1
|
Yin R, Gan L, Li S, Zhao H, Wei Y, Wang J, Liu B, Ning L, Feng Z, Yu Y. Development and validation of universal PCR, basic ERA, and qPCR assays targeting the 16S-23S rRNA intergenic spacer region for Mycoplasma detection. Microb Pathog 2025; 205:107669. [PMID: 40339624 DOI: 10.1016/j.micpath.2025.107669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 04/15/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
Mycoplasma contamination poses a persistent challenge in cell culture systems and the production of cell-derived biological products, including vaccines and therapeutic drugs. Current detection methods suffer from several limitations: they risk false-negative results due to incomplete species coverage, exhibit high detection limits in molecular assays, and prove time-consuming while lacking sensitivity for certain fastidious mycoplasma species that grow poorly in vitro, as outlined in pharmacopeial testing standards. To address these issues, we developed three improved detection methods-PCR, enzymatic recombinase amplification (ERA), and quantitative PCR (qPCR)-using universal primer pairs targeting conserved regions across 143 mycoplasma species. All three methods demonstrated exceptional specificity, accurately identifying 16 different Mycoplasma species (including those specified in the European Pharmacopoeia [2021] and Japanese Pharmacopoeia [JP16]) while showing no cross-reactivity with common cell culture contaminants (bacteria, viruses, or fungi). Sensitivity testing using a Spiroplasma 16S-23S spacer fragment plasmid revealed detection limits of 101 copies for PCR, 100 copies for ERA, and an impressive 10-1 copies for qPCR. Validation studies showed 100 % agreement with pharmacopeial gold-standard methods, with our novel methods achieving 17 % (PCR), 36.8 % (ERA), and 40.6 % (qPCR) higher detection rates than conventional approaches and outperforming comparable commercial products. Notably, all three methods significantly reduced testing time to just 1-2 h. Our results demonstrate substantial improvements in specificity, sensitivity, and detectable species range compared to existing methods. Among these approaches, qPCR emerges as particularly promising due to its superior sensitivity and rapid turnaround, making it ideally suited for quality control in biological product manufacturing and research applications. This advancement represents a significant step forward in mycoplasma contamination monitoring for the biotechnology and pharmaceutical industries.
Collapse
Affiliation(s)
- Ruiru Yin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China
| | - Lanxi Gan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China; College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410125, China
| | - Shiyang Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China; College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410125, China
| | - Han Zhao
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yanna Wei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China
| | - Jia Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Beibei Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China
| | - Lihua Ning
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhixin Feng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China
| | - Yanfei Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
2
|
Li Y, Guo T, He J, Liu D, Peng S, Xu A. SLC35A2-mediated bisected GlcNAc-modified extracellular vesicles enhance immune regulation in breast cancer lung metastasis. Int Immunopharmacol 2025; 154:114505. [PMID: 40157085 DOI: 10.1016/j.intimp.2025.114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 04/01/2025]
Abstract
This study investigates the role of SLC35A2-mediated bisected GlcNAc-modified small extracellular vesicles (sEVs) in breast cancer (BC) lung metastasis. By modulating B3GALT1 expression, these sEVs regulate the pre-metastatic immune microenvironment, enhancing CD8+ T cell infiltration and reducing immune evasion. The use of β-peptide-loaded sEVs further amplifies anti-metastatic effects, as demonstrated in vivo mouse models and molecular analyses. These findings underscore the therapeutic potential of glycosylation-modified sEVs in enhancing immune responses and controlling BC metastasis.
Collapse
Affiliation(s)
- Yangyang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of General Surgery, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Tao Guo
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of General Surgery, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Juntong He
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of General Surgery, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Defeng Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of General Surgery, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Shihao Peng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of General Surgery, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Aman Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
3
|
Ou X, Chen P, Liu BF. Liquid Biopsy on Microfluidics: From Existing Endogenous to Emerging Exogenous Biomarkers Analysis. Anal Chem 2025; 97:8625-8640. [PMID: 40247704 DOI: 10.1021/acs.analchem.4c05407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Liquid biopsy is an appealing approach for early diagnosis and assessment of treatment efficacy in cancer. Typically, liquid biopsy involves the detection of endogenous biomarkers, including circulating tumor cells (CTCs), extracellular vesicles (EVs), circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), and proteins. The levels of these endogenous biomarkers are higher in cancer patients compared to those in healthy individuals. However, the clinical application of liquid biopsy using endogenous biomarker analysis faces challenges due to its low abundance and poor stability in circulation. Recently, a promising strategy involving the engineering of exogenous probes has been developed to overcome these limitations. These exogenous probes are activated within the tumor microenvironment, generating distinct exogenous markers that can be easily distinguished from background biological signals. Alternatively, these exogenous probes can be labeled with intrinsic endogenous biomarkers in vivo and detected in vitro after metabolic processes. In this review, we primarily focus on microfluidic-based liquid biopsy techniques that allow for the transition from analyzing existing endogenous biomarkers to emerging exogenous ones. First, we introduce common endogenous biomarkers, as well as synthetic exogenous ones. Next, we discuss recent advancements in microfluidic-based liquid biopsy techniques for analyzing both existing endogenous and emerging exogenous biomarkers. Lastly, we provide insights into future directions for liquid biopsy on microfluidic systems.
Collapse
Affiliation(s)
- Xiaowen Ou
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, Department of Chemistry and Life Science, Hubei University of Education, Wuhan, 430205, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Wang H, Gan Z, Wang Y, Hu D, Zhang L, Ye F, Duan P. A Noninvasive Menstrual Blood-Based Diagnostic Platform for Endometriosis Using Digital Droplet Enzyme-Linked Immunosorbent Assay and Single-Cell RNA Sequencing. RESEARCH (WASHINGTON, D.C.) 2025; 8:0652. [PMID: 40171018 PMCID: PMC11961069 DOI: 10.34133/research.0652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 02/27/2025] [Accepted: 03/08/2025] [Indexed: 04/03/2025]
Abstract
Endometriosis is marked by the ectopic growth, spread, and invasion of endometrial tissue beyond the uterus, resulting in recurrent bleeding, pain, reproductive challenges, and the formation of nodules or masses. Despite advancements in detection methods like ultrasound and laparoscopy, these techniques remain limited by low specificity and invasiveness, underscoring the need for a highly specific, noninvasive in vitro diagnostic method. This study investigates the potential of using menstrual blood as a noninvasive diagnostic sample for endometriosis by targeting genetic and inflammatory markers associated with endometriosis lesions. A novel digital droplet enzyme-linked immunosorbent assay (ddELISA) was developed, leveraging SiO2 nanoparticles for the femtomolar-sensitive detection of inflammatory cytokines (OPN, IL-10, IL-6) in menstrual blood. Single-cell RNA sequencing revealed differentiation patterns across endometrial tissues and menstrual blood, affirming that menstrual blood replicates key inflammatory and immune properties of endometriosis. Furthermore, endometriosis menstrual blood endometrial cells derived from human menstrual blood displayed similar properties to endometrial stromal cells in endometriosis lesions, validating menstrual blood as a suitable in vitro diagnostic sample. In contrast to traditional ELISA, ddELISA supports multi-target detection with enhanced sensitivity and reduced processing time, allowing precise biomarker analysis from minimal sample volumes. Our ddELISA-based approach shows promise as a rapid, accessible, and accurate diagnostic tool for endometriosis, with potential for practical clinical application.
Collapse
Affiliation(s)
- Han Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oncology Discipline Group,
The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhouyi Gan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oncology Discipline Group,
The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yueyue Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oncology Discipline Group,
The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Dingmeng Hu
- Joint Centre of Translational Medicine,
The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Lexiang Zhang
- Joint Centre of Translational Medicine,
The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Fangfu Ye
- Joint Centre of Translational Medicine,
The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Duan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oncology Discipline Group,
The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
5
|
Huang Z, Song J, Shi C, Fan X, Xiao Y, Wang X. Development and validation of an automated and high-throughput quadruplex RT-ddPCR assay for the detection of influenza A, influenza B, respiratory syncytial virus, and SARS-CoV-2. Front Cell Infect Microbiol 2025; 15:1529336. [PMID: 40226127 PMCID: PMC11985766 DOI: 10.3389/fcimb.2025.1529336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/11/2025] [Indexed: 04/15/2025] Open
Abstract
The main detection method for viral respiratory infections is reverse transcription polymerase chain reaction (RT-PCR), but it is susceptible to sample inhibitors and relies on a standard curve and subjective thresholds to quantify nucleic acid targets. However, droplet digital PCR (ddPCR), the third generation of PCR with higher sensitivity and accuracy, is an effective tool for the detection and absolute quantification of respiratory viruses. In this study, we introduced AHQR-ddPCR, which is an automated and high-throughput quadruplex reverse transcription ddPCR assay based on the QX ONE platform for the detection of influenza A, influenza B, respiratory syncytial virus, and SARS-CoV-2 in a single reaction. The AHQR-ddPCR assay had analytical sensitivity as low as 0.65-0.78 copies/μL for four respiratory viruses, and exhibited excellent analytical specificity, intraassay and interassay precision, and a wide linear range for each viral target. The results in clinical samples showed that the assay had good concordance and better diagnostic sensitivity compared to RT-PCR. In short, the highly sensitive and absolutely quantitative AHQR-ddPCR assay has excellent analytical and clinical performance, and the advantage of detecting weakly positive samples, which can effectively reduce false-negative results and is a powerful complement to RT-PCR. In addition, it has great value for virology research and the development of automated molecular assays.
Collapse
Affiliation(s)
- Zhongqiang Huang
- Department of Molecular Biology, Shanghai Centre for Clinical Laboratory, Shanghai, China
| | - Jian Song
- Department of Molecular Biology, Shanghai Centre for Clinical Laboratory, Shanghai, China
| | - Chunli Shi
- Department of Molecular Biology, Shanghai Centre for Clinical Laboratory, Shanghai, China
| | - Xiaoyu Fan
- Department of Molecular Biology, Shanghai Centre for Clinical Laboratory, Shanghai, China
| | - Yanqun Xiao
- Department of Molecular Biology, Shanghai Centre for Clinical Laboratory, Shanghai, China
| | - Xueliang Wang
- Department of Molecular Biology, Shanghai Centre for Clinical Laboratory, Shanghai, China
- Department of Quality Control Material R&D, Shanghai Center for Clinical Laboratory, Shanghai, China
- Department of Molecular Diagnostic Innovation Technology, Shanghai Academy of Experimental Medicine, Shanghai, China
| |
Collapse
|
6
|
Choi JW, Jung D, Park YM, Bae NH, Lee SJ, Rho D, Chung BG, Lee KG. Microinjection molded microwell array-based portable digital PCR system for the detection of infectious respiratory viruses. NANO CONVERGENCE 2025; 12:16. [PMID: 40119017 PMCID: PMC11928701 DOI: 10.1186/s40580-025-00482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/07/2025] [Indexed: 03/24/2025]
Abstract
In molecular diagnostics, the digital polymerase chain reaction (dPCR) has been considered a promising point-of-care testing (POCT) method for the rapid and accurate analysis of respiratory infections. To improve its practical applicability, it is necessary to develop a mass-producible and reproducible dPCR system for nucleic acid partitioning; additionally, the system must provide a customized portable analysis. In this study, we report an advanced mass-production method for the fabrication of microwell array-based dPCR chips suitable for nucleic acid partitioning and a compact fluorescence signal analysis dPCR system. Based on metal mold fabrication, different microwell sizes with diameters in the 100-200 μm range and pitches in the 200-400 μm range are designed and successfully fabricated using photolithography, metal electroplating, and injection molding techniques. Additionally, a battery-operated dPCR system utilizing digitalized fluorescence signal analysis is developed for on-site detection. To verify the chip and system applicability, the infectious human coronavirus is analyzed using different nucleic acid concentrations. By evaluating the performance of the dPCR chips and system, accurate and quantitative virus analysis results are obtained, verifying the portability, easy use, and reproducibility of the chips and system. Furthermore, the detection results obtained using the fabricated chips and the developed system are similar to the results obtained using commercially available systems, verifying that the proposed dPCR chips and system exhibit sensitivity, accuracy, reliability, and reproducibility in the quantitative molecular analysis of infectious diseases.
Collapse
Affiliation(s)
- Ji Wook Choi
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
- Institute of Integrated Biotechnology, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Daekyeong Jung
- Center for Nano-Bio Development, National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yoo Min Park
- Center for Nano-Bio Development, National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Nam Ho Bae
- Center for Nano-Bio Development, National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seok Jae Lee
- Center for Nano-Bio Development, National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Donggee Rho
- Center for Nano-Bio Development, National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea.
- Institute of Integrated Biotechnology, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea.
- Institute of Smart Biosensor, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea.
| | - Kyoung G Lee
- Center for Nano-Bio Development, National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
7
|
Zhuang L, Gong J, Shen J, Zhao Y, Yang J, Liu Q, Zhang Y, Shen Q. Advances in molecular epidemiology and detection methods of pseudorabies virus. DISCOVER NANO 2025; 20:45. [PMID: 39992589 PMCID: PMC11850701 DOI: 10.1186/s11671-025-04217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Pseudorabies (PR), a highly contagious disease caused by the pseudorabies virus (PRV), represents a significant threat to the global swine industry. Despite the success of developed countries in controlling the PRV epidemic through swine pseudorabies eradication programs, wild boars, as a potential source of infection, still require sustained attention and effective control measures. Concurrently, there has been considerable global attention directed towards cases of PRV infection in humans. In consideration of the aforementioned factors, this paper presents a comprehensive review of recent developments in the PRV genome, epidemiology, vaccine research, and molecular detection methods. The epidemiology section presents an analysis of the transmission routes, susceptible animal groups, and geographic distribution of PRV, as well as an examination of the trend of the epidemic in recent years. In the field of vaccine research, the current development of genetically engineered vaccines is emphasized, and the immunogenicity and safety of vaccines are discussed. Moreover, the molecular detection techniques utilized to identify PRV, including immunological methods, nucleic acid detection methods, biosensors, and so forth, are presented in a systematic manner. Finally, this paper presents a comprehensive discussion of the current status of PRV-related research and offers insights into future directions, with the aim of providing a foundation for the scientific prevention and control of PRV.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Jingyi Shen
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, 210038, People's Republic of China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Qingxin Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
8
|
Liu L, Mu BR, Zhou Y, Wu QL, Li B, Wang DM, Lu MH. Research Trends and Development Dynamics of qPCR-based Biomarkers: A Comprehensive Bibliometric Analysis. Mol Biotechnol 2025:10.1007/s12033-024-01356-7. [PMID: 39843617 DOI: 10.1007/s12033-024-01356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025]
Abstract
Quantitative polymerase chain reaction (qPCR) is a vital molecular technique for biomarker detection; however, its clinical application is impeded by the scarcity of robust biomarkers and the inherent limitations of the technology. This study conducted a bibliometric analysis of 4063 qPCR-based biomarker studies sourced from the Web of Science (WOS) database, employing VOSviewer and CiteSpace to generate multi-dimensional structural insights into this field. The results reveal a growing trend in research within this domain, with gene expression analysis playing a central role in the identification of potential biomarkers. Among these, cancer-related biomarkers are the most prominent, while research on biomarkers for other diseases remains limited. Liquid biopsy biomarkers, including microRNA (miRNA), circulating free DNA (cfDNA), and circulating tumor DNA (ctDNA), are increasingly being explored. The integration of bioinformatics, omics analysis, and high-throughput technologies with qPCR is accelerating biomarker discovery. Furthermore, large-scale parallel sequencing is emerging as a potential alternative to relative quantification and microarray techniques. Nevertheless, qPCR remains essential for validating specific biomarkers, and further standardization of its protocols is necessary to enhance reliability. This study provides a systematic analysis of qPCR-based biomarker research and underscores the need for future technological integration and standardization to facilitate broader clinical applications.
Collapse
Affiliation(s)
- Li Liu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China
| | - Ben-Rong Mu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China
| | - Ya Zhou
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China
| | - Qing-Lin Wu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China
| | - Bin Li
- Department of Respiratory Medicine, Guangyuan Hospital of Traditional Chinese Medicine, No.133 Jianshe Road, Lizhou District, Guangyuan, 628099, Sichuan, China
| | - Dong-Mei Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China.
| | - Mei-Hong Lu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
9
|
Luo Y, Ye X, Shen N, Xu L, Zhang J, Sheng Z, Liu Q, Feng Y, Shen F. Multiplex Digital Nucleic Acid Analysis by a LAMP-Argonaute Coupling Assay via a Parallel Droplet Fusion SlipChip. Anal Chem 2025; 97:731-740. [PMID: 39810344 DOI: 10.1021/acs.analchem.4c05145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Multiplex digital nucleic acid analysis (NAA) allows the precise quantification of multiple target nucleic acids with single-molecule sensitivity, making it highly appealing for life science research and clinical diagnostics. Nucleic acid-guided endonucleases, such as CRISPR, have demonstrated great potential in digital NAA. However, performing multiplex digital NAA with an endonuclease remains challenging. The thermophilic Argonaute protein (Ago) enables specific targeting of multiple sequences by a single enzyme, exhibiting superior potential in multiplex detection. Here, we developed a multiplex digital NAA by coupling nucleic acid amplification and Ago-specific detection using parallel droplet fusion facilitated by a SlipChip. The SlipChip can generate a series of droplets to perform multiplex digital loop-mediated isothermal amplification (LAMP), followed by a series of droplets containing Ago reagents for parallel mixing and reactions, resulting in three distinct digital fluorescence signals (FAM, ROX, and Cy5) corresponding to each specific target sequence. We performed viral load analysis of respiratory viruses, including influenza A, influenza B, and SARS-CoV-2, within 60 min. In addition, we used this digital LAMP-Ago assay to analyze viral loads in 34 clinical samples. The system provides a multiplex digital NAA capable of precise nucleic acid quantification with high sensitivity and specificity.
Collapse
Affiliation(s)
- Yang Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xingyu Ye
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Shen
- Department of Infectious Disease, Shanghai Children's Medical Center, National Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lei Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jiajie Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zheyi Sheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
10
|
Wang T, Wang X, Luo S, Zhang P, Li N, Chen C, Li J, Shi H, Dong H, Huang RP. Constructions, Purifications and Applications of DNA-Antibody Conjugates: A Review. ACS OMEGA 2024; 9:47951-47963. [PMID: 39676968 PMCID: PMC11635685 DOI: 10.1021/acsomega.4c07714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024]
Abstract
A DNA-antibody conjugate is a synthetic molecule that combines the unique functions of both an antibody and DNA. With the increased accessibility of commercialized kits, the procedure for constructing conjugates is simplified and the requirement for chemistry background is reduced. As a result, the difficulty of preparing a DNA-antibody conjugate has been significantly lowered. Therefore, the application of DNA-antibody conjugates has attracted more interest in recent years. The most common application of DNA-antibody conjugates is based on the amplifiable property of DNA through PCR. This includes single-conjugate-based immuno-PCR, paired-conjugates-based proximity ligation assay, and proximity extension assay. These methods achieve highly sensitive or specific detection of target proteins. The conjugated single stranded DNA molecules can also specifically hybridize with another strand containing its complementary sequence. This property can be used to selectively bind fluorophore labeled DNA strands, which plays an important role in tissue imaging and spatial omics. All these factors make DNA-antibody conjugates have a broad range of applications in research, diagnosis, and potentially therapy.
Collapse
Affiliation(s)
- Tao Wang
- RayBiotech
Guangzhou Co., Ltd., 79 Ruihe Road, Huangpu District, Guangzhou, Guangdong 510535, China
- Department
of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- RayBiotech
Life Inc., Peachtree
Corners, Georgia 30092, United States
| | - Xuelin Wang
- RayBiotech
Life Inc., Peachtree
Corners, Georgia 30092, United States
| | - Shuhong Luo
- RayBiotech
Life Inc., Peachtree
Corners, Georgia 30092, United States
| | - Peng Zhang
- RayBiotech
Life Inc., Peachtree
Corners, Georgia 30092, United States
| | - Na Li
- RayBiotech
Life Inc., Peachtree
Corners, Georgia 30092, United States
| | - Can Chen
- College
of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianwen Li
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Hao Shi
- School
of
Life Science and Food Engineering, Huaiyin
Institute of Technology, Huaian, Jiangsu 223003, China
| | - Hua Dong
- Department
of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National
Engineering Research Center for Tissue Restoration and Reconstruction
(NERC-TRR), Guangzhou 510006, China
| | - Ruo-Pan Huang
- RayBiotech
Guangzhou Co., Ltd., 79 Ruihe Road, Huangpu District, Guangzhou, Guangdong 510535, China
- RayBiotech
Life Inc., Peachtree
Corners, Georgia 30092, United States
| |
Collapse
|
11
|
Si HQ, Wang P, Long F, Zhong W, Meng YD, Rong Y, Meng XY, Wang FB. Cancer liquid biopsies by Oxford Nanopore Technologies sequencing of cell-free DNA: from basic research to clinical applications. Mol Cancer 2024; 23:265. [PMID: 39614371 PMCID: PMC11605934 DOI: 10.1186/s12943-024-02178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024] Open
Abstract
Liquid biopsies, in particular, analysis of cell-free DNA, are expected to revolutionize the current landscape of cancer diagnostics and treatment. However, the existing methods for cfDNA-based liquid biopsies for cancer have certain limitations, such as fragment interruption and GC bias, which are likely to be resolved by the emerging Oxford Nanopore Technologies (ONT), characterized by long read-length, fast read-times, high throughput, and polymerase chain reaction-free. In this review, we summarized the current literatures regarding the feasibility and applications of cfDNA-based liquid biopsies using ONT for cancer management, a possible game-changer that we believe is promising in detecting multimodal biomarkers and can be applied in a wide range of oncology utilities including early screening, diagnosis, and treatment monitoring.
Collapse
Affiliation(s)
- Hua-Qi Si
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peng Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fei Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Zhong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan-Dong Meng
- Hubei Provincial Clinical Medical Research Center for Nephropathy, Hubei Minzu University, Enshi, China
| | - Yuan Rong
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xiang-Yu Meng
- Hubei Provincial Clinical Medical Research Center for Nephropathy, Hubei Minzu University, Enshi, China.
| | - Fu-Bing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
12
|
Zhang C, Li T, Zhao Q, Ma R, Hong Z, Huang X, Gao P, Liu J, Zhao J, Wang Z. Advances and Prospects in Liquid Biopsy Techniques for Malignant Tumor Diagnosis and Surveillance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404709. [PMID: 39082395 DOI: 10.1002/smll.202404709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Indexed: 11/02/2024]
Abstract
Liquid biopsy technology provides invaluable support for the early diagnosis of tumors and surveillance of disease course by detecting tumor-related biomarkers in bodily fluids. Currently, liquid biopsy techniques are mainly divided into two categories: biomarker and label-free. Biomarker liquid biopsy techniques utilize specific antibodies or probes to identify and isolate target cells, exosomes, or molecules, and these techniques are widely used in clinical practice. However, they have certain limitations including dependence on tumor markers, alterations in cell biological properties, and high cost. In contrast, label-free liquid biopsy techniques directly utilize physical or chemical properties of cells, exosomes, or molecules for detection and isolation. These techniques have the advantage of not needing labeling, not impacting downstream analysis, and low detection cost. However, most are still in the research stage and not yet mature. This review first discusses recent advances in liquid biopsy techniques for early tumor diagnosis and disease surveillance. Several current techniques are described in detail. These techniques exploit differences in biomarkers, size, density, deformability, electrical properties, and chemical composition in tumor components to achieve highly sensitive tumor component identification and separation. Finally, the current research progress is summarized and the future research directions of the field are discussed.
Collapse
Affiliation(s)
- Chengzhi Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Tenghui Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Qian Zhao
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Rui Ma
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Zhengchao Hong
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Xuanzhang Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Peng Gao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Jingjing Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Junhua Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| |
Collapse
|
13
|
Hu Q, Chen L, Li K, Liu R, Sun L, Han T. Circulating tumor DNA: current implementation issues and future challenges for clinical utility. Clin Chem Lab Med 2024; 62:2094-2110. [PMID: 38109307 DOI: 10.1515/cclm-2023-1157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
Over the past decades, liquid biopsy, especially circulating tumor DNA (ctDNA), has received tremendous attention as a noninvasive detection approach for clinical applications, including early diagnosis of cancer and relapse, real-time therapeutic efficacy monitoring, potential target selection and investigation of drug resistance mechanisms. In recent years, the application of next-generation sequencing technology combined with AI technology has significantly improved the accuracy and sensitivity of liquid biopsy, enhancing its potential in solid tumors. However, the increasing integration of such promising tests to improve therapy decision making by oncologists still has complexities and challenges. Here, we propose a conceptual framework of ctDNA technologies and clinical utilities based on bibliometrics and highlight current challenges and future directions, especially in clinical applications such as early detection, minimal residual disease detection, targeted therapy, and immunotherapy. We also discuss the necessities of developing a dynamic field of translational cancer research and rigorous clinical studies that may support therapeutic strategy decision making in the near future.
Collapse
Affiliation(s)
- Qilin Hu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Lujun Chen
- The General Hospital of Northern Theater Command Training Base for Graduate, China Medical University, Shenyang, P.R. China
| | - Kerui Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Ruotong Liu
- Clinical Medicine, Shenyang Medical College, Shenyang, P.R. China
| | - Lei Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Tao Han
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
14
|
Liang M, Liang L, Tayebi M, Zhong J, Ai Y. Lab-In-Fiber Optofluidic Device for Droplet Digital Polymerase Chain Reaction (DdPCR) with Real-Time Monitoring. ACS Sens 2024; 9:5275-5283. [PMID: 39321112 DOI: 10.1021/acssensors.4c01467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Droplet microfluidic systems have emerged as indispensable and advanced tools in contemporary biological science. A prominent example is the droplet digital polymerase chain reaction (ddPCR), which plays a pivotal role in next-generation sequencing and the detection of rare nucleic acids or mutations. However, existing optical detection configurations are bulky, intricate, and costly, and require meticulous optical alignment to optimize fluorescence sensing. Herein, we propose a lab-in-fiber optofluidic system (LiFO), which provides a stable and compact footprint, self-alignment, and enhanced optical coupling for high-accuracy ddPCR. Moreover, LiFO could expand its capabilities for multiangle-scattering light collection in which we collect focused forward-scattering light (fFSL) to enable real-time droplet counting and size monitoring. To accomplish these attributes, LiFO incorporates optical fibers, along with fabricated PDMS grooves, for a self-aligned optical setup to implement simultaneous fluorescence and scattering detection. Furthermore, LiFO harnesses the concept of flowing droplets functioning as microlenses, which allows us to collect and translate fFSL signals into droplet size information. We have demonstrated the effectiveness of LiFO in ddPCR applications, illustrating its capacity to enhance the accuracy and precision of DNA quantification. Notably, LiFO exhibits improved linearity in the measurement of serial DNA dilutions, reflected by an increase in R2 from 0.956 to 0.997. These results demonstrate the potential of LiFO to serve as a valuable tool across a wide spectrum of droplet microfluidic platforms, offering opportunities for advancement in practical applications.
Collapse
Affiliation(s)
- Minhui Liang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Li Liang
- School of Physics and Electronic Technology, Anhui Normal University, Wuhu 241000, China
| | - Mahnoush Tayebi
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Jianwei Zhong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| |
Collapse
|
15
|
Shrivastava SR, Marar AM, Bobhate PS, Badge A. Exploring the Role of Health-care Professionals and Impact of Precision Medicine on Health Outcomes and Efficiency. Contemp Clin Dent 2024; 15:295-297. [PMID: 39845622 PMCID: PMC11749050 DOI: 10.4103/ccd.ccd_323_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 01/24/2025] Open
Abstract
The inclusion of precision medicine in medical education represents a paradigm shift, as it is expected to transform the way in which health care will be delivered to patients in future. This shift is predominantly reported as precision medicine strongly advocates for the delivery of personalized care to patients after giving due consideration to the genetic makeup, biomarker level, etc., of the individual patient. Medical professionals are expected to discharge a wide range of roles since the introduction of precision medicine in the health-care industry. Training of medical students and health professionals in the domain of precision medicine is expected to significantly influence patient outcomes and enhance the efficiency of the health-care sector. In conclusion, precision medicine is expected to have a huge impact on medical professionals and the health sector, it is the need of the hour to strengthen its implementation process across medical colleges and health-care facilities.
Collapse
Affiliation(s)
- Saurabh RamBihariLal Shrivastava
- Deputy Director (Research and Development), Off Campus, Datta Meghe Institute of Higher Education and Research, Wanadongri, Nagpur, Maharashtra, India
- Department of Community Medicine, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research, Wanadongri, Nagpur, Maharashtra, India
| | - Anup Mukund Marar
- Director, Off-Campus, Datta Meghe Institute of Higher Education and Research (DU) and Shalinitai Meghe Hospital and Research Center, Wanadongri, Nagpur, Maharashtra, India
| | - Prateek Sudhakar Bobhate
- Department of Community Medicine, All India Institute of Medical Sciences, Vijaypur, Jammu, India
| | - Ankit Badge
- Department of Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Sawangi (M), Wardha, Maharashtra, India
| |
Collapse
|
16
|
Hong X, Huang Y, Lin W, Zhang Y, Lin J, Zhang S, Cai F, Chen J. Genetic Testing Technology Assisting in the Diagnosis and Treatment of Multiple Suppurative Arthritis and Extensive Migratory Skin and Soft Tissue Infections Caused by Disseminated Staphylococcus aureus Disease: A Case Report and Review. Infect Drug Resist 2024; 17:4185-4194. [PMID: 39347491 PMCID: PMC11439357 DOI: 10.2147/idr.s479043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Staphylococcus aureus (S. aureus) infection is readily disseminated, yet the multiple septic arthritis and extensive migratory skin and soft tissue infections it causes are uncommon and challenging to treat. The infection can be life-threatening, with a mortality rate of 15-31%. Early, targeted antibiotic therapy is critical to improve prognosis. However, routine cultures are time-consuming and have low positivity rates, which may lead to errors in antibiotic regimen selection, depriving patients of optimal treatment. Genetic testing technologies, such as macrogenomic next-generation sequencing (mNGS) and digital polymerase chain reaction (dPCR), are now emerging as powerful tools for early pathogen diagnosis as well as pathogen diagnosis of target detectors with low microbial loads. In this study, we report a 53-year-old man who was admitted to the ICU for treatment of septic shock. The causative agent was targeted earlier as S. aureus by mNGS, and the shock was corrected more quickly with targeted antibiotic medication. However, he later developed multiple septic arthritis and an extensive migratory skin soft tissue infection with persistent fever, and at one point a gram-negative bacterial infection was suspected, and the antibiotic regimen was incorrectly changed. Blood dPCR suggested that the causative organism was still methicillin-sensitive S. aureus (MSSA), with no drug resistance gene detected, and the anti-infective regimen was readjusted, and the patient eventually recovered and was discharged from the hospital. We present this rare case and review related studies to validate the superiority of genetic testing technology in pathogen diagnosis, which deserves further application.
Collapse
Affiliation(s)
- Xiaoyan Hong
- Department of Emergency, Third Affiliated Hospital of Wenzhou Medical University (Rui’an People’s Hospital), Wenzhou, Zhejiang, People’s Republic of China
| | - Yangrong Huang
- Department of Emergency, Third Affiliated Hospital of Wenzhou Medical University (Rui’an People’s Hospital), Wenzhou, Zhejiang, People’s Republic of China
| | - Wei Lin
- Department of Emergency, Third Affiliated Hospital of Wenzhou Medical University (Rui’an People’s Hospital), Wenzhou, Zhejiang, People’s Republic of China
| | - Yi Zhang
- Department of Emergency, Third Affiliated Hospital of Wenzhou Medical University (Rui’an People’s Hospital), Wenzhou, Zhejiang, People’s Republic of China
| | - Jianyun Lin
- Department of Emergency, Third Affiliated Hospital of Wenzhou Medical University (Rui’an People’s Hospital), Wenzhou, Zhejiang, People’s Republic of China
| | - Shengguo Zhang
- Department of Infection, Third Affiliated Hospital of Wenzhou Medical University (Rui’an People’s Hospital), Wenzhou, Zhejiang, People’s Republic of China
| | - Fengquan Cai
- Department of Emergency, Third Affiliated Hospital of Wenzhou Medical University (Rui’an People’s Hospital), Wenzhou, Zhejiang, People’s Republic of China
| | - Jie Chen
- Department of Emergency, Third Affiliated Hospital of Wenzhou Medical University (Rui’an People’s Hospital), Wenzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
17
|
Vynck M, Trypsteen W, Thas O, Vandesompele J, De Spiegelaere W. Digital PCR threshold robustness analysis and optimization using dipcensR. Brief Bioinform 2024; 25:bbae507. [PMID: 39400112 PMCID: PMC11472245 DOI: 10.1093/bib/bbae507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/10/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024] Open
Abstract
Digital polymerase chain reaction (dPCR) is a best-in-class molecular biology technique for the accurate and precise quantification of nucleic acids. The recent maturation of dPCR technology allows the quantification of up to thousands of targeted nucleic acids per instrument per day. A key step in the dPCR data analysis workflow is the classification of partitions into two classes based on their partition intensities: partitions either containing or lacking target nucleic acids of interest. Much effort has been invested in the design and tailoring of automated dPCR partition classification procedures, and such procedures will be increasingly important as the technology ventures into high-throughput applications. However, automated partition classification is not fail-safe, and evaluation of its accuracy is highly advised. This accuracy evaluation is a manual endeavor and is becoming a bottleneck for high-throughput dPCR applications. Here, we introduce dipcensR, the first data-analysis procedure that automates the assessment of any linear partition classifier's partition classification accuracy, offering potentially substantial efficiency gains. dipcensR is based on a robustness evaluation of said partition classification and flags classifications with low robustness as needing review. Additionally, dipcensR's robustness analysis underpins (optional) automatic optimization of partition classification to achieve maximal robustness. A freely available R implementation supports dipcensR's use.
Collapse
Affiliation(s)
- Matthijs Vynck
- Digital PCR Center (DIGPCR), Ghent University, Ghent, Belgium
- Department of Morphology, Imaging, Orthopaedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Wim Trypsteen
- Digital PCR Center (DIGPCR), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Olivier Thas
- Digital PCR Center (DIGPCR), Ghent University, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Krijgslaan 281 - S9, 9000 Ghent University, Ghent, Belgium
- Data Science Institute, Hasselt University, Agoralaan Gebouw D, 3590 Hasselt, Belgium
- National Institute for Applied Statistics Research Australia, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jo Vandesompele
- Digital PCR Center (DIGPCR), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
- Department of Biomolecular Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Ward De Spiegelaere
- Digital PCR Center (DIGPCR), Ghent University, Ghent, Belgium
- Department of Morphology, Imaging, Orthopaedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
18
|
Baumhoer D, Hench J, Amary F. Recent advances in molecular profiling of bone and soft tissue tumors. Skeletal Radiol 2024; 53:1925-1936. [PMID: 38231260 PMCID: PMC11303483 DOI: 10.1007/s00256-024-04584-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
The molecular characterization of soft tissue and bone tumors is a rapidly evolving field that has changed the perspective of how these tumors are diagnosed today. Morphology and clinico-radiological context still represent the cornerstone of diagnostic considerations but are increasingly complemented by molecular data that aid in objectifying and confirming the classification. The spectrum of analyses comprises mutation or gene fusion specific immunohistochemical antibodies, fluorescence in situ hybridization, DNA and RNA sequencing as well as CpG methylation profiling. This article provides an overview of which tools are presently available to characterize bone and soft tissue neoplasms molecularly, what limitations should be considered, and what conclusions can be drawn from the individual findings.
Collapse
Affiliation(s)
- D Baumhoer
- Bone Tumor and DOESAK Reference Center, Institute of Medical Genetics and Pathology, University Hospital and University of Basel, Schoenbeinstrasse 40, 4031, Basel, Switzerland.
| | - J Hench
- Institute of Medical Genetics and Pathology, University Hospital and University of Basel, Basel, Switzerland
| | - F Amary
- Department of Histopathology, Royal National Orthopaedic Hospital, Greater London, Stanmore, UK
| |
Collapse
|
19
|
Hu L, Ji YY, Zhu P, Lu RQ. Mutation-Selected Amplification droplet digital PCR: A new single nucleotide variant detection assay for TP53 R249S mutant in tumor and plasma samples. Anal Chim Acta 2024; 1318:342929. [PMID: 39067934 DOI: 10.1016/j.aca.2024.342929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024]
Abstract
The early detection of gene mutations in physiological and pathological processes is a powerful approach to guide decisions in precision medicine. However, detecting low-copy mutant DNA from clinical samples poses a challenge due to the enrichment of wild-type DNA backgrounds. In this study, we devised a novel strategy, named Mutation-Selected Amplification droplet digital PCR (MSA-ddPCR), to quantitatively analyze single nucleotide variants (SNVs) at low variant allele frequencies (VAFs). Using TP53R249S (a hotspot mutation associated with hepatocellular carcinoma) as a model, we optimized the concentration ratio of primers, the annealing temperature and nucleic acid amplification modifiers. Subsequently, we evaluated the linear range and precision of MSA-ddPCR by detecting TP53R249S and TP53wild-type (TP53WT) plasmid DNA, respectively. MSA-ddPCR demonstrated superior ability to discriminate between mutant DNA and wild-type DNA compared to traditional TaqMan-MGB PCR. We further applied MSA-ddPCR to analyze the TP53R249S mutation in 20 plasma samples and 15 formalin-fixed paraffin-embedded (FFPE) tissue samples, and assessed the agreement rates between MSA-ddPCR and amplicon high-throughput sequencing. The results showed that the limit of blanks of MSA-ddPCR are 0.449 copies μL-1 in the FAM channel and 0.452 copies μL-1 in the VIC channel. MSA-ddPCR could accurately quantify VAFs as low as 0.01 %, surpassing existing PCR and next-generation sequencing (NGS) methods. In the detection of clinical samples, a high correlation was found between MSA-ddPCR and amplicon high-throughput sequencing. Additionally, MSA-ddPCR outperformed sequencing methods in terms of detection time and simplicity of data analysis. MSA-ddPCR can be easily implemented into clinical practice and serve as a robust tool for detecting mutant genes due to its high sensitivity and accuracy.
Collapse
Affiliation(s)
- Ling Hu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 20032, China
| | - Yuan-Ye Ji
- Department of Medical Laboratory, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Peng Zhu
- Department of Medical Laboratory, Ningbo No.2 Hospital, Ningbo, 315010, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, China.
| | - Ren-Quan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 20032, China.
| |
Collapse
|
20
|
Wang WY, Lin L, Boone EC, Stevens J, Gaedigk A. CYP2D6 copy number determination using digital PCR. Front Pharmacol 2024; 15:1429286. [PMID: 39206265 PMCID: PMC11349684 DOI: 10.3389/fphar.2024.1429286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Background CYP2D6 testing is increasingly used to guide drug therapy and thus, reliable methods are needed to test this complex and polymorphic gene locus. A particular challenge arises from the detection and interpretation of structural variants (SVs) including gene deletions, duplications, and hybrids with the CYP2D7 pseudogene. This study validated the Absolute Q™ platform for digital PCR-based CYP2D6 copy number variation (CNV) determination by comparing results to those obtained with a previously established method using the QX200 platform. In addition, protocols for streamlining CYP2D6 CNV testing were established and validated including the "One-pot" single-step restriction enzyme digestion and a multiplex assay simultaneously targeting the CYP2D6 5'UTR, intron 6, and exon 9 regions. Methods Genomic DNA (gDNA) samples from Coriell (n = 13) and from blood, saliva, and liver tissue (n = 17) representing 0-6 copies were tested on the Absolute Q and QX200 platforms. Custom TaqMan™ copy number (CN) assays targeting CYP2D6 the 5'UTR, intron 6, and exon 9 regions and a reference gene assay (TERT or RNaseP) were combined for multiplexing by optical channel. In addition, two digestion methods (One-pot digestion and traditional) were assessed. Inconclusive CN values on the Absolute Q were resolved using an alternate reference gene and/or diluting gDNA. Results Overall, results between the two platforms and digestions methods were consistent. The "One-pot" digestion method and optically multiplexing up to three CYP2D6 regions yielded consistent result across DNA sample types and diverse SVs, reliably detecting up to 6 gene copies. Rare variation in reference genes were found to interfere with results and interpretation, which were resolved by using a different reference. Conclusion The Absolute Q produced accurate and reliable CYP2D6 copy number results allowing for a streamlined and economical protocol using One-pot digestion and multiplexing three target regions. Protocols are currently being expanded to other pharmacogenes presenting with SVs/CNVs.
Collapse
Affiliation(s)
- Wendy Y. Wang
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy Research Institute (CMRI), Kansas City, MO, United States
| | - Lancy Lin
- Genetic Sciences Division, Thermo Fisher Scientific, Waltham, CA, United States
| | - Erin C. Boone
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy Research Institute (CMRI), Kansas City, MO, United States
| | - Junko Stevens
- Genetic Sciences Division, Thermo Fisher Scientific, Waltham, CA, United States
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy Research Institute (CMRI), Kansas City, MO, United States
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
21
|
Li K, Zhu Q, Yang J, Zheng Y, Du S, Song M, Peng Q, Yang R, Liu Y, Qi L. Imaging and Liquid Biopsy for Distinguishing True Progression From Pseudoprogression in Gliomas, Current Advances and Challenges. Acad Radiol 2024; 31:3366-3383. [PMID: 38614827 DOI: 10.1016/j.acra.2024.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/14/2024] [Accepted: 03/18/2024] [Indexed: 04/15/2024]
Abstract
RATIONALE AND OBJECTIVES Gliomas are aggressive brain tumors with a poor prognosis. Assessing treatment response is challenging because magnetic resonance imaging (MRI) may not distinguish true progression (TP) from pseudoprogression (PsP). This review aims to discuss imaging techniques and liquid biopsies used to distinguish TP from PsP. MATERIALS AND METHODS This review synthesizes existing literature to examine advances in imaging techniques, such as magnetic resonance diffusion imaging (MRDI), perfusion-weighted imaging (PWI) MRI, and liquid biopsies, for identifying TP or PsP through tumor markers and tissue characteristics. RESULTS Advanced imaging techniques, including MRDI and PWI MRI, have proven effective in delineating tumor tissue properties, offering valuable insights into glioma behavior. Similarly, liquid biopsy has emerged as a potent tool for identifying tumor-derived markers in biofluids, offering a non-invasive glimpse into tumor evolution. Despite their promise, these methodologies grapple with significant challenges. Their sensitivity remains inconsistent, complicating the accurate differentiation between TP and PSP. Furthermore, the absence of standardized protocols across platforms impedes the reliability of comparisons, while inherent biological variability adds complexity to data interpretation. CONCLUSION Their potential applications have been highlighted, but gaps remain before routine clinical use. Further research is needed to develop and validate these promising methods for distinguishing TP from PsP in gliomas.
Collapse
Affiliation(s)
- Kaishu Li
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China; Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), 1# Jiazi Road, Foshan, Guangdong 528300, China.; Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qihui Zhu
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Junyi Yang
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Yin Zheng
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Siyuan Du
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Meihui Song
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Qian Peng
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Runwei Yang
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), 1# Jiazi Road, Foshan, Guangdong 528300, China
| | - Yawei Liu
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), 1# Jiazi Road, Foshan, Guangdong 528300, China
| | - Ling Qi
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China.
| |
Collapse
|
22
|
Tao XY, Li QQ, Zeng Y. Clinical application of liquid biopsy in colorectal cancer: detection, prediction, and treatment monitoring. Mol Cancer 2024; 23:145. [PMID: 39014366 PMCID: PMC11250976 DOI: 10.1186/s12943-024-02063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies affecting the gastrointestinal tract and is ranked third among cancers with the highest incidence and second-highest mortality rate worldwide. CRC exhibits a slow progression providing a wide treatment window. The currently employed CRC screening methods have shown great potential to prevent CRC and reduce CRC-related morbidity and mortality. The diagnosis of CRC is achieved by colonoscopy and tissue biopsy, with studies showing that liquid biopsy is more effective in detecting and diagnosing early CRC patients. Increasing number of studies have shown that the tumor components shed into circulating blood can be detected in liquid form, and can be applied in the clinical management of CRC. Analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), or tumor-associated platelets (TEPs) in the blood can be used for early screening and diagnosis of CRC, aid tumor staging, treatment response monitoring, and prediction of CRC recurrence and metastasis in a minimally invasive manner. This chapter provides an updated review of CTCs, ctDNA, and TEPs as novel biomarkers for CRC, highlighting their strengths and limitations.
Collapse
Affiliation(s)
- Xiang-Yuan Tao
- Translational Medicine Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- School of Pharmacy, University of South China, Hengyang, China
| | - Qian-Qian Li
- Translational Medicine Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- School of Pharmacy, University of South China, Hengyang, China
| | - Yong Zeng
- Translational Medicine Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
- School of Pharmacy, University of South China, Hengyang, China.
| |
Collapse
|
23
|
Wang H, Zhang Y, Zhang H, Cao H, Mao J, Chen X, Wang L, Zhang N, Luo P, Xue J, Qi X, Dong X, Liu G, Cheng Q. Liquid biopsy for human cancer: cancer screening, monitoring, and treatment. MedComm (Beijing) 2024; 5:e564. [PMID: 38807975 PMCID: PMC11130638 DOI: 10.1002/mco2.564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Currently, tumor treatment modalities such as immunotherapy and targeted therapy have more stringent requirements for obtaining tumor growth information and require more accurate and easy-to-operate tumor information detection methods. Compared with traditional tissue biopsy, liquid biopsy is a novel, minimally invasive, real-time detection tool for detecting information directly or indirectly released by tumors in human body fluids, which is more suitable for the requirements of new tumor treatment modalities. Liquid biopsy has not been widely used in clinical practice, and there are fewer reviews of related clinical applications. This review summarizes the clinical applications of liquid biopsy components (e.g., circulating tumor cells, circulating tumor DNA, extracellular vesicles, etc.) in tumorigenesis and progression. This includes the development process and detection techniques of liquid biopsies, early screening of tumors, tumor growth detection, and guiding therapeutic strategies (liquid biopsy-based personalized medicine and prediction of treatment response). Finally, the current challenges and future directions for clinical applications of liquid biopsy are proposed. In sum, this review will inspire more researchers to use liquid biopsy technology to promote the realization of individualized therapy, improve the efficacy of tumor therapy, and provide better therapeutic options for tumor patients.
Collapse
Affiliation(s)
- Hao Wang
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Yi Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Hao Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Hui Cao
- Department of PsychiatryThe School of Clinical Medicine, Hunan University of Chinese MedicineChangshaChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province)ChangshaChina
| | - Jinning Mao
- Health Management CenterThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Xinxin Chen
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Liangchi Wang
- Department of NeurosurgeryFengdu People's Hospital, ChongqingChongqingChina
| | - Nan Zhang
- College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Peng Luo
- Department of OncologyZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Ji Xue
- Department of NeurosurgeryTraditional Chinese Medicine Hospital Dianjiang ChongqingChongqingChina
| | - Xiaoya Qi
- Health Management CenterThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Xiancheng Dong
- Department of Cerebrovascular DiseasesDazhou Central HospitalSichuanChina
| | - Guodong Liu
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Quan Cheng
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
24
|
Peng K, Wu Z, Feng Z, Deng R, Ma X, Fan B, Liu H, Tang Z, Zhao Z, Li Y. A highly integrated digital PCR system with on-chip heating for accurate DNA quantitative analysis. Biosens Bioelectron 2024; 253:116167. [PMID: 38422813 DOI: 10.1016/j.bios.2024.116167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Digital polymerase chain reaction (dPCR) is extensively used for highly sensitive disease diagnosis due to its single-molecule detection ability. However, current dPCR systems require intricate DNA sample distribution, rely on cumbersome external heaters, and exhibit sluggish thermal cycling, hampering efficiency and speed of the dPCR process. Herein, we presented the development of a microwell array based dPCR system featuring an integrated self-heating dPCR chip. By utilizing hydrodynamic and electrothermal simulations, the chip's structure is optimized, resulting in improved partitioning within microwells and uniform thermal distribution. Through strategic hydrophilic/hydrophobic modifications on the chip's surface, we effectively secured the compartmentalization of sample within the microwells by employing an overlaying oil phase, which renders homogeneity and independence of samples in the microwells. To achieve precise, stable, uniform, and rapid self-heating of the chip, the ITO heating layer and the temperature control algorithm are deliberately designed. With a capacity of 22,500 microwells that can be easily expanded, the system successfully quantified EGFR plasmid solutions, exhibiting a dynamic linear range of 105 and a detection limit of 10 copies per reaction. To further validate its performance, we employed the dPCR platform for quantitative detection of BCR-ABL1 mutation gene fragments, where its performance was compared against the QuantStudio 3D, and the self-heating dPCR system demonstrated similar analytical accuracy to the commercial dPCR system. Notably, the individual chip is produced on a semiconductor manufacturing line, benefiting from mass production capabilities, so the chips are cost-effective and conducive to widespread adoption and accessibility.
Collapse
Affiliation(s)
- Kang Peng
- BOE Technology Group Co Ltd., Beijing, 100176, PR China
| | - Zhihong Wu
- BOE Technology Group Co Ltd., Beijing, 100176, PR China
| | - Zhongxin Feng
- Affiliated Hospital of Guizhou Medical University, Guiyang, 550002, Guizhou, PR China
| | - Ruijun Deng
- BOE Technology Group Co Ltd., Beijing, 100176, PR China
| | - Xiangguo Ma
- BOE Technology Group Co Ltd., Beijing, 100176, PR China
| | - Beiyuan Fan
- BOE Technology Group Co Ltd., Beijing, 100176, PR China
| | - Haonan Liu
- BOE Technology Group Co Ltd., Beijing, 100176, PR China
| | - Zhuzhu Tang
- Affiliated Hospital of Guizhou Medical University, Guiyang, 550002, Guizhou, PR China
| | - Zijian Zhao
- BOE Technology Group Co Ltd., Beijing, 100176, PR China.
| | - Yanzhao Li
- BOE Technology Group Co Ltd., Beijing, 100176, PR China.
| |
Collapse
|
25
|
Wang P, Wei X, Qu X, Zhu Y. Potential clinical application of microRNAs in bladder cancer. J Biomed Res 2024; 38:289-306. [PMID: 38808545 PMCID: PMC11300522 DOI: 10.7555/jbr.37.20230245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 05/30/2024] Open
Abstract
Bladder cancer (BC) is the tenth most prevalent malignancy globally, presenting significant clinical and societal challenges because of its high incidence, rapid progression, and frequent recurrence. Presently, cystoscopy and urine cytology serve as the established diagnostic methods for BC. However, their efficacy is limited by their invasive nature and low sensitivity. Therefore, the development of highly specific biomarkers and effective non-invasive detection strategies is imperative for achieving a precise and timely diagnosis of BC, as well as for facilitating an optimal tumor treatment and an improved prognosis. microRNAs (miRNAs), short noncoding RNA molecules spanning around 20-25 nucleotides, are implicated in the regulation of diverse carcinogenic pathways. Substantially altered miRNAs form robust functional regulatory networks that exert a notable influence on the tumorigenesis and progression of BC. Investigations into aberrant miRNAs derived from blood, urine, or extracellular vesicles indicate their potential roles as diagnostic biomarkers and prognostic indicators in BC, enabling miRNAs to monitor the progression and predict the recurrence of the disease. Simultaneously, the investigation centered on miRNA as a potential therapeutic agent presents a novel approach for the treatment of BC. This review comprehensively analyzes biological roles of miRNAs in tumorigenesis and progression, and systematically summarizes their potential as diagnostic and prognostic biomarkers, as well as therapeutic targets for BC. Additionally, we evaluate the progress made in laboratory techniques within this field and discuss the prospects.
Collapse
Affiliation(s)
- Pei Wang
- Laboratory Medicine Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Xiaowei Wei
- Laboratory Medicine Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Xiaojun Qu
- Laboratory Medicine Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Yefei Zhu
- Laboratory Medicine Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
26
|
Luo Y, Hu Q, Yu Y, Lyu W, Shen F. Experimental investigation of confinement effect in single molecule amplification via real-time digital PCR on a multivolume droplet array SlipChip. Anal Chim Acta 2024; 1304:342541. [PMID: 38637051 DOI: 10.1016/j.aca.2024.342541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Digital polymerase chain reaction (digital PCR) is an important quantitative nucleic acid analysis method in both life science research and clinical diagnostics. One important hypothesis is that by physically constraining a single nucleic acid molecule in a small volume, the relative concentration can be increased therefore further improving the analysis performance, and this is commonly defined as the confinement effect in digital PCR. However, experimental investigation of this confinement effect can be challenging since it requires a microfluidic device that can generate partitions of different volumes and an instrument that can monitor the kinetics of amplification. (96). RESULTS Here, we developed a real-time digital PCR system with a multivolume droplet array SlipChip (Muda-SlipChip) that can generate droplet of 125 nL, 25 nL, 5 nL, and 1 nL by a simple "load-slip" operation. In the digital region, by reducing the volume, the relative concentration is increased, the amplification kinetic can be accelerated, and the time to reach the fluorescence threshold, or Cq value, can be reduced. When the copy number per well is much higher than one, the relative concentration is independent of the partition volume, thus the amplification kinetics are similar in different volume partitions. This system is not limited to studying the kinetics of digital nucleic acid amplification, it can also extend the dynamic range of the digital nucleic acid analysis by additional three orders of magnitude by combining a digital and an analog quantification algorithm. (140). SIGNIFICANCE In this study, we experimentally investigated for the first time the confinement effect in the community of digital PCR via a new real-time digital PCR system with a multivolume droplet array SlipChip (Muda-SlipChip). And a wider dynamic range of quantification methods compared to conventional digital PCR was validated by this system. This system provides emerging opportunities for life science research and clinical diagnostics. (63).
Collapse
Affiliation(s)
- Yang Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, PR China
| | - Qixin Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, PR China
| | - Yan Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, PR China
| | - Weiyuan Lyu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, PR China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, PR China.
| |
Collapse
|
27
|
Chen Z, Luo G, Ren J, Wang Q, Zhao X, Wei L, Wang Y, Liu Y, Deng Y, Li S. Recent Advances in and Application of Fluorescent Microspheres for Multiple Nucleic Acid Detection. BIOSENSORS 2024; 14:265. [PMID: 38920569 PMCID: PMC11201543 DOI: 10.3390/bios14060265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
Traditional single nucleic acid assays can only detect one target while multiple nucleic acid assays can detect multiple targets simultaneously, providing comprehensive and accurate information. Fluorescent microspheres in multiplexed nucleic acid detection offer high sensitivity, specificity, multiplexing, flexibility, and scalability advantages, enabling precise, real-time results and supporting clinical diagnosis and research. However, multiplexed assays face challenges like complexity, costs, and sample handling issues. The review explores the recent advancements and applications of fluorescent microspheres in multiple nucleic acid detection. It discusses the versatility of fluorescent microspheres in various fields, such as disease diagnosis, drug screening, and personalized medicine. The review highlights the possibility of adjusting the performance of fluorescent microspheres by modifying concentrations and carrier forms, allowing for tailored applications. It emphasizes the potential of fluorescent microsphere technology in revolutionizing nucleic acid detection and advancing health, disease treatment, and medical research.
Collapse
Affiliation(s)
- Zhu Chen
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Gaoming Luo
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jie Ren
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Qixuan Wang
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xinping Zhao
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Linyu Wei
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yue Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China;
| | - Yuan Liu
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Yan Deng
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Song Li
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| |
Collapse
|
28
|
Shin JC, Jeong JY, Son SG, Choi SH, Nam HC, Yoon TH, Kim HJ, Choi DG, Lee H, Lee U, Yang SM, Kang I, Jung DY, Lee HW, Lee MK, Lee TJ, Kim G, Park HO, Lee SW. Developing centrifugal force real-time digital PCR for detecting extremely low DNA concentration. Sci Rep 2024; 14:11522. [PMID: 38769102 PMCID: PMC11636855 DOI: 10.1038/s41598-024-62199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
Digital PCR (dPCR) is a technique for absolute quantification of nucleic acid molecules. To develop a dPCR technique that enables more accurate nucleic acid detection and quantification, we established a novel dPCR apparatus known as centrifugal force real-time dPCR (crdPCR). This system is efficient than other systems with only 2.14% liquid loss by dispensing samples using centrifugal force. Moreover, we applied a technique for analyzing the real-time graph of the each micro-wells and distinguishing true/false positives using artificial intelligence to mitigate the rain, a persistent issue with dPCR. The limits of detection and quantification were 1.38 and 4.19 copies/μL, respectively, showing a two-fold higher sensitivity than that of other comparable devices. With the integration of this new technology, crdPCR will significantly contribute to research on next-generation PCR targeting absolute micro-analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ukyeol Lee
- RevoSketch Inc., Daejeon, Republic of Korea
| | | | - Il Kang
- RevoSketch Inc., Daejeon, Republic of Korea
| | | | | | - Moon-Keun Lee
- Center for Nano Bio Development, National NanoFab Center (NNFC), Daejeon, Republic of Korea
| | - Tae Jae Lee
- Center for Nano Bio Development, National NanoFab Center (NNFC), Daejeon, Republic of Korea
| | - Geehong Kim
- Nano-Convergence Systems Research Division, Korea Institute of Machinery & Materials, Daejeon, Republic of Korea
| | - Han-Oh Park
- Bioneer Corporation, Daejeon, Republic of Korea
| | | |
Collapse
|
29
|
Huang J, Zhai L, Wang J, Sun X, Wang B, Wei Z. An Evaluation of the Sensitivity and Applicability of a Droplet Digital Polymerase Chain Reaction Assay to Simultaneously Detect Pseudomonas aeruginosa and Pseudomonas fragi in Foods. Foods 2024; 13:1453. [PMID: 38790753 PMCID: PMC11120221 DOI: 10.3390/foods13101453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Achieving effective control over microbial contamination necessitates the precise and concurrent identification of numerous pathogens. As a common bacterium in the environment, Pseudomonas is rich in variety. It not only has pathogenic strains, but also spoilage bacteria that cause food spoilage. In this research, we devised a remarkably sensitive duplex droplet digital PCR (dddPCR) reaction system to simultaneously detect pathogenic Pseudomonas aeruginosa (P. aeruginosa) and spoilage Pseudomonas fragi (P. fragi). By employing comparative genomics, we identified four genes of P. fragi. Through a specific analysis, the RS22680 gene was selected as the detection target for P. fragi, and the lasR gene was chosen for P. aeruginosa, which were applied to construct a dddPCR reaction. In terms of specificity, sensitivity and anti-interference ability, the constructed dddPCR detection system was verified and analyzed. The assay showed excellent sensitivity and applicability, as evidenced by a limit of detection of 100 cfu/mL. When the concentration of natural background bacteria in milk or fresh meat was 100 times that of the target detection bacteria, the method was still capable of completing the absolute quantification. In the simulation of actual sample contamination, P. aeruginosa could be detected after 3 h of enrichment culture, and P. fragi could be detected after 6 h. The established dddPCR detection system exhibits exceptional performance, serving as a foundation for the simultaneous detection of various pathogenic bacteria in food products.
Collapse
Affiliation(s)
| | - Ligong Zhai
- Department of Food Engineering College, Anhui Science and Technology University, Chuzhou 233100, China; (J.H.); (J.W.); (X.S.); (B.W.); (Z.W.)
| | | | | | | | | |
Collapse
|
30
|
Zhao Y, Yan Z, Song K, Li Y, Shen L, Cui Y, Du Z, Yang R, Song Y, Jing L, Zhao Y. Development and evaluation of a multi-target droplet digital PCR assay for highly sensitive and specific detection of Yersinia pestis. PLoS Negl Trop Dis 2024; 18:e0012167. [PMID: 38701065 PMCID: PMC11095742 DOI: 10.1371/journal.pntd.0012167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/15/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Plague, caused by the bacterium Yersinia pestis, is a zoonotic disease that poses considerable threats to human health. Nucleic acid tests are crucial for plague surveillance and the rapid detection of Y. pestis. However, inhibitors in complex samples such as soil and animal tissues often hamper nucleic acid detection, leading to a reduced rate of identifying low concentrations of Y. pestis. To address this challenge, we developed a sensitive and specific droplet digital polymerase chain reaction (ddPCR) assay for detecting Y. pestis DNA from soil and animal tissue samples. METHODS Three genes (ypo2088, caf1, and pla) from Y. pestis were used to develop a multi-target ddPCR assay. The limits of detection (LoD), reproducibility, and specificity were assessed for bacterial genomic DNA samples. The ability of the assay to detect low concentrations of Y. pestis DNA from simulated soil and mouse liver tissue samples was respectively evaluated and compared with that of quantitative real-time PCR (qPCR). RESULTS The results showed that the ddPCR LoDs ranged from 6.2 to 15.4 copies/reaction for the target genes, with good reproducibility and high specificity for Y. pestis. By testing 130 soil and mouse liver tissue samples spiked with Y. pestis, the ddPCR assay exhibited a better sensitivity than that of the qPCR assay used in the study, with LoDs of 102 colony forming units (CFU)/100 mg soil and 103 CFU/20 mg liver. Moreover, the assay presented good quantitative linearity (R2 = 0.99) for Y. pestis at 103-106 CFU/sample for soil and liver samples. CONCLUSION The ddPCR assay presented good performance for detecting Y. pestis DNA from soil and mouse tissue samples, showing great potential for improving the detection rate of low concentrations of Y. pestis in plague surveillance and facilitating the early diagnosis of plague cases.
Collapse
Affiliation(s)
- Yanting Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ziheng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Kai Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanbing Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Department of Laboratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Leiming Shen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yiming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Beijing Key Laboratory of POCT for Bioemergency and Clinic, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Beijing Key Laboratory of POCT for Bioemergency and Clinic, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Beijing Key Laboratory of POCT for Bioemergency and Clinic, Beijing, China
| | - Lan Jing
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yong Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Beijing Key Laboratory of POCT for Bioemergency and Clinic, Beijing, China
| |
Collapse
|
31
|
Zang P, Xu Q, Li C, Tao M, Zhang Z, Li J, Zhang W, Li S, Li C, Yang Q, Guo Z, Yao J, Zhou L. Self-correction of cycle threshold values by a normal distribution-based process to improve accuracy of quantification in real-time digital PCR. Anal Bioanal Chem 2024:10.1007/s00216-024-05208-w. [PMID: 38400940 DOI: 10.1007/s00216-024-05208-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
The digital polymerase chain reaction (dPCR) is a new and developing nucleic acid detection technology with high sensitivity that can realize the absolute quantitative analysis of samples. In order to improve the accuracy of quantitative results, real-time digital PCR emphasizes the kinetic information during amplification to identify prominent abnormal data. However, it is challenging to use a unified standard to accurately classify the amplification curve of each well as negative and positive, due to the interference caused by various factors in the experiment. In this work, a normal distribution-based cycle threshold value self-correcting model (NCSM) was established, which focused on the feature of the cycle threshold values in amplification curves and conducted continuous detection and correction on the whole. The cycle threshold value distribution was closer to the ideal normal distribution to avoid the influence of interference. Thus, the model achieves a more accurate classification between positive and negative results. The corrective process was applied to plasmid samples and resulted in an accuracy improvement from 92 to 99%. The coefficient of variation was below 5% when considering the quantitation of a range between 100 and 10,000 copies. At the same time, by utilizing this model, the distribution of cycle threshold values at the endpoint can be predicted with fewer thermal cycles, which can reduce the cycling time by around 25% while maintaining a consistency of more than 98%. Therefore, using the NCSM can effectively enhance the quantitative accuracy and increase the detection efficiency based on the real-time dPCR platform.
Collapse
Affiliation(s)
- Peilin Zang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Qi Xu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Chuanyu Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Mingli Tao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Zhiqi Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
- Suzhou CASENS Co., Ltd, Suzhou, 215163, China
| | - Jinze Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Wei Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
- Suzhou CASENS Co., Ltd, Suzhou, 215163, China
| | - Shuli Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Chao Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Qi Yang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Zhen Guo
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| | - Jia Yao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| | - Lianqun Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
- Suzhou CASENS Co., Ltd, Suzhou, 215163, China.
| |
Collapse
|
32
|
Quan H, Wang S, Xi X, Zhang Y, Ding Y, Li Y, Lin J, Liu Y. Deep learning enhanced multiplex detection of viable foodborne pathogens in digital microfluidic chip. Biosens Bioelectron 2024; 245:115837. [PMID: 38000308 DOI: 10.1016/j.bios.2023.115837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Culture plating is worldwide accepted as the gold standard for quantifying viable foodborne pathogens. However, it is time-consuming (1-2 days) and requires specialized laboratory and personnel. This study reported a deep learning enhanced digital microfluidic platform for multiplex detection of viable foodborne pathogens. The new method used a Time-Lapse images driven EfficientNet-Transformer Network (TLENTNet) to type and quantify the bacteria through spatiotemporal features of bacterial growth and digital enumeration of bacterial culture. First, the bacterial sample was prepared with LB medium and injected into a pre-vacuumed microfluidic chip with an array of 800 microwells to encapsulate at most one bacterium in each well. Then, a programmed sliding microscopic platform was used to scan all microwells every 15 min, capturing time-lapse images of bacterial growth within each microwell. Finally, the TLENTNet was used to facilitate bacterial typing and quantification. Under optimal conditions, this platform was able to detect four bacterial species (S.typhimurium, E. coli O157:H7, S. aureus and B. cereus) with an average accuracy of 97.72% and a detection limit of 63 CFU/mL in 7 h.
Collapse
Affiliation(s)
- Han Quan
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Siyuan Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Xinge Xi
- Key Laboratory of Smart Agriculture System Integration, Ministry of Education, China Agricultural University, Beijing, 100083, China
| | - Yingchao Zhang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Ying Ding
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jianhan Lin
- Key Laboratory of Smart Agriculture System Integration, Ministry of Education, China Agricultural University, Beijing, 100083, China
| | - Yuanjie Liu
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
33
|
Cardoso GC, Ganzella FADO, Miniskiskosky G, da Cunha RS, Ramos EADS. Digital methylation-specific PCR: New applications for liquid biopsy. Biomol Concepts 2024; 15:bmc-2022-0041. [PMID: 38345545 DOI: 10.1515/bmc-2022-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
Epigenetic analysis is a fundamental part of understanding pathophysiological processes with potential applications in diagnosis, prognosis, and assessment of disease susceptibility. Epigenetic changes have been widely studied in chronic obstructive pulmonary disease (COPD), but currently, there is no molecular marker used to improve the treatment of patients. Furthermore, this progressive disease is a risk factor for the development of more severe COVID-19. Methylation-specific polymerase chain reaction (MSP-PCR) plays an important role in the analysis of DNA methylation profiles, and it is one of the most widely used techniques. In this context, the combination of MSP-PCR with emerging PCR technologies, such as digital PCR (dPCR), results in more accurate analyses of the DNA methylation profile of the genes under study. In this study, we propose the application of the MSP-dPCR technique to evaluate the methylation profile of the ADAM33 gene from saliva samples and lung tissue biopsies of patients with COPD and COVID-19. MSP-dPCR generated a measurable prediction of gene methylation rate, with the potential application of this combined technology for diagnostic and prognostic purposes. It has also proven to be a powerful tool for liquid biopsy applications.
Collapse
Affiliation(s)
- Gabriela Casani Cardoso
- Human Pathology Experimental Laboratory, Basic Pathology Department, Federal University of Paraná, Curitiba, 81531-980, Paraná, Brazil
- Post-Graduate Program of Microbiology, Parasitology and Pathology, Federal University of Paraná, Curitiba, 81531-980, Paraná, Brazil
| | | | - Guilherme Miniskiskosky
- Human Pathology Experimental Laboratory, Basic Pathology Department, Federal University of Paraná, Curitiba, 81531-980, Paraná, Brazil
| | - Regiane Stafim da Cunha
- Post-Graduate Program of Microbiology, Parasitology and Pathology, Federal University of Paraná, Curitiba, 81531-980, Paraná, Brazil
| | - Edneia Amancio de Souza Ramos
- Human Pathology Experimental Laboratory, Basic Pathology Department, Federal University of Paraná, Curitiba, 81531-980, Paraná, Brazil
- Post-Graduate Program of Microbiology, Parasitology and Pathology, Federal University of Paraná, Curitiba, 81531-980, Paraná, Brazil
| |
Collapse
|
34
|
Zhang N, Yue C, Zhan X, Cheng Z, Li C, Du Y, Tian F. Quantitative analysis of respiratory viruses based on lab-on-a-chip platform. Anal Bioanal Chem 2023; 415:6561-6571. [PMID: 37682312 DOI: 10.1007/s00216-023-04935-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
The quantitative analysis of respiratory viruses is of great importance for rapid diagnosis, precision medicine, and prognosis. Several current quantitative analysis systems have been proposed and commercialized. Although they have been proven in trials, quantitative analyzes based on real samples are still complex, time-consuming, and expensive. Therefore, they are not able to directly quantify real samples. In this work, we presented a lab-on-a-chip platform combined with an automated control system to achieve quantitative analysis from samples to results. We developed a multilayer integrated chip to rapidly extract and quantify RNA of coronavirus disease 2019 (COVID-19) pseudovirus from large-volume nasal swab samples. The dependence of the magnetic bead size and the interfacial effect was studied for the first time, and the conditions of immiscible filtration assisted by surface tension (IFAST) method for nucleic acid extraction were optimized to increase the nucleic acid recovery rate up to 85%. Inside the chip, a pneumatic valve was developed for automatic opening and closing of the liquid channel. The integrated chip platform and automatic control system presented here are advantageous for use in resource-limited settings (RLS). In addition, our method can be extended to other respiratory viruses and other sample types.
Collapse
Affiliation(s)
- Ning Zhang
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Beijing, 100166, China
| | - Chao Yue
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Beijing, 100166, China
| | - Xiaobo Zhan
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Beijing, 100166, China
| | - Zhi Cheng
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Beijing, 100166, China
| | - Chao Li
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Beijing, 100166, China
| | - Yaohua Du
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Beijing, 100166, China.
| | - Feng Tian
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Beijing, 100166, China.
| |
Collapse
|
35
|
Chen G, Li H, Gao Y, Zhao H, Yang J, Dong L. Establishment of Digital PCR Method and Reference Material for Adenoviruses 40 and 41. Foodborne Pathog Dis 2023; 20:453-459. [PMID: 37590500 DOI: 10.1089/fpd.2023.0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Coinfection with human adenovirus (HAdV) and SARS-CoV-2 has been associated with acute hepatitis in children with unknown etiology. Similar cases have been reported in many countries, and HAdV 40 and HAdV 41 have been identified. The quantification method is established based on digital PCR (dPCR) for HAdV 40/41, which is more convenient for low-concentration virus detection. The limit of detections of HAdV 40/41 dPCR were 4 and 5 copies/μL. Pseudovirus reference material (RM) that contains the highly conserved HEXON gene was developed and quantified with the dPCR method. The assigned values with expanded uncertainty were (1.43 ± 0.35) × 103 copies/μL for HAdV 40 RM and (1.21 ± 0.28) × 103 copies/μL for HAdV 41 RM. The values could be reproduced on multiple platforms. The dPCR method and pseudovirus RMs contribute to the improved accuracy of HAdV 40/41 detection, which is crucial for clinical diagnosis.
Collapse
Affiliation(s)
- Guifang Chen
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Huijie Li
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China
| | - Yunhua Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Hang Zhao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jiayi Yang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Lianhua Dong
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| |
Collapse
|
36
|
Wang R, Liu Y, Chen S, Bai L, Guo K, Pang Y, Qian F, Li Y, Ding L, Wang Y. utPCR: A Strategy for the Highly Specific and Absolutely Quantitative Detection of Single Molecules within Only Minutes. BIOSENSORS 2023; 13:910. [PMID: 37887103 PMCID: PMC10605045 DOI: 10.3390/bios13100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
Bloodstream infection is a major health problem worldwide, with extremely high mortality. Detecting infection in the early stage is challenging due to the extremely low concentration of bacteria in the blood. Digital PCR provides unparalleled sensitivity and can achieve absolute quantification, but it is time-consuming. Moreover, the presence of unavoidable background signals in negative controls poses a significant challenge for single-molecule detection. Here, we propose a novel strategy called "Ultrafast flexible thin tube-based droplet digital PCR (utPCR)" that can shorten the digital PCR process from 2 h to only 5 min, with primer annealing/extension time reduced from minutes to only 5 s. Importantly, the ultrafast PCR eliminates nonspecific amplification and thus enables single-molecule detection. The utPCR enabled the sensitive detection and digital quantification of E. coli O157 in the high background of a 106-fold excess of E. coli K12 cells. Moreover, this method also displayed the potential to detect rare pathogens in blood samples, and the limit of detection (LOD) could be as low as 10 CFU per mL of blood without false positive results. Considered ultrafast (<5 min) and highly sensitive (single-molecule detection), the utPCR holds excellent prospects in the next generation of molecular diagnosis.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Human Phenome Institute, Pudong Hospital, Fudan University, Shanghai 200438, China
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Ying Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Human Phenome Institute, Pudong Hospital, Fudan University, Shanghai 200438, China
| | - Shuaiwei Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Human Phenome Institute, Pudong Hospital, Fudan University, Shanghai 200438, China
| | - Linlin Bai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Human Phenome Institute, Pudong Hospital, Fudan University, Shanghai 200438, China
| | - Kaiming Guo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Human Phenome Institute, Pudong Hospital, Fudan University, Shanghai 200438, China
| | - Yanan Pang
- Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Feng Qian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Human Phenome Institute, Pudong Hospital, Fudan University, Shanghai 200438, China
| | - Yongfang Li
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Li Ding
- Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yongming Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Human Phenome Institute, Pudong Hospital, Fudan University, Shanghai 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| |
Collapse
|
37
|
Wang J, Wang W, Zhou W, Zhou Y, Zhou L, Wang X, Yu B, Zhang B. Preliminary study of noninvasive prenatal screening for 22q11.2 deletion/duplication syndrome using multiplex dPCR assay. Orphanet J Rare Dis 2023; 18:278. [PMID: 37684689 PMCID: PMC10486099 DOI: 10.1186/s13023-023-02903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
OBJECTIVE This study aimed to establish a cell-free fetal DNA (cffDNA) assay using multiplex digital PCR (dPCR) for identifying fetuses at increased risk of 22q11.2 deletion/duplication syndrome. METHODS Six detection sites and their corresponding probes were designed for the 22q11.2 recurrent region. A dPCR assay for the noninvasive screening of 22q11.2 deletion/duplication syndrome was established. A total of 130 plasma samples from pregnant women (including 15 samples with fetal 22q11.2 deletion/duplication syndrome) were blindly tested for evaluating the sensitivity and specificity of the established assay. RESULTS DNA with different sizes of 22q11.2 deletion/duplication was detected via dPCR, indicating that the designed probes and detection sites were reasonable and effective. In the retrospective clinical samples, 11 out of 15 samples of pregnant women with 22q11.2 deletion/duplication were detected during the cffDNA assay, and accurate regional localization was achieved. Among the 115 normal samples, 111 were confirmed to be normal. Receiver operating characteristic curves were used for assessing the cut-off values and AUC for these samples. The sensitivity, specificity, and positive as well as negative predictive values were 73.3%, 96.5%, 73.3%, and 96.5%, respectively. CONCLUSION The cffDNA assay based on dPCR technology for the noninvasive detection of 22q11.2 recurrent copy number variants in fetuses detected most affected cases, including smaller but relatively common nested deletions, with a low false-positive rate. It is a potential, efficient and simple method for the noninvasive screening of 22q11.2 deletion/duplication syndrome.
Collapse
Affiliation(s)
- Jing Wang
- Changzhou Maternity and Child Health Care Hospital, Changzhou, 213003, Jiangsu Province, China
| | - Wei Wang
- Changzhou Maternity and Child Health Care Hospital, Changzhou, 213003, Jiangsu Province, China
| | - Wenbo Zhou
- Changzhou Maternity and Child Health Care Hospital, Changzhou, 213003, Jiangsu Province, China
| | - Yan Zhou
- Xingzhi Biotechnology Co., LTD, Suzhou, 215000, Jiangsu Province, China
| | - Linna Zhou
- Changzhou Maternity and Child Health Care Hospital, Changzhou, 213003, Jiangsu Province, China
| | - Xinyue Wang
- Xingzhi Biotechnology Co., LTD, Suzhou, 215000, Jiangsu Province, China
| | - Bin Yu
- Changzhou Maternity and Child Health Care Hospital, Changzhou, 213003, Jiangsu Province, China.
| | - Bin Zhang
- Changzhou Maternity and Child Health Care Hospital, Changzhou, 213003, Jiangsu Province, China.
| |
Collapse
|
38
|
Li B, Liu J, Huang Q. A Digital PCR Method Based on Highly Specific Taq for Detecting Gene Editing and Mutations. Int J Mol Sci 2023; 24:13405. [PMID: 37686219 PMCID: PMC10488114 DOI: 10.3390/ijms241713405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Digital PCR (dPCR) has great potential for assessing gene editing or gene mutation due to its ability to independently inspect each DNA template in parallel. However, current dPCR methods use a fluorescence-labeled probe to detect gene variation events, and their ability to distinguish variated sequences from the wild-type sequence is limited by the probe's tolerance to mismatch. To address this, we have developed a novel dPCR method that uses a primer instead of a probe to sense gene variation. The enhanced Taq DNA polymerase in the PCR system has a high mismatch sensitivity, which enables our dPCR method to distinguish gene mutations from wild-type sequences. Compared to current dPCR methods, our method shows superior precision in assessing gene editing efficiency and single-base DNA mutation. This presents a promising opportunity to advance gene editing research and rare gene mutation detection.
Collapse
Affiliation(s)
| | | | - Qilai Huang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
39
|
Ren J, Xu G, Liu H, He N, Zhao Z, Wang M, Gu P, Chen Z, Deng Y, Wu D, Li S. A Chamber-Based Digital PCR Based on a Microfluidic Chip for the Absolute Quantification and Analysis of KRAS Mutation. BIOSENSORS 2023; 13:778. [PMID: 37622864 PMCID: PMC10452697 DOI: 10.3390/bios13080778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/26/2023]
Abstract
The Kirsten rat sarcoma virus gene (KRAS) is the most common tumor in human cancer, and KRAS plays an important role in the growth of tumor cells. Normal KRAS inhibits tumor cell growth. When mutated, it will continuously stimulate cell growth, resulting in tumor development. There are currently few drugs that target the KRAS gene. Here, we developed a microfluidic chip. The chip design uses parallel fluid channels combined with cylindrical chamber arrays to generate 20,000 cylindrical microchambers. The microfluidic chip designed by us can be used for the microsegmentation of KRAS gene samples. The thermal cycling required for the PCR stage is performed on a flat-panel instrument and detected using a four-color fluorescence system. "Glass-PDMS-glass" sandwich structure effectively reduces reagent volatilization; in addition, a valve is installed at the sample inlet and outlet on the upper layer of the chip to facilitate automatic control. The liquid separation performance of the chip was verified by an automated platform. Finally, using the constructed KRAS gene mutation detection system, it is verified that the chip has good application potential for digital polymerase chain reaction (dPCR). The experimental results show that the chip has a stable performance and can achieve a dynamic detection range of four orders of magnitude and a gene mutation detection of 0.2%. In addition, the four-color fluorescence detection system developed based on the chip can distinguish three different KRAS gene mutation types simultaneously on a single chip.
Collapse
Affiliation(s)
- Jie Ren
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Gangwei Xu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
- Hunan Shengzhou Biotechnology Company Limited, Shanghai 200439, China
| | - Hongna Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Zhehao Zhao
- Hunan Shengzhou Biotechnology Company Limited, Shanghai 200439, China
| | - Meiling Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Peipei Gu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Dongping Wu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
- Hunan Shengzhou Biotechnology Company Limited, Shanghai 200439, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
- Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
40
|
Alonzi T, Repele F, Goletti D. Research tests for the diagnosis of tuberculosis infection. Expert Rev Mol Diagn 2023; 23:783-795. [PMID: 37561602 DOI: 10.1080/14737159.2023.2240230] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
INTRODUCTION Despite huge efforts, tuberculosis (TB) is still a major public health threat worldwide, it is estimated that a quarter of the global population is infected by Mycobacterium tuberculosis (Mtb). For controlling TB and reducing Mtb transmission it is fundamental to diagnose TB infection (TBI) as well as the progressors from TBI to disease to identify those requiring preventive therapy. At present, there is no gold standard test for TBI diagnosis although several new methodologies have been attempted. AREAS COVERED This review provides an update on the most recent approaches to develop reliable tests to diagnose TBI and progressors from infection to disease. Experimental tests are based on either the direct identification of Mtb (i.e., Mtb DNA upon host cells isolation; Mtb proteins or peptides) or host response (i.e., levels and quality of specific anti-Mtb antibodies; host blood transcriptome signatures). EXPERT OPINION The experimental tests described are very interesting. However, further investigation and randomized clinical trials are needed to improve the sensitivity and specificity of these new research-based tests. More reliable proofs-of-concept and simplification of technical procedures are necessary to develop new diagnostic tools for identifying TBI patients and those that will progress from infection to TB disease.
Collapse
Affiliation(s)
- Tonino Alonzi
- Translational Research Unit, Department of Epidemiology and Preclinical Research National Institute for Infectious Diseases L. Spallanzani-IRCCS, Rome, Italy
| | - Federica Repele
- Translational Research Unit, Department of Epidemiology and Preclinical Research National Institute for Infectious Diseases L. Spallanzani-IRCCS, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research National Institute for Infectious Diseases L. Spallanzani-IRCCS, Rome, Italy
| |
Collapse
|
41
|
Zhang C, Cai Z, Zhou Z, Li M, Hong W, Zhou W, Yu D, Wei P, He J, Wang Y, Huang C, Wang X, Wu J. CASMART, a one-step CRISPR Cas12a-mediated isothermal amplification for rapid and high-resolution digital detection of rare mutant alleles. Biosens Bioelectron 2023; 222:114956. [PMID: 36525708 DOI: 10.1016/j.bios.2022.114956] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
Convenient, ultrasensitive, and accurate detection of rare variants is essential for early cancer diagnosis and precision medicine, however, despite years of efforts, tools that have all these qualities remain elusive. Here, we developed a one-step CRISPR/Cas12a-based digital diagnostic platform for accurately quantifying mutant alleles, referred to as the CRISPR ASsoaciated Mutation Allele Rapid Test (CASMART). The platform accurately quantifies the variant allele frequency of EGFR L858R within 1 h at 42 °C and can detect mutant targets as low as 0.3 copies/μL (0.498 aM) in mock multiplex cfDNA samples. We further investigated the applicability of CASMART using human genomic samples with confirmed EGFR L858R mutations previously measured variant allele frequency by next-generation sequencing. Comparison across platforms revealed equivalent detection performance (Pearson's correlation coefficient, R2 = 0.9208) and high quantification accuracy for mutation allele frequency (intraclass correlation coefficient = 0.959). Our one-step approach enables easy and accurate variant allele frequency measurement of rare mutant alleles without PCR instrumentation, while the assay time was reduced by approximately half compared to the digital PCR with the shortest turnaround. The CASMART is an alternative to conventional single nucleotide polymorphism detection methods with great potential as a next-generation biosensor for rapidly quantifying the variant allele fraction, especially in resource-limited settings.
Collapse
Affiliation(s)
- Chanqiong Zhang
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhengyi Cai
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zihao Zhou
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Mei Li
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Weilong Hong
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Wenxian Zhou
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Dianjun Yu
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Panpan Wei
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jialin He
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yujuan Wang
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Chongan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Second Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiaobing Wang
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Jinyu Wu
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
42
|
Rubio-Monterde A, Quesada-González D, Merkoçi A. Toward Integrated Molecular Lateral Flow Diagnostic Tests Using Advanced Micro- and Nanotechnology. Anal Chem 2023; 95:468-489. [PMID: 36413136 DOI: 10.1021/acs.analchem.2c04529] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Ana Rubio-Monterde
- Paperdrop Diagnostics S.L., MRB, Campus UAB, 08193 Bellaterra, Spain.,Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, 08193 Barcelona, Spain
| | | | - Arben Merkoçi
- Paperdrop Diagnostics S.L., MRB, Campus UAB, 08193 Bellaterra, Spain.,Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, 08193 Barcelona, Spain.,The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08036 Bellaterra, Barcelona Spain.,ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
43
|
Li Z, Xu X, Wang D, Jiang X. Recent advancements in nucleic acid detection with microfluidic chip for molecular diagnostics. Trends Analyt Chem 2023; 158:116871. [PMID: 36506265 PMCID: PMC9721164 DOI: 10.1016/j.trac.2022.116871] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The coronavirus disease 2019 (COVID-19) has extensively promoted the application of nucleic acid testing technology in the field of clinical testing. The most widely used polymerase chain reaction (PCR)-based nucleic acid testing technology has problems such as complex operation, high requirements of personnel and laboratories, and contamination. The highly miniaturized microfluidic chip provides an essential tool for integrating the complex nucleic acid detection process. Various microfluidic chips have been developed for the rapid detection of nucleic acid, such as amplification-free microfluidics in combination with clustered regularly interspaced short palindromic repeats (CRISPR). In this review, we first summarized the routine process of nucleic acid testing, including sample processing and nucleic acid detection. Then the typical microfluidic chip technologies and new research advances are summarized. We also discuss the main problems of nucleic acid detection and the future developing trend of the microfluidic chip.
Collapse
|
44
|
Li W, Yang X, Lai P, Shang L. Bio-inspired adhesive hydrogel for biomedicine-principles and design strategies. SMART MEDICINE 2022; 1:e20220024. [PMID: 39188733 PMCID: PMC11235927 DOI: 10.1002/smmd.20220024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 08/28/2024]
Abstract
The adhesiveness of hydrogels is urgently required in various biomedical applications such as medical patches, tissue sealants, and flexible electronic devices. However, biological tissues are often wet, soft, movable, and easily damaged. These features pose difficulties for the construction of adhesive hydrogels for medical use. In nature, organisms adhere to unique strategies, such as reversible sucker adhesion in octopuses and nontoxic and firm catechol chemistry in mussels, which provide many inspirations for medical hydrogels to overcome the above challenges. In this review, we systematically classify bioadhesion strategies into structure-related and molecular-related ones, which cover almost all known bioadhesion paradigms. We outline the principles of these strategies and summarize the corresponding designs of medical adhesive hydrogels inspired by them. Finally, conclusions and perspectives concerning the development of this field are provided. For the booming bio-inspired adhesive hydrogels, this review aims to summarize and analyze the various existing theories and provide systematic guidance for future research from an innovative perspective.
Collapse
Affiliation(s)
- Wenzhao Li
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
- The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| | - Xinyuan Yang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Puxiang Lai
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
- The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| | - Luoran Shang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
45
|
Berden P, Wiederkehr RS, Lagae L, Michiels J, Stakenborg T, Fauvart M, Van Roy W. Amplification Efficiency and Template Accessibility as Distinct Causes of Rain in Digital PCR: Monte Carlo Modeling and Experimental Validation. Anal Chem 2022; 94:15781-15789. [DOI: 10.1021/acs.analchem.2c03534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pieter Berden
- Imec, Leuven 3001, Belgium
- Department of Physics and Astronomy, KU Leuven, Leuven 3001, Belgium
- Department of Molecular and Microbial Systems, Centre of Microbial and Plant Genetics, KU Leuven, Leuven 3001, Belgium
- Center for Microbiology, Flanders Institute for Biotechnology, VIB, Leuven 3001, Belgium
| | | | - Liesbet Lagae
- Imec, Leuven 3001, Belgium
- Department of Physics and Astronomy, KU Leuven, Leuven 3001, Belgium
| | - Jan Michiels
- Department of Molecular and Microbial Systems, Centre of Microbial and Plant Genetics, KU Leuven, Leuven 3001, Belgium
- Center for Microbiology, Flanders Institute for Biotechnology, VIB, Leuven 3001, Belgium
| | | | - Maarten Fauvart
- Imec, Leuven 3001, Belgium
- Department of Molecular and Microbial Systems, Centre of Microbial and Plant Genetics, KU Leuven, Leuven 3001, Belgium
- Center for Microbiology, Flanders Institute for Biotechnology, VIB, Leuven 3001, Belgium
| | | |
Collapse
|