1
|
Wang Y, Zeng Y, Ren X, Qiu J, Pan J, Yang F. A probe-mediated fluorescent biosensor for MC-LR detection using exonuclease III as a signal amplifier. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1834-1839. [PMID: 39902730 DOI: 10.1039/d4ay02027h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Microcystin-lr (MC-LR) is one of the most toxic and ubiquitous microcystins (MCs) released by cyanobacteria. Exposure to MC-LR can cause multiple organ damage and even death of the organism. Therefore, creating highly sensitive and dependable methods for detecting trace MC-LR is crucial. Herein, we developed a novel fluorescence aptasensor aided by exonuclease III (Exo III) for the highly sensitive detection of MC-LR. In the presence of MC-LR, the affinity interaction between MC-LR and aptamer A was triggered, leading to the release of blocker B. This unbound blocker can initiate Exo III-mediated signal amplification to digest the probe H, thereby recovering the fluorescence signal for readout. The proposed Exo III-assisted sensing platform demonstrated remarkable sensitivity and selectivity, achieving a limit of detection (LOD) of 0.37 ng L-1. Furthermore, it is robust and has been effectively utilized on water samples, achieving acceptable recovery rates (95.04-107.01%). With excellent sensitivity, high selectivity, efficient signal amplification, and fluorescence readout, the proposed biosensor offered a new and reliable alternative for the detection of trace MC-LR in the environment and the early warning of algal toxins.
Collapse
Affiliation(s)
- Yuyan Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Ying Zeng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Xiaoya Ren
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Jun Qiu
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China
| | - Jiafeng Pan
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
2
|
Su R, Qiu Y, Jin Z, Cui Y, Kong X, Peng F, Zhao Y, Ma W. Electroactive RuPt NPs programmed dual-channel electrochemical sensor for methyl mercaptan monitoring. Talanta 2025; 283:127137. [PMID: 39515050 DOI: 10.1016/j.talanta.2024.127137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/23/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The accurate and sensitive detection of methyl mercaptan (CH3SH) was of great significance for food corruption monitoring. Electroactive labels engineered electrochemical sensors possessed tailorable electrochemical responses, and showed potential prospects for CH3SH monitoring. In comparison to a single electrochemical signal, electroactive nanocomposites with multiple electrochemical responses not only provided multi-channel sensing signals for accurate detection, but also increased the peak intensity for sensitive detection. Herein, RuPt NPs were designed and explored to possess two independent and non-interfering electrochemical oxidation peaks at 0.75 V and -0.73 V. The formation of metal-SH covalent bonds between electroactive sites of RuPt NPs and CH3SH induced the changes of two electrochemical oxidation peaks. By utilizing the sum intensity of two electrochemical peaks as detection signal, a dual-channel electrochemical sensor was established for CH3SH detection in the range of 1 μM-1 mM, and had a low limit of detection (LOD) of 300 nM. This work gave a new insight into promoting more electroactive nanocomposites with multiple signals for accurate and sensitive electrochemical detection applications.
Collapse
Affiliation(s)
- Rui Su
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Food Science and Technology, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuruo Qiu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Food Science and Technology, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhao Jin
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuqing Cui
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiangqian Kong
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Fang Peng
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuan Zhao
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Wei Ma
- School of Food Science and Technology, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
3
|
Manoharan
Nair Sudha Kumari S, Thankappan Suryabai X. Sensing the Future-Frontiers in Biosensors: Exploring Classifications, Principles, and Recent Advances. ACS OMEGA 2024; 9:48918-48987. [PMID: 39713646 PMCID: PMC11656264 DOI: 10.1021/acsomega.4c07991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024]
Abstract
Biosensors are transforming healthcare by delivering swift, precise, and economical diagnostic solutions. These analytical instruments combine biological indicators with physical transducers to identify and quantify biomarkers, thereby improving illness detection, management, and patient surveillance. Biosensors are widely utilized in healthcare for the diagnosis of chronic and infectious diseases, tailored treatment, and real-time health monitoring. This thorough overview examines several categories of biosensors and their uses in the detection of numerous biomarkers, including glucose, proteins, nucleic acids, and infections. Biosensors are commonly classified based on the type of transducer employed or the specific biorecognition element utilized. This review introduces a novel classification based on substrate morphology, offering a comprehensive perspective on biosensor categorization. Considerable emphasis is placed on the advancement of point-of-care biosensors, facilitating decentralized diagnostics and alleviating the strain on centralized healthcare systems. Recent advancements in nanotechnology have significantly improved the sensitivity, selectivity, and downsizing of biosensors, rendering them more efficient and accessible. The study examines problems such as stability, reproducibility, and regulatory approval that must be addressed to enable the widespread implementation of biosensors in clinical environments. The study examines the amalgamation of biosensors with wearable devices and smartphones, emphasizing the prospects for ongoing health surveillance and individualized medical care. This viewpoint clarifies the distinct types of biosensors and their particular roles, together with recent developments in the "smart biosensor" sector, facilitated by artificial intelligence and the Internet of Medical Things (IoMT). This novel approach seeks to deliver a comprehensive evaluation of the present condition of biosensor technology in healthcare, recent developments, and prospective paths, emphasizing their significance in influencing the future of medical diagnostics and patient care.
Collapse
Affiliation(s)
- Sumitha Manoharan
Nair Sudha Kumari
- Centre for
Advanced Materials Research, Department of Physics, Government College for Women, Thiruvananthapuram, University of Kerala, Kerala 695014, India
| | - Xavier Thankappan Suryabai
- Centre for
Advanced Materials Research, Department of Physics, Government College for Women, Thiruvananthapuram, University of Kerala, Kerala 695014, India
| |
Collapse
|
4
|
Li G, Wang B, Li S, Li X, Yan R, Tan X, Liang J, Zhou Z. Competitive electrochemical aptasensor for high sensitivity detection of liver cancer marker GP73 based on rGO-Fc-PANi nanocomposites. Bioelectrochemistry 2024; 160:108767. [PMID: 38878458 DOI: 10.1016/j.bioelechem.2024.108767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 09/15/2024]
Abstract
Golgi protein 73 (GP73) is a novel tumor marker in the early diagnosis and prognosis of hepatocellular carcinoma (HCC). Herein, a competitive electrochemical aptasensor for detecting GP73 was constructed using reduced graphene oxide-ferrocene-polyaniline nanocomposite (rGO-Fc-PANi) as the biosensing platform. The rGO-Fc-PANi had larger specific surface area, excellent conductivity and outstanding electroactive performance, which served as nanocarrier for GP73 aptamer (GP73Apt) binding and as redox nanoprobe for record electrical signal. Then, a complementary chain (cDNA) was fixed to the electrode by hybridization with GP73Apt. When GP73 was present, a competitive process happened among cDNA, GP73Apt and GP73, formed the GP73-GP73Apt stable chemical structure and made cDNA detach from the sensing electrode, resulting in enhancement of electrical signal. The difference in the corresponding peak current before and after the competition can be used to indicate the quantitative of GP73. Under optimal conditions, the DPV current response showed a good log-linear relationship with GP73 concentrations (0.001 ∼ 100.0 ng/mL) with a detection limit of 0.15 pg/mL (S/N = 3). It was successfully used for GP73 detection in human serum with RSDs ranging from 1.08 % to 6.96 %. Therefore, the aptasensor could provide an innovative technology platform and hold a great potential in clinical application.
Collapse
Affiliation(s)
- Guiyin Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong 525000, People's Republic of China
| | - Bo Wang
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China
| | - Shengnan Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong 525000, People's Republic of China; School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China
| | - Xinhao Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong 525000, People's Republic of China; School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China
| | - Ruijie Yan
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong 525000, People's Republic of China; School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China
| | - Xiaohong Tan
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong 525000, People's Republic of China.
| | - Jintao Liang
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China.
| | - Zhide Zhou
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China.
| |
Collapse
|
5
|
Park H, Kim SW, Lee S, An J, Jung S, Lee M, Kim J, Kwon D, Jang H, Lee T. A rapid field-ready electrical biosensor consisting of bismuthine-derived Au island decorated BiOCl nanosheets for Raphidiopsis raciborskii detection in freshwater. J Mater Chem B 2024; 12:11659-11669. [PMID: 39439420 DOI: 10.1039/d4tb01624f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Cyanobacteria play an essential role in nutrient cycling in aquatic ecosystems. However, certain species adversely affect the environment and human health by causing harmful cyanobacterial algal blooms (cyanoHABs) and producing cyanotoxins. To address this issue, continuous cyanoHAB monitoring has been considered; however, a gold standard has not yet been established. In this study, we aimed to develop a dual DNA-targeting capacitive-type biosensor for rapid field-ready monitoring of Raphidiopsis raciborskii, a causative species of cyanoHAB. To enhance the sensing signal, a plate-like Au-BiOCl nanocomposite was synthesized using a spontaneous carbonation process without additional additives. The alternating-current electrothermal flow (ACEF) technique was applied to enable rapid DNA and probe binding within 10 min. The limits of detection (LODs) for R. raciborskii RubisCO large subunit (rbcL) and RNA polymerase beta subunit (rpoB) genes diluted in deionized (DI) water were 4.89 × 10-17 and 3.89 × 10-17 M, respectively. Furthermore, the LODs of R. raciborskii rbcl and rpoB diluted in freshwater containing HAB were 2.55 × 10-16 and 3.84 × 10-16 M, respectively, demonstrating the field-ready applicability of the device. The fabricated cyanobacterial DNA-sensing platform enabled powerful species-specific detection using a small sample volume and low target concentration without a nucleic acid amplification step, dramatically reducing the detection time. This study has considerable implications for detecting HABs, early warning systems, and species-specific environmental monitoring technology.
Collapse
Affiliation(s)
- Hyunjun Park
- Department of Chemical Engineering, Kwangwoon University, 20 Gwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| | - Sun Woo Kim
- Department of Chemistry, Kwangwoon University, 20 Gwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| | - Siyun Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Gwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| | - Jeongyun An
- Department of Chemical Engineering, Kwangwoon University, 20 Gwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| | - Seokho Jung
- Department of Chemical Engineering, Kwangwoon University, 20 Gwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| | - Minju Lee
- Department of Electronics Convergence Engineering, Kwangwoon University, 20 Gwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| | - Jeonghyun Kim
- Department of Electronics Convergence Engineering, Kwangwoon University, 20 Gwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| | - Daeryul Kwon
- Protist Research Division, Biological Resources Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), 137, Donam 2-gil, Sangju-si, Gyeongsangbuk-do 37242, Republic of Korea.
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University, 20 Gwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Gwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| |
Collapse
|
6
|
Peng C, Sui Y, Fang C, Sun H, Liu W, Li X, Qu C, Li W, Liu J, Wu C. Highly sensitive and selective electrochemical biosensor using odorant-binding protein to detect aldehydes. Anal Chim Acta 2024; 1318:342932. [PMID: 39067919 DOI: 10.1016/j.aca.2024.342932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024]
Abstract
Recently, various biosensors based on odorant-binding proteins (OBPs) were developed for the detection of odorants and pheromones. However, important data gaps exist regarding the sensitive and selective detection of aldehydes with various carbon numbers. In this work, an OBP2a-based electrochemical impedance spectroscopy (EIS) biosensor was developed by immobilizing OBP2a on a gold interdigital electrode, and was characterized by EIS and atomic force microscopy. EIS responses showed the OBP2a-based biosensor was highly sensitive to citronellal, lily aldehyde, octanal, and decanal (detection limit of 10-11 mol/L), and was selective towards aldehydes compared with interfering odorants such as small-molecule alcohols and fatty acids (selectivity coefficients lower than 0.15). Moreover, the OBP2a-based biosensor exhibited high repeatability (relative standard deviation: 1.6%-9.1 %, n = 3 for each odorant), stability (NIC declined by 3.6 % on 6th day), and recovery (91.2%-96.6 % on three real samples). More specifically, the sensitivity of the biosensor to aldehydes was positively correlated to the molecular weight and the heterocyclic molecule structure of the odorants. These results proved the availability and the potential usage of the OBP2a-based EIS biosensor for the rapid and sensitive detection of aldehydes in aspects such as medical diagnostics, food and favor analysis, and environmental monitoring.
Collapse
Affiliation(s)
- Cong Peng
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Eco-environmental Sciences, Tianjin, 300191, China
| | - Yutong Sui
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chaohua Fang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongxu Sun
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenxin Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xinying Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chen Qu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenhui Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiemin Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Institute of Graphic Communication, Beijing, 102600, China
| | - Chuandong Wu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
7
|
Li J, Zheng W, Gao Y, Liu X, Li Z, Zhang L. Nanopillar array-based electrochemical aptamer sensor for STX sensitivity detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39041298 DOI: 10.1039/d4ay00932k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Saxitoxin (STX) is a cyanotoxin with high toxicity, and therefore, there is an urgent need to develop a facile detection method for STX. In this study, an ordered nanopillar array-based electrochemical aptasensor was fabricated for the high-performance detection of STX. The anti-STX aptamer with methylene blue (MB) incorporated at the 3'-end (MB-Apt) was immobilized at the surface of an Au@PAN nanopillar array electrode and used as the recognition element. The proposed aptasensor demonstrated highly sensitive and selective STX detection because of synergistic catalysis effects of MB and ordered nanopillar arrays along with the selection of MB-Apt. The nanopillar array-based electrochemical aptasensor exhibited high sensitivity over a wide linear concentration range of 1 pM-3 nM with a linear regression equation of ΔI (μA) = 28.0 + 6.9 × log[STX] (R2 = 0.98079) and 3-100 nM with a linear regression equation of ΔI (μA) = 10.7 + 43.4 × log[STX] (R2 = 0.98772), where R is the correlation coefficient. In addition, the limit of detection (LOD) was as low as 1 pM. Furthermore, the designed aptasensor demonstrated excellent selectivity toward STX, preventing interference from neo-STX, okadaic acid, and common metal ions. The presented orderly nanopillar array-based strategy to develop an electrochemical aptasensor for STX detection offers a promising method for developing high-performance electrochemical sensors, and the presented aptasensor should find useful application in the detection of shellfish poison.
Collapse
Affiliation(s)
- Jinsong Li
- Anhui Provincial Engineering Center for High-Performance Biobased Nylons, Anhui Engineering Research Center for Highly Functional Fiber Products for Automobiles, School of Materials and Chemistry, Anhui Agricultural University, China.
| | - Weixian Zheng
- Biotechnology Center of Anhui Agricultural University, Anhui Agricultural University, Hefei, 230009, China
| | - Ya Gao
- Anhui Provincial Engineering Center for High-Performance Biobased Nylons, Anhui Engineering Research Center for Highly Functional Fiber Products for Automobiles, School of Materials and Chemistry, Anhui Agricultural University, China.
| | - Xinyu Liu
- Anhui Provincial Engineering Center for High-Performance Biobased Nylons, Anhui Engineering Research Center for Highly Functional Fiber Products for Automobiles, School of Materials and Chemistry, Anhui Agricultural University, China.
| | - Zhongbo Li
- Anhui Provincial Engineering Center for High-Performance Biobased Nylons, Anhui Engineering Research Center for Highly Functional Fiber Products for Automobiles, School of Materials and Chemistry, Anhui Agricultural University, China.
| | - Lijun Zhang
- Anhui Provincial Engineering Center for High-Performance Biobased Nylons, Anhui Engineering Research Center for Highly Functional Fiber Products for Automobiles, School of Materials and Chemistry, Anhui Agricultural University, China.
| |
Collapse
|
8
|
Zhu X, Zhao Y, Wu L, Gao X, Huang H, Han Y, Zhu T. Advances in Biosensors for the Rapid Detection of Marine Biotoxins: Current Status and Future Perspectives. BIOSENSORS 2024; 14:203. [PMID: 38667196 PMCID: PMC11048312 DOI: 10.3390/bios14040203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Marine biotoxins (MBs), harmful metabolites of marine organisms, pose a significant threat to marine ecosystems and human health due to their diverse composition and widespread occurrence. Consequently, rapid and efficient detection technology is crucial for maintaining marine ecosystem and human health. In recent years, rapid detection technology has garnered considerable attention for its pivotal role in identifying MBs, with advancements in sensitivity, specificity, and accuracy. These technologies offer attributes such as speed, high throughput, and automation, thereby meeting detection requirements across various scenarios. This review provides an overview of the classification and risks associated with MBs. It briefly outlines the current research status of marine biotoxin biosensors and introduces the fundamental principles, advantages, and limitations of optical, electrochemical, and piezoelectric biosensors. Additionally, the review explores the current applications in the detection of MBs and presents forward-looking perspectives on their development, which aims to be a comprehensive resource for the design and implementation of tailored biosensors for effective MB detection.
Collapse
Affiliation(s)
- Xiangwei Zhu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (X.Z.); (Y.Z.); (H.H.); (T.Z.)
| | - Yufa Zhao
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (X.Z.); (Y.Z.); (H.H.); (T.Z.)
| | - Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, China;
| | - Xin Gao
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, China;
| | - Huang Huang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (X.Z.); (Y.Z.); (H.H.); (T.Z.)
| | - Yu Han
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Sciences and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Ting Zhu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (X.Z.); (Y.Z.); (H.H.); (T.Z.)
| |
Collapse
|
9
|
Yang HJ, Raju CV, Choi CH, Park JP. Electrochemical peptide-based biosensor for the detection of the inflammatory disease biomarker, interleukin-1beta. Anal Chim Acta 2024; 1295:342287. [PMID: 38355228 DOI: 10.1016/j.aca.2024.342287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/20/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
This paper reports the development of a highly sensitive and selective electrochemical peptide-based biosensor for the detection of the inflammatory disease biomarker, interleukin-1beta (IL-1β). To this end, flower-like Au-Ag@MoS2-rGO nanocomposites were used as the signal amplification platform to achieve a label-free biosensor with a high sensitivity and selectivity. First, a high-affinity peptide for IL-1β was identified through biopanning with M13 random peptide libraries, and was newly designed by incorporating cysteine at the C-terminus. An IL-1β specific binding peptide was used as the bio-receptor, and the interaction between the IL-1β binding peptide and IL-1β was confirmed via enzyme-linked immunosorbent assay and various physicochemical and electrochemical analyses. Under optimal conditions, the biosensor achieved an ultrasensitive and specific IL-1β detection in a wide linear concentration range of 0-250 ng/mL with a picomolar-level detection limit (∼2.4 pM), low binding constant (∼0.62 pM), and a low coefficient of variation (<1.65 %). The biosensor was successfully utilized for IL-1β determination in the serum of Crohn's disease patients with a good correlation coefficient. In addition, the detection performance was comparable to that of commercially available IL-1β ELISA kit. This indicates that the electrochemical peptide-based biosensor may offer a potentially valuable platform for the clinical diagnosis of various inflammatory disease biomarkers.
Collapse
Affiliation(s)
- Hyo Jeong Yang
- Basic Research Laboratory, Department of Food Science and Technology and GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Chikkili Venkateswara Raju
- Basic Research Laboratory, Department of Food Science and Technology and GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Chang-Hyung Choi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Jong Pil Park
- Basic Research Laboratory, Department of Food Science and Technology and GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
10
|
Zeng W, Tang X, Wu T, Han B, Wu L. Development of a highly sensitive aptamer-based electrochemical sensor for detecting saxitoxin based on K 3Fe(CN) 6 regulated silver nanoparticles. Anal Chim Acta 2024; 1287:342134. [PMID: 38182355 DOI: 10.1016/j.aca.2023.342134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Saxitoxin (STX) is the most toxic marine toxin, which can pose several adverse effects on human health. High sensitivity, fast response, and low-cost detection of STX contamination are of significance to reducing the fishery and seafood industries' loss. Among the various types of biosensors, the electrochemical biosensors have been extensively studied in the detection of STX, but the electrode surface modification material is easy to fall off, resulting in unstable electrochemical signals and poor reproducibility. It is imperative to have a ratiometric electrochemical biosensor for STX. RESULTS In this study, we developed a novel aptamer-based electrochemical sensor (AECs) for the sensitive detection of STX based on a K3Fe(CN)6 regulated silver nanoparticles (Ag NPs) modified with aptamer. The AECs was constructed by immobilizing aptamer on Ag NPs surfaces. Under optimized conditions, the AECs showed a linear response towards STX in the range from 0.04 to 0.15 μM with the regression equation of Y = -8.0 + 233.7 X (R2 = 0.9956). The limit of detection (LOD) was calculated to be 1 nM (based on 3 N/S), which is significantly lower than the regulatory limits for STX in seafood. Moreover, the AECs showed excellent sensitivity, reproducibility and stability, as well as the detection in samples with acceptable recovery ranged from 71.2 % to 93.8 %, demonstrating its broad application prospects in detection of STX in seafood samples. SIGNIFICANCE This work proposed an AECs to achieve sensitive detection of STX. A reaction system of K3Fe(CN)6 etched Ag NPs was introduced and used as the signal source to avoid the instability of the electrochemical signal, which can produce a ratiometric electrochemical signal output mode, improving the stability and sensitivity of electrochemical detection of STX.
Collapse
Affiliation(s)
- Wei Zeng
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, 570228, China
| | - Xuemei Tang
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, 570228, China
| | - Ting Wu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, 570228, China
| | - Bingjun Han
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, 570228, China.
| |
Collapse
|
11
|
Tiryaki E, Zorlu T. Recent Advances in Metallic Nanostructures-assisted Biosensors for Medical Diagnosis and Therapy. Curr Top Med Chem 2024; 24:930-951. [PMID: 38243934 DOI: 10.2174/0115680266282489240109050225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024]
Abstract
The field of nanotechnology has witnessed remarkable progress in recent years, particularly in its application to medical diagnosis and therapy. Metallic nanostructures-assisted biosensors have emerged as a powerful and versatile platform, offering unprecedented opportunities for sensitive, specific, and minimally invasive diagnostic techniques, as well as innovative therapeutic interventions. These biosensors exploit the molecular interactions occurring between biomolecules, such as antibodies, enzymes, aptamers, or nucleic acids, and metallic surfaces to induce observable alterations in multiple physical attributes, encompassing electrical, optical, colorimetric, and electrochemical signals. These interactions yield measurable data concerning the existence and concentration of particular biomolecules. The inherent characteristics of metal nanostructures, such as conductivity, plasmon resonance, and catalytic activity, serve to amplify both sensitivity and specificity in these biosensors. This review provides an in-depth exploration of the latest advancements in metallic nanostructures-assisted biosensors, highlighting their transformative impact on medical science and envisioning their potential in shaping the future of personalized healthcare.
Collapse
Affiliation(s)
- Ecem Tiryaki
- Nanomaterials for Biomedical Applications, Italian Institute of Technology, 16163, Genova, Italy
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220, Esenler, Istanbul, Turkey
| | - Tolga Zorlu
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Carrer de Marcel∙lí Domingo s/n, 43007, Tarragona, Spain
| |
Collapse
|
12
|
Park H, Kwon N, Park G, Jang M, Kwon Y, Yoon Y, An J, Min J, Lee T. Fast-response electrochemical biosensor based on a truncated aptamer and MXene heterolayer for West Nile virus detection in human serum. Bioelectrochemistry 2023; 154:108540. [PMID: 37556929 DOI: 10.1016/j.bioelechem.2023.108540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus that can cause West Nile fever, meningitis, encephalitis, and polio. Early detection of WNV is important to prevent infection spread on the field. To commercialize the electrochemical biosensor for WNV, rapid target detection with the cheap manufacture cost is essential. Here, we developed a fast-response electrochemical biosensor consisting of a truncated WNV aptamer/MXene (Ti3C2Tx) bilayer on round-type micro gap. To reduce the target binding time, the application of the alternating current electrothermal flow (ACEF) technology reduced the target detection time to within 10 min, providing a rapid biosensor platform. The MXene nanosheet improved electrochemical signal amplification, and the aptamer produced through systematic evolution of ligands by exponential enrichment process eliminated unnecessary base sequences via truncation and lowered the manufacturing cost. Under optimized conditions, the WNV limit of detection (LOD) and selectivity were measured using electrochemical measurement methods, including cyclic voltammetry and square wave voltammetry. The LOD was 2.57 pM for WNV diluted in deionized water and 1.06 pM for WNV diluted in 10% human serum. The fabricated electrochemical biosensor has high selectivity and allows rapid detection, suggesting the possibility of future application in the diagnosis of flaviviridae virus.
Collapse
Affiliation(s)
- Hanbin Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Nayeon Kwon
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Goeun Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Moonbong Jang
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Yein Kwon
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Yejin Yoon
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Jeongyun An
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Junhong Min
- School of Integrative Engineering Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| |
Collapse
|
13
|
Raju CV, Manohara Reddy YV, Cho CH, Shin HH, Park TJ, Park JP. Highly sensitive electrochemical peptide-based biosensor for marine biotoxin detection using a bimetallic platinum and ruthenium nanoparticle-tethered metal-organic framework modified electrode. Food Chem 2023; 428:136811. [PMID: 37423105 DOI: 10.1016/j.foodchem.2023.136811] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/10/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Saxitoxin (STX) is a highly toxic small-molecule cyanotoxin that is water-soluble, stable in acidic media, and thermostable. STX is hazardous to human health and the environment in ocean, thus it is an important to detect it at very low concentrations. Herein, we developed an electrochemical peptide-based biosensor for the trace detection of STX in different sample matrix utilizing differential pulse voltammetry (DPV) signal. We synthesized the nanocomposite of zeolitic imidazolate framework-67 (ZIF-67) decorated bimetallic platinum (Pt) and ruthenium (Ru) nanoparticles (Pt-Ru@C/ZIF-67) using impregnation method. The nanocomposite modified with screen-printed electrode (SPE) was subsequently used to detect STX in the range of 1-1,000 ng mL-1, with a detection limit (LOD) of 26.7 pg mL-1. The developed peptide-based biosensor is highly selective and sensitive towards STX detection, thus it represents a promising strategy for the development of novel portable bioassay for monitoring various hazardous molecules in aquatic food chains.
Collapse
Affiliation(s)
- Chikkili Venkateswara Raju
- Basic Research Laboratory, Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Y Veera Manohara Reddy
- Basic Research Laboratory, Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Chae Hwan Cho
- Basic Research Laboratory, Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hyeon Ho Shin
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Jong Pil Park
- Basic Research Laboratory, Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
14
|
Park JA, Kwon Y, Le XA, Vu TH, Park H, Lee H, Choi HK, Park C, Kim MI, Lee T. Construction of a rapid electrochemical biosensor consisting of a nanozyme/aptamer conjugate for waterborne microcystin detection. Analyst 2023; 148:2536-2543. [PMID: 37144330 DOI: 10.1039/d3an00391d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Microcystin-LR (MC-LR) is a hepatotoxin generated by the excessive proliferation of cyanobacteria, which is a threat to humans and wildlife. Therefore, rapid detection of MC-LR is an important challenge. This study describes a rapid electrochemical biosensor comprising nanozymes and aptamers. Alternating current electrothermal flow (ACEF) significantly reduced the MC-LR detection period to 10 min. We also used MnO2/MC-LR aptamer conjugates to improve the sensitivity to MC-LR detection. Here, MnO2 amplified the electrochemical signal and the aptamer showed high selectivity for MC-LR. Under the optimal conditions, the limit of detection (LOD) and selectivity in freshwater were detected using cyclic voltammetry and differential pulse voltammetry. As a result, an LOD of 3.36 pg mL-1 was observed in the linear concentration range of 10 pg mL-1 to 1 μg mL-1. This study quickly and sensitively detected MC-LR in a situation where it causes serious damage worldwide. In addition, the ACEF technology introduction is the first example of MC-LR detection, suggesting a wide range of possibilities for MC-LR biosensors.
Collapse
Affiliation(s)
- Jeong Ah Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| | - Yein Kwon
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| | - Xuan Ai Le
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea.
| | - Trung Hieu Vu
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea.
| | - Hanbin Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| | - Hoseok Lee
- Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Hye Kyu Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 121-742, Republic of Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea.
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| |
Collapse
|
15
|
Bai X, Gong W, Guo Y, Zhu D, Li X. Detection of saxitoxin by a SERS aptamer sensor based on enzyme cycle amplification technology. Analyst 2023; 148:2327-2334. [PMID: 37097282 DOI: 10.1039/d3an00330b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Saxitoxin (STX) is a typical toxic guanidinium neurotoxin, one of the paralytic shellfish poisons (PSP), which poses a serious threat to human health. In this paper, a simple and sensitive SERS aptamer sensor (abbreviated as AuNP@4-NTP@SiO2) for the quantitative determination of STX was developed. Hairpin aptamers of saxitoxin are modified on magnetic beads and used as recognition elements. In the presence of STX, DNA ligase, and the rolling circle template (T1), a rolling circle amplification reaction was triggered to produce long single-stranded DNA containing repetitive sequences. The sequence can be hybridized with the SERS probe to realize the rapid detection of STX. Due to the inherent merits of its components, the obtained AuNP@4-NTP@SiO2 SERS aptamer sensor manifests excellent sensing performance for STX detection with a wide linear range from 2.0 × 10-10 mol L-1 to 5.0 × 10-4 mol L-1 and a lower detection limit of 1.2 × 10-11 mol L-1. This SERS sensor can provide a strategy for the micro-detection of other biological toxins by changing the aptamer sequence.
Collapse
Affiliation(s)
- Xinna Bai
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China.
| | - Weifang Gong
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China.
| | - Yaxin Guo
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China.
| | - Di Zhu
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China.
| | - Xuemei Li
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China.
| |
Collapse
|
16
|
Seo Y, Yoon Y, Lee M, Jang M, Kim TH, Kim Y, Yoo HY, Min J, Lee T. Rapid electrochemical biosensor composed of DNA probe/iridium nanoparticle bilayer for Aphanizomenon flos-aquae detection in fresh water. Colloids Surf B Biointerfaces 2023; 225:113218. [PMID: 36871331 DOI: 10.1016/j.colsurfb.2023.113218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Toxic cyanobacteria pose a serious threat to aquatic ecosystems and require adequate detection and control systems. Aphanizomenon flos-aquae is a harmful cyanobacterium that produces the toxicant saxitoxin. Therefore, it is necessary to detect the presence of A. flos-aquae in lakes and rivers. We proposed a rapid electrochemical biosensor composed of DNA primer/iridium nanoparticles (IrNP) bilyer for the detection of A. flos-aquae in freshwater. The extracted A. flos-aquae gene (rbcL-rbcX) is used as a target, and it was fixed to the electrode using a 5'-thiolated DNA primer (capture probe). Then, Avidin@IrNPs complex for amplification of electrical signals was bound to the target through a 3'-biotinylated DNA primer (detection probe). To rapidly detect the target, an alternating current electrothermal flow technique was introduced in the detection step, which could reduce the detection time to within 20 min. To confirm the biosensor fabrication, atomic force microscopy was used to investigate the surface morphology. To evaluate the biosensor performance, cyclic voltammetry and electrochemical impedance spectroscopy were used. The target gene was detected at a concentration of 9.99 pg/mL in tap water, and the detection range was 0.1 ng/mL to 103 ng/mL with high selectivity. Based on the combined system, we employed A. flos-aquae in tap water. This rapid cyanobacteria detection system is a powerful tool for CyanoHABs in the field.
Collapse
Affiliation(s)
- Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Yejin Yoon
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Myoungro Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Moonbong Jang
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Republic of Korea
| | - Younghun Kim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea.
| | - Junhong Min
- School of Integrative Engineering Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Republic of Korea.
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| |
Collapse
|
17
|
Wei LN, Luo L, Wang BZ, Lei HT, Guan T, Shen YD, Wang H, Xu ZL. Biosensors for detection of paralytic shellfish toxins: Recognition elements and transduction technologies. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
18
|
Blasques RV, de Oliveira PR, Kalinke C, Brazaca LC, Crapnell RD, Bonacin JA, Banks CE, Janegitz BC. Flexible Label-Free Platinum and Bio-PET-Based Immunosensor for the Detection of SARS-CoV-2. BIOSENSORS 2023; 13:190. [PMID: 36831956 PMCID: PMC9954080 DOI: 10.3390/bios13020190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The demand for new devices that enable the detection of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) at a relatively low cost and that are fast and feasible to be used as point-of-care is required overtime on a large scale. In this sense, the use of sustainable materials, for example, the bio-based poly (ethylene terephthalate) (Bio-PET) can be an alternative to current standard diagnostics. In this work, we present a flexible disposable printed electrode based on a platinum thin film on Bio-PET as a substrate for the development of a sensor and immunosensor for the monitoring of COVID-19 biomarkers, by the detection of L-cysteine and the SARS-CoV-2 spike protein, respectively. The electrode was applied in conjunction with 3D printing technology to generate a portable and easy-to-analyze device with a low sample volume. For the L-cysteine determination, chronoamperometry was used, which achieved two linear dynamic ranges (LDR) of 3.98-39.0 μmol L-1 and 39.0-145 μmol L-1, and a limit of detection (LOD) of 0.70 μmol L-1. The detection of the SARS-CoV-2 spike protein was achieved by both square wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS) by a label-free immunosensor, using potassium ferro-ferricyanide solution as the electrochemical probe. An LDR of 0.70-7.0 and 1.0-30 pmol L-1, with an LOD of 0.70 and 1.0 pmol L-1 were obtained by SWV and EIS, respectively. As a proof of concept, the immunosensor was successfully applied for the detection of the SARS-CoV-2 spike protein in enriched synthetic saliva samples, which demonstrates the potential of using the proposed sensor as an alternative platform for the diagnosis of COVID-19 in the future.
Collapse
Affiliation(s)
- Rodrigo Vieira Blasques
- Laboratory of Sensors, Nanomedicine and Nanostructured Materials, Federal University of São Carlos, Araras 13600-970, Brazil
- Department of Physics, Chemistry, and Mathematics, Federal University of São Carlos, Sorocaba 18052-780, Brazil
| | - Paulo Roberto de Oliveira
- Laboratory of Sensors, Nanomedicine and Nanostructured Materials, Federal University of São Carlos, Araras 13600-970, Brazil
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Cristiane Kalinke
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
- Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil
| | - Laís Canniatti Brazaca
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Robert D. Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | | | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Bruno Campos Janegitz
- Laboratory of Sensors, Nanomedicine and Nanostructured Materials, Federal University of São Carlos, Araras 13600-970, Brazil
| |
Collapse
|
19
|
Park G, Park H, Park SC, Jang M, Yoon J, Ahn JH, Lee T. Recent Developments in DNA-Nanotechnology-Powered Biosensors for Zika/Dengue Virus Molecular Diagnostics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:361. [PMID: 36678114 PMCID: PMC9864780 DOI: 10.3390/nano13020361] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Zika virus (ZIKV) and dengue virus (DENV) are highly contagious and lethal mosquito-borne viruses. Global warming is steadily increasing the probability of ZIKV and DENV infection, and accurate diagnosis is required to control viral infections worldwide. Recently, research on biosensors for the accurate diagnosis of ZIKV and DENV has been actively conducted. Moreover, biosensor research using DNA nanotechnology is also increasing, and has many advantages compared to the existing diagnostic methods, such as polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). As a bioreceptor, DNA can easily introduce a functional group at the 5' or 3' end, and can also be used as a folded structure, such as a DNA aptamer and DNAzyme. Instead of using ZIKV and DENV antibodies, a bioreceptor that specifically binds to viral proteins or nucleic acids has been fabricated and introduced using DNA nanotechnology. Technologies for detecting ZIKV and DENV can be broadly divided into electrochemical, electrical, and optical. In this review, advances in DNA-nanotechnology-based ZIKV and DENV detection biosensors are discussed.
Collapse
Affiliation(s)
- Goeun Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Hanbin Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sang-Chan Park
- Department of Electronics Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Moonbong Jang
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Jinho Yoon
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| | - Jae-Hyuk Ahn
- Department of Electronics Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- TL Bioindustry, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| |
Collapse
|
20
|
Recent developments in biosensing strategies for the detection of small molecular contaminants to ensure food safety in aquaculture and fisheries. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
Zahraee H, Mehrzad A, Abnous K, Chen CH, Khoshbin Z, Verdian A. Recent Advances in Aptasensing Strategies for Monitoring Phycotoxins: Promising for Food Safety. BIOSENSORS 2022; 13:56. [PMID: 36671891 PMCID: PMC9856083 DOI: 10.3390/bios13010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Phycotoxins or marine toxins cause massive harm to humans, livestock, and pets. Current strategies based on ordinary methods are long time-wise and require expert operators, and are not reliable for on-site and real-time use. Therefore, it is urgent to exploit new detection methods for marine toxins with high sensitivity and specificity, low detection limits, convenience, and high efficiency. Conversely, biosensors can distinguish poisons with less response time and higher selectivity than the common strategies. Aptamer-based biosensors (aptasensors) are potent for environmental monitoring, especially for on-site and real-time determination of marine toxins and freshwater microorganisms, and with a degree of superiority over other biosensors, making them worth considering. This article reviews the designed aptasensors based on the different strategies for detecting the various phycotoxins.
Collapse
Affiliation(s)
- Hamed Zahraee
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Atiyeh Mehrzad
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad 1314983651, Iran
- Department of Food Biotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad 1314983651, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Chih-Hsin Chen
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - Zahra Khoshbin
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad 1314983651, Iran
| |
Collapse
|
22
|
Nam NN, Do HDK, Trinh KTL, Lee NY. Recent Progress in Nanotechnology-Based Approaches for Food Monitoring. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4116. [PMID: 36500739 PMCID: PMC9740597 DOI: 10.3390/nano12234116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 05/10/2023]
Abstract
Throughout the food supply chain, including production, storage, and distribution, food can be contaminated by harmful chemicals and microorganisms, resulting in a severe threat to human health. In recent years, the rapid advancement and development of nanotechnology proposed revolutionary solutions to solve several problems in scientific and industrial areas, including food monitoring. Nanotechnology can be incorporated into chemical and biological sensors to improve analytical performance, such as response time, sensitivity, selectivity, reliability, and accuracy. Based on the characteristics of the contaminants and the detection methods, nanotechnology can be applied in different ways in order to improve conventional techniques. Nanomaterials such as nanoparticles, nanorods, nanosheets, nanocomposites, nanotubes, and nanowires provide various functions for the immobilization and labeling of contaminants in electrochemical and optical detection. This review summarizes the recent advances in nanotechnology for detecting chemical and biological contaminations in the food supply chain.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Kieu The Loan Trinh
- Department of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
23
|
Zheng W, Liu X, Li Q, Shu Z, Li Z, Zhang L. A simple electrochemical aptasensor for saxitoxin detection. RSC Adv 2022; 12:23801-23807. [PMID: 36093254 PMCID: PMC9396634 DOI: 10.1039/d2ra03690h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/14/2022] [Indexed: 11/21/2022] Open
Abstract
The combination between the electrochemical sensor and selective specificity of MB modified aptamer(MB-Apt) yielded an electrochemical aptasensor with a high sensitivity and excellent specific recognition ability to STX.
Collapse
Affiliation(s)
- Weixian Zheng
- College of Light-Textile Engineering and Art, Anhui Agriculture University, Hefei, 230009, China
| | - Xinyu Liu
- College of Light-Textile Engineering and Art, Anhui Agriculture University, Hefei, 230009, China
| | - Qianwen Li
- College of Light-Textile Engineering and Art, Anhui Agriculture University, Hefei, 230009, China
| | - Zuju Shu
- College of Light-Textile Engineering and Art, Anhui Agriculture University, Hefei, 230009, China
| | - Zhongbo Li
- College of Light-Textile Engineering and Art, Anhui Agriculture University, Hefei, 230009, China
| | - Lijun Zhang
- College of Light-Textile Engineering and Art, Anhui Agriculture University, Hefei, 230009, China
| |
Collapse
|