1
|
Zhan J, Wang S, Li X, Zhang J. Molecular engineering of functional DNA molecules toward point-of-care diagnostic devices. Chem Commun (Camb) 2025; 61:4316-4338. [PMID: 39998439 DOI: 10.1039/d5cc00338e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The pursuit of rapid, sensitive, and specific diagnostic methodologies is imperative across diverse applications, including the detection of pathogens and disease biomarkers, food safety testing and environmental monitoring. Point-of-care testing (POCT) is characterized by its portability, ease of use, rapidity, and affordability, emerging as an attractive alternative for traditional diagnostics. Over recent years, the incorporation of functional DNA (fDNA) into POC diagnostic devices has emerged as a groundbreaking advancement, significantly enhancing sensitivity, specificity, and user-friendliness. In this review, we explore the innovative applications of fDNA in POC devices, highlighting its potential to revolutionize diagnostics by providing rapid, portable, and precise solutions. We discuss the unique advantages of fDNA, including its stability in complex biological matrices and its ability to recognize a wide range of targets. Furthermore, we explore the potential synergy between fDNA and cutting-edge technologies, such as nanotechnology and artificial intelligence (AI), to forge a path toward more personalized and accessible healthcare solutions. Despite significant progress, challenges remain in translating these innovations from the bench to the clinic. This review aims to provide a comprehensive overview of the current status of fDNA-based POCT devices and future directions for their development, emphasizing their critical role in meeting the global demand for accessible, efficient, and precise diagnostic solutions.
Collapse
Affiliation(s)
- Jiayin Zhan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China.
| | - Siyuan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Xiang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
2
|
Liu Y, Pandey R, McCarthy MJ, Raymond O. Single-Use Electrochemical Aptamer-Based Sensors for Calibration-Free Measurements in Human Saliva via Dual-Frequency Approaches: Prospects and Challenges. Anal Chem 2025; 97:5234-5243. [PMID: 40009034 DOI: 10.1021/acs.analchem.4c06802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Despite the rapid growth in aptamer-based biosensor research, there remains a significant demand for aptasensors that operate without the need for sample preparation and calibration, to better facilitate real-world applications. Electrochemical aptamer-based (EAB) sensors, particularly those utilizing a dual-frequency, calibration-free approach, have shown promising advances toward commercialization. Single-use, disposable sensors represent a cost-effective solution for at-home and on-site point-of-care (POC) diagnostics. However, the development of these sensors presents unique challenges compared to in vivo monitoring and reusable platforms, with pronounced variations across sensors and batches. Motivated by these challenges, we have comprehensively investigated the dual-frequency, calibration-free approach, focusing on sensor-to-sensor and batch-to-batch variations. Our research explored the use of a nonresponsive frequency-based ratiometric method for detecting cocaine with laser-ablated, disposable EAB sensors. Additionally, to overcome the absence of nonresponsive frequencies in some aptasensors, we developed strategies to modify the aptamer structure and optimize operational conditions, effectively tailoring nonresponsive frequencies to allow for rapid result turnover. Moreover, we assessed the effects of various filter types on saliva pretreatment using liquid chromatography with tandem mass spectrometry (LCMS/MS) and developed a saliva collection workflow using an oral swab. This workflow and the disposable aptasensors developed herein achieved low μM sensitivity in saliva, with results obtainable in under 5 min, including saliva collection and processing. Furthermore, our findings indicate that certain food and drink residues in saliva can compromise sensor accuracy, highlighting an area for future refinement.
Collapse
Affiliation(s)
- Yasmin Liu
- Forensic Research and Development Department, Institute of Environmental Science and Research, P.O. Box 50348, Porirua 5240, New Zealand
| | - Rishi Pandey
- Forensic Research and Development Department, Institute of Environmental Science and Research, P.O. Box 50348, Porirua 5240, New Zealand
| | - Mary Jane McCarthy
- Forensic Research and Development Department, Institute of Environmental Science and Research, P.O. Box 50348, Porirua 5240, New Zealand
| | - Onyekachi Raymond
- Forensic Research and Development Department, Institute of Environmental Science and Research, P.O. Box 50348, Porirua 5240, New Zealand
| |
Collapse
|
3
|
Bakestani RM, Wu Y, Glahn-Martínez B, Kippin TE, Plaxco KW, Kolkman RW. Carboxylate-Terminated Electrode Surfaces Improve the Performance of Electrochemical Aptamer-Based Sensors. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8706-8714. [PMID: 39841926 PMCID: PMC11803614 DOI: 10.1021/acsami.4c21790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Electrochemical aptamer-based (EAB) sensors are a molecular measurement platform that enables the continuous, real-time measurement of a wide range of drugs and biomarkers in situ in the living body. EAB sensors are fabricated by depositing a thiol-modified, target-binding aptamer on the surface of a gold electrode, followed by backfilling with an alkanethiol to form a self-assembled monolayer. And while the majority of previously described EAB sensors have employed hydroxyl-terminated monolayers, a handful of studies have shown that altering the monolayer headgroup can strongly affect sensor performance. Here, using 4 different EAB sensors, we show that the mixed monolayers composed of mixtures of 6-carbon hydroxyl-terminated thiols and varying amounts of either 6- or 8-carbon, carboxylate-terminated thiols lead to improved EAB sensor performance. Specifically, the use of such mixed monolayers enhances the signal gain (the relative change in the signal seen upon target addition) for all tested sensors, often by several fold, both in buffer and whole blood at room temperature or physiological temperatures. Moreover, these improvements in gain are achieved without significant changes in the aptamer affinity or the stability of the resulting sensors. In addition to proving a ready means of improving EAB sensor performance, these results suggest that exploration of the chemistry of the electrode surface employed in such sensors could prove to be a fruitful means of advancing this unique in vivo sensing technology.
Collapse
Affiliation(s)
- Rose Mery Bakestani
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Yuyang Wu
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Bettina Glahn-Martínez
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
- Department
of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Tod E. Kippin
- Department
of Psychological and Brain Sciences, University
of California Santa Barbara, Santa
Barbara, California 93106, United States
| | - Kevin W. Plaxco
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
- Biological
Engineering Graduate Program, University
of California Santa Barbara, Santa
Barbara, California 93106, United States
| | - Ruben W. Kolkman
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
4
|
Liu ZJ, Liang YQ, Li JY, Wu B, Huang C, Liu YW, Zhang CZ, Yang Y, Cai NQ, Chen JY, Lin XH. Engineered Aptamer-Derived Fluorescent Aptasensor: the Label-Free, Single-Step, Rapid Detection of Vancomycin in Clinical Samples. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407799. [PMID: 39676392 DOI: 10.1002/smll.202407799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/27/2024] [Indexed: 12/17/2024]
Abstract
Currently, the reported vancomycin (VCM) aptamers, including the 3- (Kd = 9.13 × 10-6 m) and 4-truncated variants (Kd = 45.5 × 10-6 m), are engineered via stem truncation of the VCM parent aptamer, which inevitably compromises their affinities, thus affecting their clinical application within the VCM therapeutic window of 6.9-13.8 × 10-6 m. Herein, the binding pocket of the VCM parent aptamer is elucidated for the first time and we implemented the Post-SELEX modification strategy involving truncation and mutagenesis to refined the VCM parent aptamer. This yielded a VCM aptamer (ABC20-11) with an intramolecular G-triplex, an enhanced thioflavin T (ThT) fluorescence intensity, and an improved affinity (Kd = 0.591 × 10-6 m) and specificity (one-methyl level) for VCM. Utilizing a portable fluorescence detector specifically designed for rapidly detecting VCM concentration and leveraging the competitive binding between VCM and ThT to ABC20-11, a label-free fluorescent aptasensor is developed. This aptasensor exhibits exceptional analytical performances across various clinical samples (serum, cerebrospinal fluid, and joint fluid), with corresponding linear ranges of 0.5-50, 0.5-40, and 0.5-50 × 10-6 m and detection limits at 0.11, 0.12, and 0.16 × 10-6 m, respectively. Consequently, the proposed VCM aptasensor displays considerable clinical value and potential for use in rapid VCM detection.
Collapse
Affiliation(s)
- Zhou-Jie Liu
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yu-Qi Liang
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Jia-Yi Li
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Bing Wu
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Chen Huang
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yi-Wei Liu
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Chen-Zhi Zhang
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Ye Yang
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Nai-Qing Cai
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Jin-Yuan Chen
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xin-Hua Lin
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| |
Collapse
|
5
|
Behnam V, McManamen AM, Ballard HG, Aldana B, Tamimi M, Milosavić N, Stojanovic MN, Rubin MR, Sia SK. mPatch: A Wearable Hydrogel Microneedle Patch for In Vivo Optical Sensing of Calcium. Angew Chem Int Ed Engl 2025; 64:e202414871. [PMID: 39625999 DOI: 10.1002/anie.202414871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
This study presents an in vivo optical hydrogel microneedle platform that measures levels of analytes in interstitial fluid. The platform builds on a previously published technique for molding hydrogel microneedles by developing a composite hydrogel (i.e., PEGDA and polyacrylamide) that is sufficiently stiff to penetrate skin in the hydrated state and whose fluorescence changes dynamically-via a conjugated aptamer-depending on level of analyte. In a demonstration relevant to hypercalcemia, the hydrogel microneedle distinguished varying concentrations of calcium (within a range of 0 to 2 mM, which spans physiologically meaningful variations for hypoparathyroidism) within 10 minutes. In rats, a compact CMOS sensor measuring fluorescence from microneedles distinguished low hypercalcemic (1.7 mM) from high hypercalcemic (2.3 mM) ionized calcium levels as determined from reference blood measurements. Overall, this work demonstrates in vivo feasibility of a concept-which we call mPatch-for an optical hydrogel microneedle to measure small changes in levels of analytes in interstitial fluid, which does not rely on extraction of interstitial fluid out of the dermis.
Collapse
Affiliation(s)
- Vira Behnam
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Anika M McManamen
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Hannah G Ballard
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Bryan Aldana
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Melissa Tamimi
- Institute of Comparative Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nenad Milosavić
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Milan N Stojanovic
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mishaela R Rubin
- Department of Medicine Endocrinology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Samuel K Sia
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
6
|
Zou S, Peng G, Ma Z. Surface-Functionalizing Strategies for Multiplexed Molecular Biosensing: Developments Powered by Advancements in Nanotechnologies. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2014. [PMID: 39728549 DOI: 10.3390/nano14242014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Multiplexed biosensing methods for simultaneously detecting multiple biomolecules are important for investigating biological mechanisms associated with physiological processes, developing applications in life sciences, and conducting medical tests. The development of biosensors, especially those advanced biosensors with multiplexing potentials, strongly depends on advancements in nanotechnologies, including the nano-coating of thin films, micro-nano 3D structures, and nanotags for signal generation. Surface functionalization is a critical process for biosensing applications, one which enables the immobilization of biological probes or other structures that assist in the capturing of biomolecules. During this functionalizing process, nanomaterials can either be the objects of surface modification or the materials used to modify other base surfaces. These surface-functionalizing strategies, involving the coordination of sensor structures and materials, as well as the associated modifying methods, are largely determinative in the performance of biosensing applications. This review introduces the current studies on biosensors with multiplexing potentials and focuses specifically on the roles of nanomaterials in the design and functionalization of these biosensors. A detailed description of the paradigms used for method selection has been set forth to assist understanding and accelerate the application of novel nanotechnologies in the development of biosensors.
Collapse
Affiliation(s)
- Shangjie Zou
- Center for Cell Lineage Technology and Engineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Guangdun Peng
- Center for Cell Lineage Technology and Engineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhiqiang Ma
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| |
Collapse
|
7
|
Rabiee N, Rabiee M. Wearable Aptasensors. Anal Chem 2024; 96:19160-19182. [PMID: 39604058 DOI: 10.1021/acs.analchem.4c05004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
This Perspective explores the revolutionary advances in wearable aptasensor (WA) technology, which combines wearable devices and aptamer-based detection systems for personalized, real-time health monitoring. The devices leverage the specificity and sensitivity of aptamers to target specific molecules, offering broad applications from continuous glucose tracking to early diagnosis of diseases. The integration of data analytics and artificial intelligence (AI) allows early risk prediction and guides preventive health measures. While challenges in miniaturization, power efficiency, and data security persist, these devices hold significant potential to democratize healthcare and reshape patient-doctor interactions.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 165543, Iran
| |
Collapse
|
8
|
Wang Y, Cai L, Fan L, Wang L, Bian F, Sun W, Zhao Y. Electrical Microneedles for Wound Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409519. [PMID: 39514411 DOI: 10.1002/advs.202409519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Electrical stimulation has been hotpot research and provoked extensive interest in a broad application such as wound closure, tissue injury repair, and nerve engineering. In particular, immense efforts have been dedicated to developing electrical microneedles, which demonstrate unique features in terms of controllable drug release, real-time monitoring, and therapy, thus greatly accelerating the process of wound healing. Here, a review of state-of-art research concerning electrical microneedles applied for wound treatment is presented. After a comprehensive analysis of the mechanisms of electrical stimulation on wound healing, the derived three types of electrical microneedles are clarified and summarized. Further, their applications in wound healing are highlighted. Finally, current perspectives and directions for the development of future electrical microneedles in improving wound healing are addressed.
Collapse
Affiliation(s)
- Yu Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Lijun Cai
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lu Fan
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Li Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Feika Bian
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518071, China
| |
Collapse
|
9
|
Xing L, Liu L, Jin R, Zhang H, Shen Y, Zhang S, He Z, Li D, Ren H, Huang Q, Cao X, Zhang S, Dong S, Cheng W, Zhu B. Flexible yet Durable Microneedle Electrodes Based on Nanowire-Embedded Polyimide for Precise Wearable Electrophysiological Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57695-57704. [PMID: 39396246 DOI: 10.1021/acsami.4c12768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
A precise recording of electrophysiological signals requires high-performance flexible bioelectrodes to build a robust skin interface. The past decade has witnessed encouraging progress in the development of elastomeric electrodes for wearable electrophysiological monitoring; however, it remains challenging to achieve excellent flexibility, conformal contact, and high durability simultaneously. Herein, we report on an effective method to fabricate flexible yet durable microneedle electrodes (MEs) based on vertically aligned gold nanowires (Au NWs) embedded polyimide (PI), which meet the above three design requirements. The Au NWs embedded PI MEs could build conformal contact with human skin and maintain electrical stability with minimal contact impedance by effectively penetrating the stratum corneum of the skin. In comparison studies, we found our MEs outperformed conventional gel or elastomeric soft electrodes. We further integrated the vertical Au-NW MEs into a wearable healthcare system and achieved wireless real-time recordings of electromyography (EMG) and electrocardiography (ECG) with high signal-to-noise ratios (SNRs) and low motion artifacts. Our fabrication strategy opens a new route to improve the durability and reliability of emerging nanomaterial-based soft bioelectrodes for long-term wearable healthcare applications.
Collapse
Affiliation(s)
- Lixiang Xing
- Westlake Institute for Optoelectronics, Hangzhou, Zhejiang 311421, People's Republic of China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, People's Republic of China
| | - Lihua Liu
- Westlake Institute for Optoelectronics, Hangzhou, Zhejiang 311421, People's Republic of China
| | - Ran Jin
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, People's Republic of China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Haiyue Zhang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, People's Republic of China
| | - Yiyang Shen
- Westlake Institute for Optoelectronics, Hangzhou, Zhejiang 311421, People's Republic of China
| | - Siyu Zhang
- Westlake Institute for Optoelectronics, Hangzhou, Zhejiang 311421, People's Republic of China
| | - Ziyi He
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, People's Republic of China
| | - Dingwei Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, People's Republic of China
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Huihui Ren
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, People's Republic of China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Qi Huang
- Westlake Institute for Optoelectronics, Hangzhou, Zhejiang 311421, People's Republic of China
| | - Xuan Cao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, People's Republic of China
| | - Shaomin Zhang
- Westlake Institute for Optoelectronics, Hangzhou, Zhejiang 311421, People's Republic of China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Shurong Dong
- Westlake Institute for Optoelectronics, Hangzhou, Zhejiang 311421, People's Republic of China
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Wenlong Cheng
- School of Biomedical Engineering, The University of Sydney, Darlington, New South Wales 2008, Australia
| | - Bowen Zhu
- Westlake Institute for Optoelectronics, Hangzhou, Zhejiang 311421, People's Republic of China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, People's Republic of China
| |
Collapse
|
10
|
Kim G, Ahn H, Chaj Ulloa J, Gao W. Microneedle sensors for dermal interstitial fluid analysis. MED-X 2024; 2:15. [PMID: 39363915 PMCID: PMC11445365 DOI: 10.1007/s44258-024-00028-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
The rapid advancement in personalized healthcare has driven the development of wearable biomedical devices for real-time biomarker monitoring and diagnosis. Traditional invasive blood-based diagnostics are painful and limited to sporadic health snapshots. To address these limitations, microneedle-based sensing platforms have emerged, utilizing interstitial fluid (ISF) as an alternative biofluid for continuous health monitoring in a minimally invasive and painless manner. This review aims to provide a comprehensive overview of microneedle sensor technology, covering microneedle design, fabrication methods, and sensing strategy. Additionally, it explores the integration of monitoring electronics for continuous on-body monitoring. Representative applications of microneedle sensing platforms for both monitoring and therapeutic purposes are introduced, highlighting their potential to revolutionize personalized healthcare. Finally, the review discusses the remaining challenges and future prospects of microneedle technology. Graphical Abstract
Collapse
Affiliation(s)
- Gwangmook Kim
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA USA
| | - Hyunah Ahn
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA USA
| | - Joshua Chaj Ulloa
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA USA
| |
Collapse
|
11
|
Wang L, Zhou Z, Niu J, Peng J, Wang T, Hou X. Emerging innovations in portable chemical sensing devices: Advancements from microneedles to hydrogel, microfluidic, and paper-based platforms. Talanta 2024; 278:126412. [PMID: 38924993 DOI: 10.1016/j.talanta.2024.126412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
With the public heightened emphasis on mitigating the occurrence risks of health-related ailment and optimizing personal physical performance, portable chemical sensing devices emerged as an indispensable component of pervasive health monitoring. Chemical sensing enabled the immediate and on-site identification of biomarkers in biological fluids by integrating colorimetry, fluorescence, electrochemical, and other methods into portable sensor devices. These sensor devices incorporated microneedles, hydrogels, microfluidic modules, and papers, facilitating conformal human-device contact and providing several visual sensing options for disease prevention and healthcare management. This review systematically overviewed recent advancements in chemical sensors for marker detection, categorizing them based on monitoring device types. Furthermore, we also offered recommendations and opportunities for developing portable chemical sensing devices by summarizing sensor integration methods and tracking sites on the human body.
Collapse
Affiliation(s)
- Louqun Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Zimeng Zhou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Jingge Niu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Jiayi Peng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Ting Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China.
| | - Xiaohong Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China.
| |
Collapse
|
12
|
Ma C, Li X, Mao N, Wang M, Cui C, Jia H, Liu X, Sun Q. Semi-invasive wearable clinic: Solution-processed smart microneedle electronics for next-generation integrated diagnosis and treatment. Biosens Bioelectron 2024; 260:116427. [PMID: 38823368 DOI: 10.1016/j.bios.2024.116427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024]
Abstract
The integrated smart electronics for real-time monitoring and personalized therapy of disease-related analytes have been gradually gaining tremendous attention. However, human tissue barriers, including the skin barrier and brain-blood barrier, pose significant challenges for effective biomarker detection and drug delivery. Microneedle (MN) electronics present a promising solution to overcome these tissue barriers due to their semi-invasive structures, enabling effective drug delivery and target-analyte detection without compromising the tissue configuration. Furthermore, MNs can be fabricated through solution processing, facilitating large-scale manufacturing. This review provides a comprehensive summary of the recent three-year advancements in smart MNs development, categorized as follows. First, the solution-processed technology for MNs is introduced, with a focus on various printing technologies. Subsequently, smart MNs designed for sensing, drug delivery, and integrated systems combining diagnosis and treatment are separately summarized. Finally, the prospective and promising applications of next-generation MNs within mediated diagnosis and treatment systems are discussed.
Collapse
Affiliation(s)
- Chao Ma
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- National Center for International Joint Research of Micro-nano Molding Technology, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ning Mao
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Zhengzhou University, Zhengzhou 450001, China
| | - Mengwei Wang
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Zhengzhou University, Zhengzhou 450001, China
| | - Cancan Cui
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Zhengzhou University, Zhengzhou 450001, China
| | - Hanyu Jia
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Zhengzhou University, Zhengzhou 450001, China
| | - Xuying Liu
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Zhengzhou University, Zhengzhou 450001, China
| | - Qingqing Sun
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
13
|
Li Z, Wang Y, Zhang R, Liu Z, Chang Z, Deng Y, Qi X. Microneedles-Based Theranostic Platform: From the Past to the Future. ACS NANO 2024; 18:23876-23893. [PMID: 39177073 DOI: 10.1021/acsnano.4c04277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fully integrated theranostic devices are highly esteemed in clinical applications, offering immense potential in real-time disease monitoring and personalized care. Microneedles (MNs), as innovative and wearable devices, boast important advantages in biosensing and therapy, thus holding significant promise in the advancement of diagnostic and therapeutic platforms. Encouragingly, advancements in electrochemical sensing technology, micronano fabrication, and biocompatible materials are propelling momentum for MNs-based closed-loop systems, enhancing detection capabilities, biocompatibility, and cost-effectiveness. Moreover, the notable progress in integrating MN chips with other biochips signifies a frontier for growth. Successful clinical trials in target molecule monitoring and drug delivery domains herald excellent clinical translational prospects for the aforementioned theranostic platform. Finally, we delineate both challenges and opportunities in the development of integrated diagnostic and therapeutic MN systems, including continuous monitoring, intelligent control algorithms, safety, and regulatory considerations.
Collapse
Affiliation(s)
- Ziyang Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yuhan Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ruiwei Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zijian Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ziyong Chang
- Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing 100083, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyue Qi
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
14
|
Khan MUA, Aslam MA, Abdullah MFB, Gul H, Stojanović GM, Abdal-Hay A, Hasan A. Microneedle system for tissue engineering and regenerative medicines: a smart and efficient therapeutic approach. Biofabrication 2024; 16:042005. [PMID: 39121888 DOI: 10.1088/1758-5090/ad6d90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
The global demand for an enhanced quality of life and extended lifespan has driven significant advancements in tissue engineering and regenerative medicine. These fields utilize a range of interdisciplinary theories and techniques to repair structurally impaired or damaged tissues and organs, as well as restore their normal functions. Nevertheless, the clinical efficacy of medications, materials, and potent cells used at the laboratory level is always constrained by technological limitations. A novel platform known as adaptable microneedles has been developed to address the abovementioned issues. These microneedles offer a solution for the localized distribution of various cargos while minimizing invasiveness. Microneedles provide favorable patient compliance in clinical settings due to their effective administration and ability to provide a painless and convenient process. In this review article, we summarized the most recent development of microneedles, and we started by classifying various microneedle systems, advantages, and fundamental properties. Subsequently, it provides a comprehensive overview of different types of microneedles, the material used to fabricate microneedles, the fundamental properties of ideal microneedles, and their applications in tissue engineering and regenerative medicine, primarily focusing on preserving and restoring impaired tissues and organs. The limitations and perspectives have been discussed by concluding their future therapeutic applications in tissue engineering and regenerative medicines.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Hilal Gul
- Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Goran M Stojanović
- Department of Electronics, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Abdalla Abdal-Hay
- School of Dentistry, University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia
- Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt
- Faculty of Industry and Energy Technology, Mechatronics Technology Program, New Cairo Technological University, New Cairo-Fifth Settlement, Cairo 11835, Egypt
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
15
|
Tang L, Li D, Liu W, Tang Y, Zhang R, Tian Y, Tan R, Yang X, Sun L. Microneedle electrochemical sensor based on disposable stainless-steel wire for real-time analysis of indole-3-acetic acid and salicylic acid in tomato leaves infected by Pst DC3000 in situ. Anal Chim Acta 2024; 1316:342875. [PMID: 38969433 DOI: 10.1016/j.aca.2024.342875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Indole-3-acetic acid (IAA) and salicylic acid (SA), pivotal regulators in plant growth, are integral to a variety of plant physiological activities. The ongoing and simultaneous monitoring of these hormones in vivo enhances our comprehension of their interactive and regulatory roles. Traditional detection methods, such as liquid chromatography-mass spectrometry, cannot obtain precise and immediate information on IAA and SA due to the complexity of sample processing. In contrast, the electrochemical detection method offers high sensitivity, rapid response times, and compactness, making it well-suited for in vivo or real-time detection applications. RESULTS A microneedle electrochemical sensor system crafted from disposable stainless steel (SS) wire was specifically designed for the real-time assessment of IAA and SA in plant in situ. This sensor system included a SS wire (100 μm diameter) coated with carbon cement and multi-walled carbon nanotubes, a plain platinum wire (100 μm diameter), and an Ag/AgCl wire (100 μm diameter). Differential pulse voltammetry and amperometry were adopted for detecting SA and IAA within the range of 0.1-20 μM, respectively. This sensor was applied to track IAA and SA fluctuations in tomato leaves during PstDC3000 infection, offering continuous data. Observations indicated an uptick in SA levels following infection, while IAA production was suppressed. The newly developed disposable SS wire-based microneedle electrochemical sensor system is economical, suitable for mass production, and inflicts minimal damage during the monitoring of SA and IAA in plant tissues. SIGNIFICANCE This disposable microneedle electrochemical sensor facilitates in vivo detection of IAA and SA in smaller plant tissues and allows for long-time monitoring of their concentrations, which not only propels research into the regulatory and interaction mechanisms of IAA and SA but also furnishes essential tools for advancing precision agriculture.
Collapse
Affiliation(s)
- Lingjuan Tang
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong, Jiangsu, 226019, China; Analysis and Testing Center, Nantong University, 9 Seyuan Road, Nantong, Jiangsu, 226019, China
| | - Daodong Li
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong, Jiangsu, 226019, China
| | - Wei Liu
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong, Jiangsu, 226019, China
| | - Yihui Tang
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong, Jiangsu, 226019, China
| | - Rongcheng Zhang
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong, Jiangsu, 226019, China
| | - Yiran Tian
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong, Jiangsu, 226019, China
| | - Rong Tan
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong, Jiangsu, 226019, China
| | - Xiaolong Yang
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong, Jiangsu, 226019, China.
| | - Lijun Sun
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong, Jiangsu, 226019, China.
| |
Collapse
|
16
|
Yang Y, Sheng C, Dong F, Liu S. An integrated wearable differential microneedle array for continuous glucose monitoring in interstitial fluids. Biosens Bioelectron 2024; 256:116280. [PMID: 38603840 DOI: 10.1016/j.bios.2024.116280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Monitoring biomarkers in human interstitial fluids (ISF) using microneedle sensors has been extensively studied. However, most of the previous studies were limited to simple in vitro demonstrations and lacked system integration and analytical performance. Here we report a miniaturized, high-precision, fully integrated wearable electrochemical microneedle sensing device that works with a customized smartphone application to wirelessly and in real-time monitor glucose in human ISF. A microneedle array fabrication method is proposed which enables multiple individually addressable, regionally separated sensing electrodes on a single microneedle system. As a demonstration, a glucose sensor and a differential sensor are integrated in a single sensing patch. The differential sensing electrodes can eliminate common-mode interference signals, thus significantly improving the detection accuracy. The basic mechanism of microneedle penetration into the skin was analyzed using the finite element method (FEM). By optimizing the structure of the microneedle, the puncture efficiency was improved while the puncture force was reduced. The electrochemical properties, biocompatibility, and system stability of the microneedle sensing device were characterized before human application. The test results were closely correlated with the gold standard (blood). The platform can be used not only for glucose detection, but also for various ISF biomarkers, and it expands the potential of microneedle technology in wearable sensing.
Collapse
Affiliation(s)
- Yong Yang
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Can Sheng
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fang Dong
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China.
| | - Sheng Liu
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China; School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China; School of Microelectronics, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
17
|
Pei S, Babity S, Sara Cordeiro A, Brambilla D. Integrating microneedles and sensing strategies for diagnostic and monitoring applications: The state of the art. Adv Drug Deliv Rev 2024; 210:115341. [PMID: 38797317 DOI: 10.1016/j.addr.2024.115341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/23/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Microneedles (MNs) offer minimally-invasive access to interstitial fluid (ISF) - a potent alternative to blood in terms of monitoring physiological analytes. This property is particularly advantageous for the painless detection and monitoring of drugs and biomolecules. However, the complexity of the skin environment, coupled with the inherent nature of the analytes being detected and the inherent physical properties of MNs, pose challenges when conducting physiological monitoring using this fluid. In this review, we discuss different sensing mechanisms and highlight advancements in monitoring different targets, with a particular focus on drug monitoring. We further list the current challenges facing the field and conclude by discussing aspects of MN design which serve to enhance their performance when monitoring different classes of analytes.
Collapse
Affiliation(s)
- Shihao Pei
- Faculté de pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada
| | - Samuel Babity
- Faculté de pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada
| | - Ana Sara Cordeiro
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, United Kingdom.
| | - Davide Brambilla
- Faculté de pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
18
|
Reynoso M, Chang AY, Wu Y, Murray R, Suresh S, Dugas Y, Wang J, Arroyo-Currás N. 3D-printed, aptamer-based microneedle sensor arrays using magnetic placement on live rats for pharmacokinetic measurements in interstitial fluid. Biosens Bioelectron 2024; 244:115802. [PMID: 37939414 DOI: 10.1016/j.bios.2023.115802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Molecular monitoring in the dermal interstitial fluid (ISF) is an attractive approach to painlessly screen markers of health and disease status on the go. One promising strategy for accessing ISF involves the use of wearable patches containing microneedle sensor arrays. To date, such microneedle sensors have been fabricated via various manufacturing strategies based on injection molding, machining, and advanced lithography to name a few. Our groups previously reported 3D-printed microneedles as a convenient and scalable approach to sensor fabrication that, when combined with aptamer-based molecular measurements, can support continuous molecular monitoring in ISF. However, the original platform suffered from poor patch stability when deployed on the skin of rodents in vivo. We identified that this problem was due to the rheological properties of the rodent skin, which can contract post microneedle placement, physically pushing the microneedles out of the skin. This sensor retraction caused a loss of electrical contact between working and reference needles, irreversibly damaging the sensors. To address this problem, we report here an innovative approach that allows magnetic placement of microneedle sensor arrays on the skin of live rodents, affixing the patches under light pressure that prevents needle retraction. Using this strategy, we achieved sensor signaling baselines that drift at rates comparable to those seen with other in vivo deployments of electrochemical, aptamer-based sensors. We illustrate real-time pharmacokinetic measurements in live Sprague-Dawley rats using SLA-printed, aptamer-functionalized microneedles and demonstrate their ability to support drift correction via kinetic differential measurements. We also discuss future prospects and challenges.
Collapse
Affiliation(s)
- Maria Reynoso
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, United States
| | - An-Yi Chang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, United States
| | - Yao Wu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States
| | - Raygan Murray
- Biochemistry, Cellular and Molecular Biology Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States
| | - Smrithi Suresh
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, United States
| | - Yuma Dugas
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, United States.
| | - Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States; Biochemistry, Cellular and Molecular Biology Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States.
| |
Collapse
|
19
|
Ma X, Zhou Q, Gao B. Recent advances of biosensors on microneedles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5711-5730. [PMID: 37873722 DOI: 10.1039/d3ay01745a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Biosensors have attracted a considerable attention in recent years due to their enormous potential to provide insights into the physical condition of individuals. However, the widespread use of biosensors has experienced difficulties regarding the stability of the biological response and the poor miniaturization and portability of biosensors. Hence, there is an urgent need for more reliable biosensor devices. Microneedle (MN) technology has become a revolutionary approach to biosensing strategies, setting new horizons for improving existing biosensors. MN-based biosensors allow for painless injection, and in situ extraction or monitoring. However, the accuracy and practicality of detection need to be improved. This review begins by discussing the classification of MNs, manufacturing methods and other design parameters to develop a more accurate MN-based detection sensing system. Herein, we categorize and analyze the energy supply of wearable biosensors. Specifically, we describe the detection methods of MN biosensors, such as electrochemical, optical, nucleic acid recognition and immunoassays, and how MNs can be combined with these methods to detect biomarkers. Furthermore, we provide a detailed overview of the latest applications (drug release, drug detection, etc.). The MN-based biosensors are followed by a summary of key challenges and opportunities in the field.
Collapse
Affiliation(s)
- Xiaoming Ma
- Department of Orthopedics, Taizhou People's Hospital, 366 Taihu Road, Taizhou, Jiangsu Province, People's Republic of China.
| | - Qian Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
20
|
Yu X, Zhao J, Fan D. The Progress in the Application of Dissolving Microneedles in Biomedicine. Polymers (Basel) 2023; 15:4059. [PMID: 37896303 PMCID: PMC10609950 DOI: 10.3390/polym15204059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
In recent years, microneedle technology has been widely used for the transdermal delivery of substances, showing improvements in drug delivery effects with the advantages of minimally invasive, painless, and convenient operation. With the development of nano- and electrochemical technology, different types of microneedles are increasingly being used in other biomedical fields. Recent research progress shows that dissolving microneedles have achieved remarkable results in the fields of dermatological treatment, disease diagnosis and monitoring, and vaccine delivery, and they have a wide range of application prospects in various biomedical fields, showing their great potential as a form of clinical treatment. This review mainly focuses on dissolving microneedles, summarizing the latest research progress in various biomedical fields, providing inspiration for the subsequent intelligent and commercial development of dissolving microneedles, and providing better solutions for clinical treatment.
Collapse
Affiliation(s)
- Xueqing Yu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi’an 710069, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi’an 710069, China
| | - Jing Zhao
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi’an 710069, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi’an 710069, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi’an 710069, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi’an 710069, China
| |
Collapse
|
21
|
Yang J, Luo R, Yang L, Wang X, Huang Y. Microneedle-Integrated Sensors for Extraction of Skin Interstitial Fluid and Metabolic Analysis. Int J Mol Sci 2023; 24:9882. [PMID: 37373027 PMCID: PMC10298030 DOI: 10.3390/ijms24129882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Skin interstitial fluid (ISF) has emerged as a fungible biofluid sample for blood serum and plasma for disease diagnosis and therapy. The sampling of skin ISF is highly desirable considering its easy accessibility, no damage to blood vessels, and reduced risk of infection. Particularly, skin ISF can be sampled using microneedle (MN)-based platforms in the skin tissues, which exhibit multiple advantages including minimal invasion of the skin tissues, less pain, ease of carrying, capacity for continuous monitoring, etc. In this review, we focus on the current development of microneedle-integrated transdermal sensors for collecting ISF and detecting specific disease biomarkers. Firstly, we discussed and classified microneedles according to their structural design, including solid MNs, hollow MNs, porous MNs, and coated MNs. Subsequently, we elaborate on the construction of MN-integrated sensors for metabolic analysis with highlights on the electrochemical, fluorescent, chemical chromogenic, immunodiagnostic, and molecular diagnostic MN-integrated sensors. Finally, we discuss the current challenges and future direction for developing MN-based platforms for ISF extraction and sensing applications.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (J.Y.); (R.L.)
| | - Ruiyu Luo
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (J.Y.); (R.L.)
| | - Lei Yang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China;
| | - Xiaocheng Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China;
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (J.Y.); (R.L.)
| |
Collapse
|