1
|
Woo HK, Nam Y, Park HG, Lee H. Bridging laboratory innovation to translational research and commercialization of extracellular vesicle isolation and detection. Biosens Bioelectron 2025; 282:117475. [PMID: 40300344 PMCID: PMC12076185 DOI: 10.1016/j.bios.2025.117475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/04/2025] [Accepted: 04/13/2025] [Indexed: 05/01/2025]
Abstract
Extracellular vesicles (EVs) have emerged as promising biomarkers for various diseases. Encapsulating biomolecules reflective of their parental cells, EVs are readily accessible in bodily fluids. The prospect for minimally invasive, repeatable molecular testing has stimulated significant research; however, challenges persist in isolating EVs from complex biological matrices and characterizing their limited molecular cargo. Technical advances have been pursued to address these challenges, producing innovative EV-specific platforms. This review highlights recent technological developments, focusing on EV isolation and molecular detection methodologies. Furthermore, it explores the translation of these laboratory innovations to clinical applications through the analysis of patient samples, providing insights into the potential diagnostic and prognostic utility of EV-based technologies.
Collapse
Affiliation(s)
- Hyun-Kyung Woo
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yoonho Nam
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Shi J, Fan Y, Zhang Q, Huang Y, Yang M. Harnessing Photo-Energy Conversion in Nanomaterials for Precision Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501623. [PMID: 40376855 DOI: 10.1002/adma.202501623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/19/2025] [Indexed: 05/18/2025]
Abstract
The rapidly advancing field of theranostics aims to integrate therapeutic and diagnostic functionalities into a single platform for precision medicine, enabling the simultaneous treatment and monitoring of diseases. Photo-energy conversion-based nanomaterials have emerged as a versatile platform that utilizes the unique properties of light to activate theranostics with high spatial and temporal precision. This review provides a comprehensive overview of recent developments in photo-energy conversion using nanomaterials, highlighting their applications in disease theranostics. The discussion begins by exploring the fundamental principles of photo-energy conversion in nanomaterials, including the types of materials used and various light-triggered mechanisms, such as photoluminescence, photothermal, photoelectric, photoacoustic, photo-triggered SERS, and photodynamic processes. Following this, the review delves into the broad spectrum of applications of photo-energy conversion in nanomaterials, emphasizing their role in the diagnosis and treatment of major diseases, including cancer, neurodegenerative disorders, retinal degeneration, and osteoarthritis. Finally, the challenges and opportunities of photo-energy conversion-based technologies for precision theranostics are discussed, aiming to advance personalized medicine.
Collapse
Affiliation(s)
- Jingyu Shi
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Yadi Fan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Qin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Yingying Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
- Joint Research Center of Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Research Center for Nanoscience and Nanotechnology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
3
|
Lv B, Liang P, Chang C, Li D. Sensitive aptasensing of tobramycin through a rational design of catalytic hairpin assembly and hybridization chain reaction amplification monomers for CRISPR/Cas12a activation. Analyst 2025. [PMID: 40354126 DOI: 10.1039/d5an00267b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The catalytic hairpin assembly (CHA) and hybridization chain reaction amplification (HCR) are enzyme-free isothermal DNA amplification methods based on the self-assembly of hairpin monomers. Recently, CRISPR/Cas12a-based biosensors in combination with CHA or HCR signal amplification have shown promising performance. Herein, several design strategies for hairpin monomers in CHA and HCR were evaluated in the context of CRISPR/Cas12a-based biosensor construction. The SL-HCR strategy, in which the CRISPR/Cas12a target strand is blocked in the loop of one hairpin monomer DNA and released in the duplex HCR products, demonstrated superior performance in terms of a low background signal, wide linear detection range, and high signal-to-noise ratio. With the assistance of an aptamer-containing probe, a highly sensitive aptasensor was constructed for tobramycin detection, whereby the SL-HCR served the function of signal amplification, whereas the CRISPR/Cas12a system acted to cleave the FQ probes, thereby resulting in the production of a fluorescent signal. After optimization, the aptasensor enables linear detection of tobramycin concentrations ranging from 125 pM to 2500 nM, with a limit of detection (LOD) of 92.87 pM. Moreover, the aptasensor was utilized to detect tobramycin in beef and milk samples, yielding satisfactory results. The assay is concise and cost-effective due to the absence of nanomaterial DNA labeling and magnetic separation procedures. Furthermore, the entire detection workflow operates under isothermal conditions, which makes it suitable for use in food safety control and environmental monitoring. In addition, the results presented here may shed new light on the design of CRISPR/Cas12a-based biosensors in combination with CHA or HCR.
Collapse
Affiliation(s)
- Bei Lv
- Key Lab of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing, 210013, China
| | - Pengda Liang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.
| | - Chenhao Chang
- Key Lab of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing, 210013, China
| | - Dawei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Bhatta R, Han J, Liu Y, Bo Y, Wang Y, Nguyen D, Chen Q, Wang H. Injectable extracellular vesicle hydrogels with tunable viscoelasticity for depot vaccine. Nat Commun 2025; 16:3781. [PMID: 40263275 PMCID: PMC12015221 DOI: 10.1038/s41467-025-59278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/16/2025] [Indexed: 04/24/2025] Open
Abstract
Extracellular vesicles (EVs) have been actively explored for therapeutic applications in the context of cancer and other diseases. However, the poor tissue retention of EVs has limited the development of EV-based therapies. Here we report a facile approach to fabricating injectable EV hydrogels with tunable viscoelasticity and gelation temperature, by metabolically tagging EVs with azido groups and further crosslinking them with dibenzocyclooctyne-bearing polyethylene glycol via efficient click chemistry. One such EV gel has a gelation temperature of 39.4 °C, enabling in situ gelation of solution-form EVs upon injection into the body. The in situ formed gels are stable for over 4 weeks and can attract immune cells including dendritic cells over time in vivo. We further show that tumor EV hydrogels, upon subcutaneous injection, can serve as a long-term depot for EV-encased tumor antigens, providing an extended time for the modulation of dendritic cells and subsequent priming of tumor-specific CD8+ T cells. The tumor EV hydrogel also shows synergy with anti-PD-1 checkpoint blockade for tumor treatment, and is able to reprogram the tumor microenvironment. As a proof-of-concept, we also demonstrate that EV hydrogels can induce enhanced antibody responses than solution-form EVs over an extended time. Our study yields a facile and universal approach to fabricating injectable EV hydrogels with tunable mechanics and improving the therapeutic efficacy of EV-based therapies.
Collapse
Affiliation(s)
- Rimsha Bhatta
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joonsu Han
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yusheng Liu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yang Bo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yueji Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Daniel Nguyen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois (CCIL), Urbana, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carle College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
5
|
Lee J, Kwon K, Cho MJ, Son T, Roh Y, Lee S, Kim DS, Lee MS, Ban HS, Kim JS, Lim EK, Lee SH, Oh GT, Park JG, Han TS. Fusogenic Nanoreactor-Based Detection of Extracellular Vesicle-derived miRNAs for Diagnosing Atherosclerosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501789. [PMID: 40254988 DOI: 10.1002/smll.202501789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/26/2025] [Indexed: 04/22/2025]
Abstract
Extracellular vesicle (EV) microRNAs (miRNAs) are critical liquid-biopsy biomarkers that facilitate noninvasive clinical diagnosis and disease monitoring. However, conventional methods for detecting these miRNAs require EV lysis, which is expensive, labor-intensive, and time-consuming. Inspired by natural viral infection mechanisms, a novel strategy is developed for detecting EV miRNAs in situ via vesicle fusion mediated by viral fusion proteins. A padlock probe encapsulated within fusogenic liposomes is activated by target miRNAs, thereby initiating a highly sensitive and specific rolling circle amplification (RCA) reaction. Three EV miRNAs associated with atherosclerosis are successfully analyzed using this method, thereby enabling clear differentiation of healthy and diseased mice at several disease stages. Overall, the developed platform offers a simple approach for detecting EV miRNAs and demonstrates significant potential for broad use in applications involving disease diagnosis and monitoring.
Collapse
Affiliation(s)
- Jiyoon Lee
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Kiyoon Kwon
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Min Ji Cho
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Taesang Son
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- KRIBB School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Yuna Roh
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- KRIBB School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Sugi Lee
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Dae-Soo Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- KRIBB School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Moo-Seung Lee
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- KRIBB School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hyun Seung Ban
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- KRIBB School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jang-Seong Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- KRIBB School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Eun-Kyung Lim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- KRIBB School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Sang-Hak Lee
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Goo Taeg Oh
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jong-Gil Park
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- KRIBB School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Tae-Su Han
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- KRIBB School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
6
|
Guo Y, Luo S, Liu S, Yang C, Lv W, Liang Y, Ji T, Li W, Liu C, Li X, Zheng L, Zhang Y. Bimodal In Situ Analyzer for Circular RNA in Extracellular Vesicles Combined with Machine Learning for Accurate Gastric Cancer Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409202. [PMID: 39823497 PMCID: PMC12005762 DOI: 10.1002/advs.202409202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Circular RNAs in extracellular vesicles (EV-circRNAs) are gaining recognition as potential biomarkers for the diagnosis of gastric cancer (GC). Most current research is focused on identifying new biomarkers and their functional significance in disease regulation. However, the practical application of EV-circRNAs in the early diagnosis of GC is yet to be thoroughly explored due to the low accuracy of EV-circRNAs analysis. In this study, a hybridization chain reaction system based on rectangular DNA framework guidance and constructing a bimodal EV-circRNA in situ analyzer (BEISA) is developed. The analyzer can provide dual signal outputs in the fluorescence and electrochemical modes, enabling a self-correcting detection mechanism that significantly improves the accuracy of the assay. It has a broad detection range and an extremely low limit of detection. In a clinical cohort study, the BEISA used four circRNAs as biomarkers, combining them with machine learning for multiparametric analysis, which effectively differentiated between healthy donors and patients with early-stage GC. It is believed that the BEISA, in conjunction with machine learning technology, provides an efficient, sensitive, and reliable tool for EV-circRNA analysis, aiding in the early diagnosis of GC.
Collapse
Affiliation(s)
- Yuhang Guo
- Department of Laboratory MedicineGuangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSchool of Laboratory Medicine and BiotechnologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Shihua Luo
- Center for Clinical Laboratory Diagnosis and ResearchKey Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education InstitutionsAffiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxi533000P. R. China
| | - Sinian Liu
- Department of Laboratory MedicineGuangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSchool of Laboratory Medicine and BiotechnologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Chao Yang
- Department of Laboratory MedicineGuangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSchool of Laboratory Medicine and BiotechnologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Weifeng Lv
- Department of Laboratory MedicineFoshan Hospital of Traditional Chinese Medicine, The Eighth Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdong528000P. R. China
| | - Yuxin Liang
- Department of Laboratory MedicineGuangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSchool of Laboratory Medicine and BiotechnologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Tingting Ji
- Department of Laboratory MedicineGuangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSchool of Laboratory Medicine and BiotechnologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Wenbin Li
- Department of Laboratory MedicineGuangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSchool of Laboratory Medicine and BiotechnologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Chunchen Liu
- Department of Laboratory MedicineGuangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSchool of Laboratory Medicine and BiotechnologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Xin Li
- Department of Laboratory MedicineGuangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSchool of Laboratory Medicine and BiotechnologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Lei Zheng
- Department of Laboratory MedicineGuangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSchool of Laboratory Medicine and BiotechnologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Ye Zhang
- Department of Laboratory MedicineGuangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSchool of Laboratory Medicine and BiotechnologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| |
Collapse
|
7
|
Wang M, Chen W, Li M, Lin F, Zhong J, Ouyang W, Cai C, Zeng G, Liu H. TE-RPA: One-tube telomerase extension recombinase polymerase amplification-based electrochemical biosensor for precise diagnosis of urothelial carcinoma. Biosens Bioelectron 2025; 271:117042. [PMID: 39662170 DOI: 10.1016/j.bios.2024.117042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/18/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Telomerase demonstrates potential as a non-invasive urinary biomarker for urothelial carcinoma (UC); however, current detection methods are either labor-intensive or exhibit suboptimal performance. There is a need for alternative approaches to enable rapid and early diagnosis of UC. In this study, we propose TE-RPA, which combines telomerase extension (TE) with recombinase polymerase amplification (RPA) for one-tube isothermal amplification. The GC content and length of the telomerase substrate were first considered during the screening process. TE-RPA exponential amplification was initiated by the addition of MgOAc along with a forward primer derived from the products of telomerase-mediated extension and a corresponding reverse primer. The amplification product from TE-RPA was subsequently detected using CRISPR-Cas12a system for trans-cleavage of signal probes on the surface of screen-printed electrode in an electrochemical biosensor, resulting in a current change that reflects the corresponding concentration of telomerase. The TE-RPA/CRISPR-Cas12a/electrochemical sensing platform achieves a limit of detection (LOD) for telomerase activity as low as a single-cell level. In addition, the platform attained an area under the curve (AUC) value of 0.9589 in a clinical evaluation involving urine samples from 43 suspected UC patients. Overall, our proposed platform not only offers an efficient method for telomerase isothermal amplification but also provides a portable and precise diagnostic tool for UC.
Collapse
Affiliation(s)
- Mengting Wang
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China
| | - Wenzhe Chen
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China
| | - Mingzhao Li
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China
| | - Fuyang Lin
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China
| | - Jiehui Zhong
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China
| | - Wenrui Ouyang
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China
| | - Chao Cai
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China.
| | - Guohua Zeng
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China.
| | - Hongxing Liu
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
8
|
Xu L, Li C, Liao R, Xiao Q, Wang X, Zhao Z, Zhang W, Ding X, Cao Y, Cai L, Rosenecker J, Guan S, Tang J. From Sequence to System: Enhancing IVT mRNA Vaccine Effectiveness through Cutting-Edge Technologies. Mol Pharm 2025; 22:81-102. [PMID: 39601789 DOI: 10.1021/acs.molpharmaceut.4c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The COVID-19 pandemic has spotlighted the potential of in vitro transcribed (IVT) mRNA vaccines with their demonstrated efficacy, safety, cost-effectiveness, and rapid manufacturing. Numerous IVT mRNA vaccines are now under clinical trials for a range of targets, including infectious diseases, cancers, and genetic disorders. Despite their promise, IVT mRNA vaccines face hurdles such as limited expression levels, nonspecific targeting beyond the liver, rapid degradation, and unintended immune activation. Overcoming these challenges is crucial to harnessing the full therapeutic potential of IVT mRNA vaccines for global health advancement. This review provides a comprehensive overview of the latest research progress and optimization strategies for IVT mRNA molecules and delivery systems, including the application of artificial intelligence (AI) models and deep learning techniques for IVT mRNA structure optimization and mRNA delivery formulation design. We also discuss recent development of the delivery platforms, such as lipid nanoparticles (LNPs), polymers, and exosomes, which aim to address challenges related to IVT mRNA protection, cellular uptake, and targeted delivery. Lastly, we offer insights into future directions for improving IVT mRNA vaccines, with the hope to spur further progress in IVT mRNA vaccine research and development.
Collapse
Affiliation(s)
- Lifeng Xu
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Chao Li
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Rui Liao
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Qin Xiao
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Xiaoran Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Weijun Zhang
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Xiaoyan Ding
- Department of Pediatrics, Ludwig-Maximilians University of Munich, Munich 80337, Germany
| | - Yuxue Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Larry Cai
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Joseph Rosenecker
- Department of Pediatrics, Ludwig-Maximilians University of Munich, Munich 80337, Germany
| | - Shan Guan
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Jie Tang
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
9
|
Gao H, Zhang H, Qi X, Miao M, Que L, Gu X, Chang D, Pan H. CRISPR/Cas12a dual-mode biosensor for Staphylococcus aureus detection via enzyme-free isothermal amplification. Talanta 2025; 282:127013. [PMID: 39406093 DOI: 10.1016/j.talanta.2024.127013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 11/20/2024]
Abstract
Accurate and reliable detection of Staphylococcus aureus (S. aureus) is essential for preventing infections, particularly in healthcare and food safety contexts. This work presents a novel dual-mode biosensor that integrates the CRISPR/Cas12a system with an enzyme-free isothermal amplification method for detecting S. aureus. Hybridization chain reaction (HCR) and catalytic hairpin assembly (CHA) amplify the aptamer-triggered response, significantly enhancing sensitivity. CRISPR/Cas12a's nuclease activity is utilized in two modes: cis cleavage generates a fluorescence signal, while trans cleavage produces an electrochemical signal, enabling dual-mode detection. The biosensor demonstrates outstanding performance, with a limit of detection (LOD) as low as 5.7 CFU mL-1 in electrochemical mode and 133.7 CFU mL-1 in fluorescence mode, showcasing excellent accuracy, stability, and sensitivity. It has been successfully applied to detecting actual samples, confirming its practical applicability. This innovative approach offers a powerful tool for the swift and precise identification of S. aureus and paves the way for developing next-generation dual-mode biosensors for various analytes. Future research will aim to simplify the detection process further, making it more accessible for use in resource-limited settings.
Collapse
Affiliation(s)
- Hongmin Gao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Hehua Zhang
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Xue Qi
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Meng Miao
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Longbin Que
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Xin Gu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Dong Chang
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People's Republic of China.
| | - Hongzhi Pan
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China; The Affiliated Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, People's Republic of China.
| |
Collapse
|
10
|
Yazdi ZF, Roshannezhad S, Sharif S, Abbaszadegan MR. Recent progress in prompt molecular detection of liquid biopsy using Cas enzymes: innovative approaches for cancer diagnosis and analysis. J Transl Med 2024; 22:1173. [PMID: 39741289 DOI: 10.1186/s12967-024-05908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
Creating fast, non-invasive, precise, and specific diagnostic tests is crucial for enhancing cancer treatment outcomes. Among diagnostic methods, those relying on nucleic acid detection are highly sensitive and specific. Recent developments in diagnostic technologies, particularly those leveraging Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), are revolutionizing cancer detection, providing accurate and timely results. In clinical oncology, liquid biopsy has become a noninvasive and early-detectable alternative to traditional biopsies over the last two decades. Analyzing the nucleic acid content of liquid biopsy samples, which include Circulating Tumor Cells (CTCs), Circulating Tumor DNA (ctDNA), Circulating Cell-Free RNA (cfRNA), and tumor extracellular vesicles, provides a noninvasive method for cancer detection and monitoring. In this review, we explore how the characteristics of various Cas (CRISPR-associated) enzymes have been utilized in diagnostic assays for cancer liquid biopsy and highlight their main applications of innovative approaches in monitoring, as well as early and rapid detection of cancers.
Collapse
Affiliation(s)
- Zahra Farshchian Yazdi
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Samaneh Sharif
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran.
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran.
| |
Collapse
|
11
|
Zheng L, Chang R, Liang B, Wang Y, Zhu Y, Jia Z, Fan J, Zhang Z, Du B, Kong D. Overcoming drug resistance through extracellular vesicle-based drug delivery system in cancer treatment. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:50. [PMID: 39802949 PMCID: PMC11724354 DOI: 10.20517/cdr.2024.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/15/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025]
Abstract
Drug resistance is a major challenge in cancer therapy that often leads to treatment failure and disease relapse. Despite advancements in chemotherapeutic agents and targeted therapies, cancers often develop drug resistance, making these treatments ineffective. Extracellular vesicles (EVs) have gained attention for their potential applications in drug delivery because of their natural origin, biocompatibility, and ability to cross biological barriers. Using the unique properties of EVs could enhance drug accumulation at target sites, minimize systemic toxicity, and precisely target specific cells. Here, we discuss the characteristics and functionalization of EVs, the mechanisms of drug resistance, and the applications of engineered EVs to overcome drug resistance. This review provides a comprehensive overview of the advancements in EV-based drug delivery systems and their applications in overcoming cancer drug resistance. We highlight the potential of EV-based drug delivery systems to revolutionize cancer therapy and offer promising strategies for more effective treatment modalities.
Collapse
Affiliation(s)
- Long Zheng
- College of Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences; Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
- Authors contributed equally
| | - Ruibai Chang
- College of Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences; Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
- Authors contributed equally
| | - Bingjing Liang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences; Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
- Authors contributed equally
| | - Yitong Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences; Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Yushan Zhu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences; Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Zijing Jia
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences; Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Jindian Fan
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences; Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Zhe Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences; Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Bo Du
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Dexin Kong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences; Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
12
|
Romero-Muñoz M, Pérez-Jiménez M. Optimizing Brassica oleracea L. Breeding Through Somatic Hybridization Using Cytoplasmic Male Sterility (CMS) Lines: From Protoplast Isolation to Plantlet Regeneration. PLANTS (BASEL, SWITZERLAND) 2024; 13:3247. [PMID: 39599456 PMCID: PMC11598112 DOI: 10.3390/plants13223247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
The Brassica oleracea L. species embrace important horticultural crops, such as broccoli, cauliflower, and cabbage, which are highly valued for their beneficial nutritional effects. However, the complexity of flower emasculation in these species has forced breeders to adopt biotechnological approaches such as somatic hybridization to ease hybrid seed production. Protoplasts entail a versatile tool in plant biotechnology, supporting breeding strategies that involve genome editing and hybridization. This review discusses the use of somatic hybridization in B. oleracea L. as a biotechnological method for developing fusion products with desirable agronomic traits, particularly cytoplasmic male sterile (CMS) condition. These CMS lines are critical for implementing a cost-effective, efficient, and reliable system for producing F1 hybrids. We present recent studies on CMS systems in B. oleracea L. crops, providing an overview of established models that explain the mechanisms of CMS and fertility restoration. Additionally, we emphasize key insights gained from protoplast fusion applied to B. oleracea L. breeding. Key steps including pre-treatments of donor plants, the main tissues used as sources of parental protoplasts, methods for obtaining somatic hybrids and cybrids, and the importance of establishing a reliable plant regeneration method are discussed. Finally, the review explores the incorporation of genome editing technologies, such as CRISPR-Cas9, to introduce multiple agronomic traits in Brassica species. This combination of advanced biotechnological tools holds significant promise for enhancing B. oleracea breeding programs in the actual climate change context.
Collapse
Affiliation(s)
- Miriam Romero-Muñoz
- Department of Biotechnology, Genomic and Plant Breeding, Institute for Agroenvironmental Research and Development of Murcia (IMIDA), c/Mayor s/n, E-30150 Murcia, Spain;
| | | |
Collapse
|
13
|
Wang Z, Zhou X, Kong Q, He H, Sun J, Qiu W, Zhang L, Yang M. Extracellular Vesicle Preparation and Analysis: A State-of-the-Art Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401069. [PMID: 38874129 PMCID: PMC11321646 DOI: 10.1002/advs.202401069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Indexed: 06/15/2024]
Abstract
In recent decades, research on Extracellular Vesicles (EVs) has gained prominence in the life sciences due to their critical roles in both health and disease states, offering promising applications in disease diagnosis, drug delivery, and therapy. However, their inherent heterogeneity and complex origins pose significant challenges to their preparation, analysis, and subsequent clinical application. This review is structured to provide an overview of the biogenesis, composition, and various sources of EVs, thereby laying the groundwork for a detailed discussion of contemporary techniques for their preparation and analysis. Particular focus is given to state-of-the-art technologies that employ both microfluidic and non-microfluidic platforms for EV processing. Furthermore, this discourse extends into innovative approaches that incorporate artificial intelligence and cutting-edge electrochemical sensors, with a particular emphasis on single EV analysis. This review proposes current challenges and outlines prospective avenues for future research. The objective is to motivate researchers to innovate and expand methods for the preparation and analysis of EVs, fully unlocking their biomedical potential.
Collapse
Affiliation(s)
- Zesheng Wang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Qinglong Kong
- The Second Department of Thoracic SurgeryDalian Municipal Central HospitalDalian116033P. R. China
| | - Huimin He
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Jiayu Sun
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Wenting Qiu
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Liang Zhang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| |
Collapse
|
14
|
Chen X, Hu X, Liu T. Development of liquid biopsy in detection and screening of pancreatic cancer. Front Oncol 2024; 14:1415260. [PMID: 38887233 PMCID: PMC11180763 DOI: 10.3389/fonc.2024.1415260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Pancreatic cancer is a highly lethal malignant tumor, which has the characteristics of occult onset, low early diagnosis rate, rapid development and poor prognosis. The reason for the high mortality is partly that pancreatic cancer is usually found in the late stage and missed the best opportunity for surgical resection. As a promising detection technology, liquid biopsy has the advantages of non-invasive, real-time and repeatable. In recent years, the continuous development of liquid biopsy has provided a new way for the detection and screening of pancreatic cancer. The update of biomarkers and detection tools has promoted the development of liquid biopsy. Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA) and extracellular vesicles (EVs) provide many biomarkers for liquid biopsy of pancreatic cancer, and screening tools around them have also been developed. This review aims to report the application of liquid biopsy technology in the detection of pancreatic cancer patients, mainly introduces the biomarkers and some newly developed tools and platforms. We have also considered whether liquid biopsy technology can replace traditional tissue biopsy and the challenges it faces.
Collapse
Affiliation(s)
- Xiangcheng Chen
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinyi Hu
- School of The First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tiancai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Peng J, Liu T, Guan L, Xu Z, Xiong T, Zhang Y, Song J, Liu X, Yang Y, Hao X. A highly sensitive Lock-Cas12a biosensor for detection and imaging of miRNA-21 in breast cancer cells. Talanta 2024; 273:125938. [PMID: 38503125 DOI: 10.1016/j.talanta.2024.125938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
The expression levels of microRNA (miRNA) vary significantly in correlation with the occurrence and progression of cancer, making them valuable biomarkers for cancer diagnosis. However, their quantitative detection faces challenges due to the high sequence homology, low abundance and small size. In this work, we established a strand displacement amplification (SDA) approach based on miRNA-triggered structural "Lock" nucleic acid ("Lock" DNA), coupled with the CRISPR/Cas12a system, for detecting miRNA-21 in breast cancer cells. The "Lock" DNA freed the CRISPR-derived RNA (crRNA) from the dependence on the target sequence and greatly facilitated the extended detection of different miRNAs. Moreover, the CRISPR/Cas12a system provided excellent amplification ability and specificity. The designed biosensor achieved high sensitivity detection of miRNA-21 with a limit of detection (LOD) of 28.8 aM. In particular, the biosensor could distinguish breast cancer cells from other cancer cells through intracellular imaging. With its straightforward sequence design and ease of use, the Lock-Cas12a biosensor offers significant advantages for cell imaging and early clinical diagnosis.
Collapse
Affiliation(s)
- Jiawei Peng
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Ting Liu
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Liwen Guan
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Ziyue Xu
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Ting Xiong
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Yu Zhang
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Jiaxin Song
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Xuexia Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330088, PR China; School of Forensic Medicine, Wannan Medical College, Wuhu Anhui, 241002, PR China.
| | - Yifei Yang
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China.
| | - Xian Hao
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
16
|
Kim HI, Park J, Zhu Y, Wang X, Han Y, Zhang D. Recent advances in extracellular vesicles for therapeutic cargo delivery. Exp Mol Med 2024; 56:836-849. [PMID: 38556545 PMCID: PMC11059217 DOI: 10.1038/s12276-024-01201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 04/02/2024] Open
Abstract
Exosomes, which are nanosized vesicles secreted by cells, are attracting increasing interest in the field of biomedical research due to their unique properties, including biocompatibility, cargo loading capacity, and deep tissue penetration. They serve as natural signaling agents in intercellular communication, and their inherent ability to carry proteins, lipids, and nucleic acids endows them with remarkable therapeutic potential. Thus, exosomes can be exploited for diverse therapeutic applications, including chemotherapy, gene therapy, and photothermal therapy. Moreover, their capacity for homotypic targeting and self-recognition provides opportunities for personalized medicine. Despite their advantages as novel therapeutic agents, there are several challenges in optimizing cargo loading efficiency and structural stability and in defining exosome origins. Future research should include the development of large-scale, quality-controllable production methods, the refinement of drug loading strategies, and extensive in vivo studies and clinical trials. Despite the unresolved difficulties, the use of exosomes as efficient, stable, and safe therapeutic delivery systems is an interesting area in biomedical research. Therefore, this review describes exosomes and summarizes cutting-edge studies published in high-impact journals that have introduced novel or enhanced therapeutic effects using exosomes as a drug delivery system in the past 2 years. We provide an informative overview of the current state of exosome research, highlighting the unique properties and therapeutic applications of exosomes. We also emphasize challenges and future directions, underscoring the importance of addressing key issues in the field. With this review, we encourage researchers to further develop exosome-based drugs for clinical application, as such drugs may be among the most promising next-generation therapeutics.
Collapse
Affiliation(s)
- Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Yohan Han
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA.
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea.
- Sarcopenia Total Solution Center, Wonkwang University, Iksan, 54538, Republic of Korea.
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA.
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|