cells is pivotal for unraveling the nature of the complexity of gene expression and cellular function. In this study, we have developed a strategy based on multichrome encoding and "AND" Boolean logic recognition for multiplexed, spatially resolved imaging of single-cell RNA epigenetic modifications, termed as PRoximity Exchange-assisted Encoding of Multichrome (PREEM). Through the implementation of this strategy, we can now map the expression and nuclear distribution of multiple site-specific RNA N6-methyladenosine (m6A) modifications at the single-molecule resolution level in single-cells, and reveal the previously unknown heterogeneity. Notably, we demonstrate how these patterns change after treatment with various drugs. Moreover, cyclic imaging with tailed DNA self-assembly further suggest the scalability and adaptability of PREEM's design. As an innovative epigenetic modification imaging tool, PREEM not only broadens the horizons of single-cell epigenetics research, enabling joint analysis of multiple targets beyond the limitations of imaging channels, but also reveals cell-to-cell variability, thereby enhancing our capacity to explore cellular functions.
Collapse
Affiliation(s)
- Dongsheng Mao
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, PR China
| | - Xiaochen Tang
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Runchi Zhang
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, PR China
| | - Song Hu
- Shanghai Pudong New Area People's Hospital, Shanghai, PR China
| | - Hongquan Gou
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, PR China
| | - Penghui Zhang
- Shanghai Pudong New Area People's Hospital, Shanghai, PR China
| | - Wenxing Li
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, PR China.
| | - Qiuhui Pan
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Bing Shen
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, PR China.
| | - Xiaoli Zhu
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, PR China.
| |
Collapse
|
5
|
Chen X, Duan M, Chang Y, Ye M, Wang Z, Wu S, Duan N. Assembly of a multivalent aptamer for efficient inhibition of thermostable direct hemolysin toxicity induced by Vibrio parahaemolyticus. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135452. [PMID: 39121740 DOI: 10.1016/j.jhazmat.2024.135452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Thermostable direct hemolysin (TDH) is a key virulence factor of Vibrio parahaemolyticus, capable of causing seafood-mediated outbreaks of gastroenteritis, posing a threat to the aquatic environment and global public health. In the present study, we explored a multivalent aptamer-mediated inhibition strategy to mitigate TDH toxicity. Based on the characteristic structure of TDH, a stable multivalent aptamer, Ap3-5, was rationally designed by truncation, key fragment evolution, and end fixation. Ap3-5 exhibited strong affinity (Kd=39.24 nM), and thermal (Tm=57.6 °C) and enzymatic stability. In silico studies also revealed that Ap3-5 occupied more active sites of TDH and covered its central pore, indicating its potential as a blocking agent for inhibiting TDH toxicity. In the hemolysis assay, Ap3-5 significantly suppressed the hemolytic effect of TDH. A cellular study revealed a substantial (∼80 %) reduction in TDH cytotoxicity. Supporting these findings, in vivo trials confirmed the inhibitory action of Ap3-5 on both the acute and intestinal toxicity of TDH. Overall, benefiting from the strong binding affinity, high stability, and multisite occupation of the multivalent aptamer with TDH, Ap3-5 displayed robust potential against TDH toxicity by inhibiting membrane pore formation, providing a new approach for alleviating bacterial infections.
Collapse
Affiliation(s)
- Xiaowan Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Mengxia Duan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yuting Chang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Mingyue Ye
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Dong Z, Su R, Fu Y, Wang Y, Chang L. Recent Progress in DNA Biosensors for Detecting Biomarkers in Living Cells. ACS Biomater Sci Eng 2024; 10:5595-5608. [PMID: 39143919 DOI: 10.1021/acsbiomaterials.4c01339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Analysis of biomarkers in living cells is crucial for deciphering the dynamics of cells as well as for precise diagnosis of diseases. DNA biosensors employ DNA sequences as probes to offer insights into living cells, and drive progress in disease diagnosis and drug development. In this review, we present recent advances in DNA biosensors for detecting biomarkers in living cells. The basic structural components of DNA biosensors and the signal output method are presented. The strategies of DNA biosensors crossing the cell membrane are also described, including coincubation, nanocarriers, and nanoelectroporation techniques. Based on biomarker categorization, we detail recent applications of DNA biosensors for detecting small molecules, RNAs, proteins, and integrated targets in living cells. Furthermore, the future development directions of DNA biosensors are summarized to encourage further research in this growing field.
Collapse
Affiliation(s)
- Zaizai Dong
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Rongtai Su
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yao Fu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Yupei Wang
- Gansu Provincial Maternity and Child-Care Hospital (Gansu Provincial Central Hospital), Lanzhou 730050, China
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
7
|
Xia S, Duan Y, Yu S, Sun Y, Zhu H, Zhao Z, Wang L, Liu H, He Y, He H. A cellulosic multi-bands fluorescence probe for rapid detection of pH and glutathione. Carbohydr Polym 2024; 331:121893. [PMID: 38388065 DOI: 10.1016/j.carbpol.2024.121893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
The detection of pH and glutathione (GSH) is positively significant for the cell microenvironment imaging. Here, to assess the pH value and the concentration of GSH efficiently and visually, a cellulose-based multi-bands ratiometric fluorescence probe was designed by assembling MnO2-modified cellulose gold nanoclusters, fluorescein isothiocyanate-grafted cellulose nanocrystals (CNCs) and protoporphyrin IX-modified CNCs. The probe exhibits GSH-responsive, pH-sensitive and GSH/pH-independent fluorescent properties at 440 nm, 520 nm, and 633 nm, respectively. Furthermore, the probe identifies GSH within 4 s by degrading MnO2 into Mn2+ in response to GSH. Ingeniously, the green fluorescence of the probe at 520 nm was decreased with pH, and the red fluorescence at 633 nm remained stable. Therefore, the probe displayed distinguishing fluorescence colors from pink to blue and from green to blue for the synchronous detection of pH and GSH concentration within 4 s. The design strategy provides insights to construct multi-bands fluorescence probes for the rapid detection of multiple target analytes.
Collapse
Affiliation(s)
- Siyuan Xia
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Yujie Duan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Shanshan Yu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Yupei Sun
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Hongxiang Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China.
| | - Zihan Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Lei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China.
| | - Hui Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Yingping He
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Hui He
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China.
| |
Collapse
|
8
|
Li Y, Zhou P, Wang Z, Ren Y, Zhu X, Wang J, Yan H, Hua L, Gao F. Sea Anemone-like Nanomachine Based on DNA Strand Displacement Composed of Three Boolean Logic Gates: Diversified Input for Intracellular Multitarget Detection. Anal Chem 2024; 96:4120-4128. [PMID: 38412037 DOI: 10.1021/acs.analchem.3c05059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Efficient and accurate acquisition of cellular biomolecular information is crucial for exploring cell fate, achieving early diagnosis, and the effective treatment of various diseases. However, current DNA biosensors are mostly limited to single-target detection, with few complex logic circuits for comprehensive analysis of three or more targets. Herein, we designed a sea anemone-like DNA nanomachine based on DNA strand displacement composed of three logic gates (YES-AND-YES) and delivered into the cells using gold nano bipyramid carriers. The AND gate activation depends on the trigger chain released by upstream DNA strand displacement reactions, while the output signal relies on the downstream DNAzyme structure. Under the influence of diverse inputs (including enzymes, miRNA, and metal ions), the interconnected logic gates simultaneously perform logical analysis on multiple targets, generating a unique output signal in the YES/NO format. This sensor can successfully distinguish healthy cells from tumor cells and can be further used for the diagnosis of different tumor cells, providing a promising platform for accurate cell-type identification.
Collapse
Affiliation(s)
- Yuting Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Peng Zhou
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, China
| | - Zhenxin Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yiping Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xu Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Jin Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Hanrong Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Hua
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
9
|
Li T, Sun M, Xia S, Huang T, Li RT, Li C, Dai Z, Chen JX, Chen J, Jia N. A binary system based DNA tetrahedron and fluorogenic RNA aptamers for highly specific and label-free mRNA imaging in living cells. Talanta 2024; 269:125465. [PMID: 38008022 DOI: 10.1016/j.talanta.2023.125465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/08/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
Developing simple, rapid and specific mRNA imaging strategy plays an important role in the early diagnosis of cancer and the new drugs development. Herein, we have established a novel binary system based DNA tetrahedron and fluorogenic RNA aptamers for highly specific and label-free mRNA imaging in living cells. This developed system consisted of tetrahedron probe A (TPA) and tetrahedron probe B (TPB). TK1 mRNA was chosen as the study model. After TPA and TPB enter into the live cells, the TK1 mRNA induces TPA and TPB to approach and activate the fluorescent aptamer, resulting in enhanced fluorescent signal in the presence of small molecules of DFHBI-1T. By this design, the high specificity label-free detection of nucleic acids was achieved with a detection limit of 1.34 nM. Confocal fluorescence imaging experiments had proved that this strategy could effectively distinguish the TK1 mRNA expression level between normal cell and cancer cell. The developed method is expected to provide a new tool for early diagnosis of diseases and new drug development.
Collapse
Affiliation(s)
- Tong Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Mengxu Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Suping Xia
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Ting Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Rong-Tian Li
- Southern University of Science and Technology Hospital, Shenzhen, 518055, PR China
| | - Chunrong Li
- Qiannan Medical College for Nationalities, Duyun, 558000, PR China
| | - Zong Dai
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, PR China
| | - Jin-Xiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China.
| | - Jun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Nuan Jia
- Southern University of Science and Technology Hospital, Shenzhen, 518055, PR China.
| |
Collapse
|
10
|
Xu J, Zhong X, Fan M, Xu Y, Xu Y, Wang S, Luo Z, Huang Y. Enhancing intracellular mRNA precise imaging-guided photothermal therapy with a nucleic acid-based polydopamine nanoprobe. Anal Bioanal Chem 2024; 416:849-859. [PMID: 38006441 DOI: 10.1007/s00216-023-05062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
Despite significant advancements in cancer research, real-time monitoring and effective treatment of cancer through non-invasive techniques remain a challenge. Herein, a novel polydopamine (PDA) nucleic acid nanoprobe has been developed for imaging signal amplification of intracellular mRNA and precise photothermal therapy guidance in cancer cells. The PDA nucleic acid nanoprobe (PDA@DNA) is constructed by assembling an aptamer hairpin (H1) labeled with the Cy5 fluorophore and another nucleic acid recognition hairpin (H2) onto PDA nanoparticles (PDA NPs), which have exceptionally high fluorescence quenching ability and excellent photothermal conversion properties. The nanoprobe could facilitate cellular uptake of DNA molecules and their protection from nuclease degradation. Upon recognition and binding to the intracellular mRNA target, a catalytic hairpin assembly (CHA) reaction occurs. The stem of H1 unfolds upon binding, allowing the exposed H1 to hybridize with H2, forming a flat and sturdy DNA double-stranded structure that detaches from the surface of PDA NPs. At the same time, the target mRNA is displaced and engages in a new cyclic reaction, resulting in the recovery and significant amplification of Cy5 fluorescence. Using thymidine kinase1 (TK1) mRNA as a model mRNA, this nanoprobe enables the analysis of TK1 mRNA with a detection limit of 9.34 pM, which is at least two orders of magnitude lower than that of a non-amplifying imaging nucleic acid probe. Moreover, with its outstanding performance for in vitro detection, this nanoprobe excels in precisely imaging tumor cells. Through live-cell TK1 mRNA imaging, it can accurately distinguish between tumor cells and normal cells. Furthermore, when exposed to 808-nm laser irradiation, the nanoprobe fully harnesses exceptional photothermal conversion properties of PDA NPs. This results in a localized temperature increase within tumor cells, which ultimately triggers apoptosis in these tumor cells. The integration of PDA@DNA presents innovative prospects for tumor diagnosis and image-guided tumor therapy, offering the potential for high-precision diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Jiayao Xu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, 537000, People's Republic of China
| | - Xiaohong Zhong
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Mingzhu Fan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, 537000, People's Republic of China
| | - Yang Xu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, 537000, People's Republic of China
| | - Yiqi Xu
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Shulong Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, 537000, People's Republic of China.
| | - Zhihui Luo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, 537000, People's Republic of China.
| | - Yong Huang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China.
| |
Collapse
|
11
|
Lin B, Xiao F, Jiang J, Zhao Z, Zhou X. Engineered aptamers for molecular imaging. Chem Sci 2023; 14:14039-14061. [PMID: 38098720 PMCID: PMC10718180 DOI: 10.1039/d3sc03989g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
Molecular imaging, including quantification and molecular interaction studies, plays a crucial role in visualizing and analysing molecular events occurring within cells or organisms, thus facilitating the understanding of biological processes. Moreover, molecular imaging offers promising applications for early disease diagnosis and therapeutic evaluation. Aptamers are oligonucleotides that can recognize targets with a high affinity and specificity by folding themselves into various three-dimensional structures, thus serving as ideal molecular recognition elements in molecular imaging. This review summarizes the commonly employed aptamers in molecular imaging and outlines the prevalent design approaches for their applications. Furthermore, it highlights the successful application of aptamers to a wide range of targets and imaging modalities. Finally, the review concludes with a forward-looking perspective on future advancements in aptamer-based molecular imaging.
Collapse
Affiliation(s)
- Bingqian Lin
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Feng Xiao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Jinting Jiang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Zhengjia Zhao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
12
|
Zhu L, Tang Q, Mao Z, Chen H, Wu L, Qin Y. Microfluidic-based platforms for cell-to-cell communication studies. Biofabrication 2023; 16:012005. [PMID: 38035370 DOI: 10.1088/1758-5090/ad1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
Intercellular communication is critical to the understanding of human health and disease progression. However, compared to traditional methods with inefficient analysis, microfluidic co-culture technologies developed for cell-cell communication research can reliably analyze crucial biological processes, such as cell signaling, and monitor dynamic intercellular interactions under reproducible physiological cell co-culture conditions. Moreover, microfluidic-based technologies can achieve precise spatial control of two cell types at the single-cell level with high throughput. Herein, this review focuses on recent advances in microfluidic-based 2D and 3D devices developed to confine two or more heterogeneous cells in the study of intercellular communication and decipher the advantages and limitations of these models in specific cellular research scenarios. This review will stimulate the development of more functionalized microfluidic platforms for biomedical research, inspiring broader interests across various disciplines to better comprehend cell-cell communication and other fields, such as tumor heterogeneity and drug screening.
Collapse
Affiliation(s)
- Lvyang Zhu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Qu Tang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Zhenzhen Mao
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Huanhuan Chen
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| |
Collapse
|
13
|
Du Y, Liu Y, Hu J, Peng X, Liu Z. CRISPR/Cas9 systems: Delivery technologies and biomedical applications. Asian J Pharm Sci 2023; 18:100854. [PMID: 38089835 PMCID: PMC10711398 DOI: 10.1016/j.ajps.2023.100854] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 10/16/2024] Open
Abstract
The emergence of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome-editing system has brought about a significant revolution in the realm of managing human diseases, establishing animal models, and so on. To fully harness the potential of this potent gene-editing tool, ensuring efficient and secure delivery to the target site is paramount. Consequently, developing effective delivery methods for the CRISPR/Cas9 system has become a critical area of research. In this review, we present a comprehensive outline of delivery strategies and discuss their biomedical applications in the CRISPR/Cas9 system. We also provide an in-depth analysis of physical, viral vector, and non-viral vector delivery strategies, including plasmid-, mRNA- and protein-based approach. In addition, we illustrate the biomedical applications of the CRISPR/Cas9 system. This review highlights the key factors affecting the delivery process and the current challenges facing the CRISPR/Cas9 system, while also delineating future directions and prospects that could inspire innovative delivery strategies. This review aims to provide new insights and ideas for advancing CRISPR/Cas9-based delivery strategies and to facilitate breakthroughs in biomedical research and therapeutic applications.
Collapse
Affiliation(s)
- Yimin Du
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jiaxin Hu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xingxing Peng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Molecular Imaging Research Center of Central South University, Changsha 410008, China
| |
Collapse
|
14
|
Sun Q, Li Z, Liu N, Zhou Y, Zhang F, Li S, Jin P, Xiang R, Le T. Development of a novel fluorescent aptasensor based on the interaction between hexagonal β-Co(OH) 2 nanoplates and nitrogen-doped carbon dots for ultrasensitive detection of patulin. Anal Chim Acta 2023; 1278:341710. [PMID: 37709454 DOI: 10.1016/j.aca.2023.341710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023]
Abstract
There is an urgent need to develop an economical and convenient method for the ultrasensitive detection of patulin (PAT), a mycotoxin that can potentially harm human health when it is found in fruits and their derivatives. In this study, we have developed a novel fluorescent aptasensor that utilizes nitrogen-doped carbon dots (N-CDs) as the fluorescent donor and hexagonal β-Co(OH)2 nanoplates as the fluorescent acceptor. N-CDs were synthesized through the hydrothermal method, resulting in spherical particles with a diameter of 7.6 nm. These nanoparticles exhibited excellent water solubility and displayed a vibrant blue emission at 448 nm when excited at 360 nm. Cobalt hydroxide nanoplates with a beta crystal structure [β-Co(OH)2] were synthesized using a simple co-precipitation method, exhibiting hexagonal plate-like shapes with uniform lateral sizes of 4-5 μm. The fluorescence of N-CDs can be efficiently quenched by hexagonal β-Co(OH)2 nanoplates through Förster resonance energy transfer mechanism. The maximum quenching-recovery capability can be achieved when the concentrations of N-CDs-Apt and β-Co(OH)2 nanoplates are 150 nmol/L and 100 μg/mL, respectively. The pH of the TE buffer should be 8.0, and the incubation time should be 10 min at 25 °C. The developed fluorescent aptasensor displayed an excellent selectivity for PAT determination with a detection limit of 0.57 pg/mL in the linear range of 1.25 pg/mL-100 ng/mL. The rapid PAT determination in fruit juice samples was realized with good recoveries (96.9-105.8%). The developed fluorescent aptasensor based on the interaction between N-CDs and hexagonal β-Co(OH)2 nanoplates can be a promising method for the rapid and ultrasensitive detection of PAT in agricultural products.
Collapse
Affiliation(s)
- Qi Sun
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China.
| | - Zhijuan Li
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Ningxin Liu
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Yuting Zhou
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Fuyan Zhang
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Shuang Li
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Peng Jin
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Rui Xiang
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Tao Le
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China.
| |
Collapse
|
15
|
Ren D, Chen Q, Xia X, Xu G, Wei F, Yang J, Hu Q, Cen Y. CRISPR/Cas12a-based fluorescence aptasensor integrated with two-dimensional cobalt oxyhydroxide nanosheets for IFN-γ detection. Anal Chim Acta 2023; 1278:341750. [PMID: 37709435 DOI: 10.1016/j.aca.2023.341750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Cytokine storm (CS) is a risky immune overreaction accompanied by significant elevations of pro-inflammatory cytokines including interferon-γ (IFN-γ), interleukin and tumor necrosis factor. Sensitive detection of cytokine is conducive to studying CS progress and diagnosing infectious diseases. In this study, we developed a tandem system combining aptamer, strand displacement amplification (SDA), CRISPR/Cas12a, and cobalt oxyhydroxide nanosheets (termed Apt-SCN tandem system) as a signal-amplified platform for IFN-γ detection. Owing to the stronger affinity, target IFN-γ bound specifically to the aptamer from aptamer-complementary DNA (Apt-cDNA) duplex. The cDNA released from the Apt-cDNA duplex initiated SDA, resulting in the generation of double-stranded DNA products that could activate the trans-cleavage activity of CRISPR/Cas12a. The activated CRISPR/Cas12a further cleaved FAM-labeled single-stranded DNA probe, preventing it from adhering to the cobalt oxyhydroxide nanosheets and recovering the fluorescence signal. Sensitive fluorometric analysis of IFN-γ was successfully performed with detection limit as low as 0.37 nM. Unlike traditional protein analysis methods, Apt-SCN tandem system incorporates multiple signal amplification techniques and may also be applicable for other cytokines assay. This study was the initial study to utilize SDA and CRISPR/Cas12a to detect IFN-γ, showing great potential for cytokines clinical assay and CS prevention.
Collapse
Affiliation(s)
- Dandan Ren
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Qiutong Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Xinyi Xia
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Guanhong Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Fangdi Wei
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Jing Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Qin Hu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China.
| | - Yao Cen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
16
|
Ge G, Wang T, Liu Z, Liu X, Li T, Chen Y, Fan J, Bukye E, Huang X, Song L. A self-assembled DNA double-crossover-based fluorescent aptasensor for highly sensitivity and selectivity in the simultaneous detection of aflatoxin M 1 and aflatoxin B 1. Talanta 2023; 265:124908. [PMID: 37442003 DOI: 10.1016/j.talanta.2023.124908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
Realizing the simultaneous speedy detection of multiple mycotoxins in contaminated food and feed is of great practical importance in the domain of food manufacturing and security. Herein, a fluorescent aptamer sensor based on self-assembled DNA double-crossover was developed and used for effective simultaneous quantitative detection of aflatoxins M1 and B1 by fluorescence resonance energy transfer (FRET). Fluorescent dye-modified aflatoxin M1 and B1 aptamers are selected as recognition elements and signal probes, and DNA double crosses are consistently locked by the aflatoxin aptamers, which results in a "turn-off" of the fluorescent signal. In the presence of AFM1 and AFB1, the aptamer sequences are more inclined to form Apt-AFM1 and Apt-AFB1 complexes, and the fluorescent probes are released from the DNA double-crossing platform, leading to an enhanced fluorescent signal (Cy3: 568 nm; Cy5: 660 nm). Under the optimal conditions, the signal response of the constructed fluorescent aptamer sensor showed good linearity with the logarithm of AFM1 and AFB1 concentrations, with detection limits of 6.24 pg/mL and 9.0 pg/mL, and a wide linear range of 0.01-200 ng/mL and 0.01-150 ng/mL, respectively. In addition, the effect of potential interfering substances in real samples was analyzed, and the aptasensor presented a good interference immunity. Moreover, by modifying and designing aptamer probes, the sensor can be applied to high-throughput simultaneous screening of other analytes, providing a new approach for the development of fluorescent aptamer sensors.
Collapse
Affiliation(s)
- Guo Ge
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China; Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Tianlin Wang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China; Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Zihou Liu
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China; Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China; International Education College, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xiaomeng Liu
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China; Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Tiange Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China; Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yuntang Chen
- Institute of Isotope Research, Henan Academy of Sciences, Zhengzhou, 450002, Henan, China
| | - Jialin Fan
- Institute of Isotope Research, Henan Academy of Sciences, Zhengzhou, 450002, Henan, China
| | - Erkigul Bukye
- Department for Food Engineering and Hydromechanics, School of Engineering and Technology, Mongolian State University of Life Sciences, Zaisan-53, Ulaanbaatar, 17024, Mongolia
| | - Xianqing Huang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China; Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Lianjun Song
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China; Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
17
|
Li J, Li S, Li Z, Zhou Y, Jin P, Zhang F, Sun Q, Le T, Jirimutu. Chromium hydroxide nanoparticles-based fluorescent aptameric sensing for sensitive patulin detection: The significance of nanocrystal and morphology modulation. Talanta 2023; 257:124296. [PMID: 36758442 DOI: 10.1016/j.talanta.2023.124296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
The widespread of patulin (PAT) and its potential hazards to human health call for alternative rapid assays to monitor it in food and the environment. Herein, we prepared chromium hydroxide [Cr(OH)3] nanoparticles via a one-pot chemical precipitation strategy and used them to fabricate a turn-on fluorescent aptasensor employing a morphological effect for sensitive PAT detection. Three Cr(OH)3 nanoparticle structures were synthesized by changing the solvent, and their structures and physicochemical properties were investigated. Then, we evaluated the effects of morphological structures on the fluorescence quenching-recovery capability of Cr(OH)3 nanoparticles before and after incubation with PAT. We found that the Cr(OH)3-3 nanoparticles efficiently absorbed the fluorescence dye 6-carboxyfluorescein labeled aptamer (FAM-Apt) and quenched the fluorophore through photoinduced electron transfer. Under optimal experimental conditions, the turn-on fluorescent aptasensor for PAT determination displayed two linear ranges (0.01-10 ng/mL and 1-200 ng/mL) with a low detection limit of 7.3 pg/mL. Moreover, the proposed aptasensor had no cross-reactivity with interferents that usually coexist with PAT and can be used to detect PAT in apple juices accurately. The results of the as-fabricated method were not significantly different from the high-performance liquid chromatography. Hence, we demonstrated that different Cr(OH)3 nanoparticles can be prepared by changing reaction conditions, and provided a novel strategy to improve the detection performance of fluorescent aptasensor by changing the morphological structure and crystalline properties of nano-quenchers.
Collapse
Affiliation(s)
- Jianmei Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
| | - Shuang Li
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Zhijuan Li
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Yuting Zhou
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Peng Jin
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Fuyan Zhang
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China.
| | - Tao Le
- College of Life Sciences, Chongqing Normal University, No.37 Chengzhong Road, Shapingba District, Chongqing, 401331, China.
| | - Jirimutu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China; Camel Research Institute of Inner Mongolia, Alashan 737300, China.
| |
Collapse
|
18
|
Dong Z, Gao D, Li Y, An K, Ni J, Meng L, Wu H. Self-assembled DNA nanoparticles enable cascade circuits for mRNA detection and imaging in living cells. Anal Chim Acta 2023; 1249:340934. [PMID: 36868769 DOI: 10.1016/j.aca.2023.340934] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/08/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Fluorescence molecular probes have been regarded as a valuable tool for RNA detection and imaging. However, the pivotal challenge is how to develop an efficient fluorescence imaging platform for accurate identification of RNA molecules with low expression in complicated physiological environments. Herein, we construct the DNA nanoparticles to glutathione (GSH)-responsive controllable release of hairpin reactants for catalytic hairpin assembly (CHA)-hybridization chain reaction (HCR) cascade circuits, which enables the analysis and imaging of low-abundance target mRNA in living cells. The aptamer-tethered DNA nanoparticles are constructed via the self-assembly of single-stranded DNAs (ssDNAs), exhibiting sufficient stability, cell-specific penetration, and precise controllability. Moreover, the in-depth integration of different DNA cascade circuits shows the improved sensing performance of DNA nanoparticles in live cell analysis. Therefore, through the combination of multi-amplifiers and programmable DNA nanostructure, the developed strategy enables accurately triggered release of hairpin reactants and further achieves sensitive imaging and quantitative evaluation of survivin mRNA in carcinoma cells, which provides a potential platform to facilitate RNA fluorescence imaging applications in early clinical cancer theranostics.
Collapse
Affiliation(s)
- Zhe Dong
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, PR China; State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Debo Gao
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, PR China
| | - Yuancheng Li
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, PR China
| | - Kang An
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, PR China
| | - Jing Ni
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, PR China
| | - Ling Meng
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, PR China
| | - Han Wu
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, PR China.
| |
Collapse
|
19
|
Xu J, Yao L, Zhong X, Hu K, Zhao S, Huang Y. A biodegradable and cofactor self-sufficient aptazyme nanoprobe for amplified imaging of low-abundance protein in living cells. Talanta 2023; 253:123983. [PMID: 36201958 DOI: 10.1016/j.talanta.2022.123983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 12/13/2022]
Abstract
Despite the progress on the analysis of proteins either in vitro or in vivo, detection and imaging of low-abundance proteins in living cells still remains challenging. Herein, a novel biodegradable and cofactor self-sufficient DNAzyme nanoprobe has been deve-loped for catalytic imaging of protein in living cells with signal amplification capacity. This DNAzyme nanoprobe is constructed by assembling a DNAzyme subunit-containing aptamer hairpin (HP), another DNAzyme subunit strand (DS), and the molecular beacon (MB) substrate strand onto pH-sensitive ZnO@polydopamine nanorods (ZnO@PDA NRs) that work as DNAzyme cofactor suppliers. Such a nanoprobe can facilitate cellular uptake of DNA molecules and protection of them from nuclease degradation as well as release of them in cells by lysosomal acid-triggered dissolution of ZnO@PDA NRs into Zn2+ as DNAzyme cofactor. Upon recognition and binding with the intracellular protein target, the stem of HP is opened, after which the opened HP hybridizes with DS and generates activated DNAzymes. Each activated DNAzyme can catalyze the cleavage of many MB substrates through true enzymatic multiple turnovers, resulting in the separation of the quenched fluorophore/quencher pair labeled in MB and the generation of significantly amplified fluorescence. Using nucleolin (NCL) as a model protein, this nanoprobe enables the analysis of NCL with a detection limit of 1.8 pM, which are at least two orders of magnitude lower than that of non-catalytic imaging probe. Moreover, it could accurately distinguish tumor cells and normal cells by live cell NCL imaging. And the experimental results are also further verified by flow cytometry assays. The developed nanoprobe can be easily extended to detect other biomolecules by the change of their corresponding aptamer sequences, thus providing a promising tool for highly sensitive imaging of low-abundance biomolecules in living cells.
Collapse
Affiliation(s)
- Jiayao Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Lifang Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Xiaohong Zhong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Kun Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Yong Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
20
|
Yin X, He Z, Ge W, Zhao Z. Application of aptamer functionalized nanomaterials in targeting therapeutics of typical tumors. Front Bioeng Biotechnol 2023; 11:1092901. [PMID: 36873354 PMCID: PMC9978196 DOI: 10.3389/fbioe.2023.1092901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Cancer is a major cause of human death all over the world. Traditional cancer treatments include surgery, radiotherapy, chemotherapy, immunotherapy, and hormone therapy. Although these conventional treatment methods improve the overall survival rate, there are some problems, such as easy recurrence, poor treatment, and great side effects. Targeted therapy of tumors is a hot research topic at present. Nanomaterials are essential carriers of targeted drug delivery, and nucleic acid aptamers have become one of the most important targets for targeted tumor therapy because of their high stability, high affinity, and high selectivity. At present, aptamer-functionalized nanomaterials (AFNs), which combine the unique selective recognition characteristics of aptamers with the high-loading performance of nanomaterials, have been widely studied in the field of targeted tumor therapy. Based on the reported application of AFNs in the biomedical field, we introduce the characteristics of aptamer and nanomaterials, and the advantages of AFNs first. Then introduce the conventional treatment methods for glioma, oral cancer, lung cancer, breast cancer, liver cancer, colon cancer, pancreatic cancer, ovarian cancer, and prostate cancer, and the application of AFNs in targeted therapy of these tumors. Finally, we discuss the progress and challenges of AFNs in this field.
Collapse
Affiliation(s)
- Xiujuan Yin
- Department of Radiology, Shaoxing People's Hospital, Shaoxing, China.,Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, Shaoxing, China
| | - Zhenqiang He
- Clinical Medical College of Hebei University, Baoding, China.,Department of Radiology, Hebei University Affiliated Hospital, Baoding, China
| | - Weiying Ge
- Department of Radiology, Hebei University Affiliated Hospital, Baoding, China
| | - Zhenhua Zhao
- Department of Radiology, Shaoxing People's Hospital, Shaoxing, China.,Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, Shaoxing, China.,Medical College of Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Eladl O, Yamaoki Y, Kondo K, Nagata T, Katahira M. Detection of interaction between an RNA aptamer and its target compound in living human cells using 2D in-cell NMR. Chem Commun (Camb) 2022; 59:102-105. [PMID: 36475447 DOI: 10.1039/d2cc05576g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We introduced an isotopically labeled RNA aptamer for HIV-1 Tat prepared by E. coli transcription into HeLa cells. We successfully recorded the first heteronuclear 2D in-cell NMR spectra, which makes it possible to study the interaction of the RNA aptamer with argininamide in living human cells with higher resolution.
Collapse
Affiliation(s)
- Omar Eladl
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. .,Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan.,Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Yudai Yamaoki
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. .,Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Keiko Kondo
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. .,Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. .,Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
22
|
Shen L, Wang YW, Shan HY, Chen J, Wang AJ, Liu W, Yuan PX, Feng JJ. Covalent organic framework linked with amination luminol derivative as enhanced ECL luminophore for ultrasensitive analysis of cytochrome c. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4767-4774. [PMID: 36416105 DOI: 10.1039/d2ay01208a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cytochrome c (cyt c) plays a critical role in mitochondrial respiratory chain, whose absence is detrimental to electron transport and reduce adenosine triphosphate. For ultrasensitive detection of cyt c, sheet-like covalent organic frameworks (COFs) were prepared by orderly accumulation of 1,3,5-benzenetricarboxaldehyde (BTA) and p-phenylenediamine (PDA), and further grafted with N-(4-aminobutyl)-N-ethylisoluminol (ABEI) - an electrochemiluminescence (ECL) emitter. Specifically, the morphology and structure of the COFs-ABEI were mainly characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) analysis, and X-ray photoelectron spectroscopy (XPS). In parallel, the optical properties of the emitter were certified by UV-vis absorbance spectroscopy, Fourier infrared spectroscopy (FTIR), fluorescence (FL), and ECL measurements, showing 2.25-time enhanced ECL efficiency over pure ABEI, coupled by illustrating the interfacial electron transport mechanism. On the above foundation, a label-free "signal off" ECL biosensor was constructed by virtue of the specific immune recognition between the aptamer of the target cyt c with its capture DNA (cDNA) anchored on the biosensing platform, exhibiting a wider linear range of 1.00 fg mL-1-0.10 ng mL-1 (R2 = 0.998) and a lower limit of detection (LOD) down to 0.73 fg mL-1. This work offers some constructive guidelines for sensitive bioassays of disease-related biomarkers in the clinical field.
Collapse
Affiliation(s)
- Luan Shen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Yi-Wen Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hong-Yan Shan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jun Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Wen Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
23
|
Tailoring of a bionic bifunctional cellulose nanocrystal-based gold nanocluster probe for the detection of intracellular pathological biomarkers. Int J Biol Macromol 2022; 224:1079-1090. [DOI: 10.1016/j.ijbiomac.2022.10.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/03/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
24
|
Graphene Oxide and Fluorescent-Aptamer-Based Novel Aptasensors for Detection of Metastatic Colorectal Cancer Cells. Polymers (Basel) 2022; 14:polym14153040. [PMID: 35956554 PMCID: PMC9370758 DOI: 10.3390/polym14153040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Early diagnosis of metastatic colorectal cancer (mCRC) is extremely critical to improve treatment and extend survival. W3 is an aptamer that can specifically bind to mCRC cells with high affinity. Graphene oxide (GO) is a two-dimensional graphitic carbon nanomaterial, which has widely used in constructing biosensors. In this study, we have developed a no-wash fluorescent aptasensor for one-step and sensitive detection of mCRC LoVo cells. It is based on fluorescence resonance energy transfer (FRET) between GO and the W3 aptamer labeled with 5-carboxyfluorescein (FAM). GO can quench the green fluorescence of the FAM-labeled W3 (FAM-W3). In the presence of the target cells, FAM-W3 preferentially binds the target cells and detaches from the surface of GO, leading to the fluorescence of FAM recovery. It was demonstrated that the fluorescence recovery increases linearly in a wide range of 0~107 cells/mL (R2 = 0.99). The GO-based FAM-labeled W3 aptasensor (denoted as FAM-W3-GO) not only specifically recognizes mCRC cell lines (LoVo and HCT116), but also sensitively differentiates the target cells from mixed cells, even in the presence of only 5% of the target cells. Furthermore, FAM-W3-GO was applied to detect LoVo cells in human whole blood, which showed good reproducibility with an RSD range of 1.49% to 1.80%. Therefore, FAM-W3-GO may have great potential for early diagnosis of mCRC. This strategy of GO-based fluorescent aptasensor provides a simple, one-step, and highly sensitive approach for the detection of mCRC cells.
Collapse
|
25
|
Xu X, Jiang Y, Lu C. Self-Assembled ATP-Responsive DNA Nanohydrogel for Specifically Activated Fluorescence Imaging and Chemotherapy in Cancer Cells. Anal Chem 2022; 94:10221-10226. [PMID: 35796567 DOI: 10.1021/acs.analchem.2c01760] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumor marker-responsive drug delivery systems have been developed for cancer imaging and chemotherapy. However, improving their ability of controlled drug release remains a challenge. In this study, we have developed an adenosine triphosphate (ATP)-responsive DNA nanohydrogel for specifically activated fluorescence imaging and chemotherapy in cancer cells. Acrylamide and acrydite-modified DNAs were polymerized to obtain DNA-grafted polyacrylamide copolymers. Then, the copolymers acted as the backbone of the nanohydrogel and were assembled by base complementation with ATP aptamer linkers to construct an ATP-responsive nanohydrogel. Meanwhile, the chemotherapeutic drug doxorubicin (DOX) was added and loaded into the ATP-responsive nanohydrogel during the assembly process. After endocytosis by cancer cells and response to a high intracellular ATP level, the DOX-loaded nanohydrogel disassembled due to the formation of aptamer/ATP complexes. Subsequently, the released DOX played a role in fluorescence imaging and chemotherapy of cancer cells. Through the ATP-responsive property and satisfying drug delivery capability, this nanohydrogel realized fluorescence imaging and specific cancer cell killing capabilities due to different intracellular ATP levels in normal and cancer cell lines. In summary, this study has provided a novel strategy of constructing a tumor microenvironment-responsive drug delivery system triggered by the tumor markers for tumor intracellular imaging and chemotherapy.
Collapse
Affiliation(s)
- Xin Xu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yifan Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|