1
|
Igamberdiev AU, Shklovskiy-Kordi NE. Physical limits of natural computation as the biological constraints of morphogenesis, evolution, and consciousness: On the 100th anniversary of Efim Liberman (1925-2011). Biosystems 2025; 251:105451. [PMID: 40058561 DOI: 10.1016/j.biosystems.2025.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Efim Liberman (1925-2011) introduced in 1972 the idea of natural computation realized internally by living systems. He considered the physical principles employed by living systems as essential constraints that limit the computational process occurring in the course of adaptation, morphogenesis, and neural activity. The most general limits determined by the physical fundamental constants are universal for all nature. However, the more specific constraints are intrinsic to each biological system and can be overcome in the course of the evolutionary process. We discuss the roles of biological macromolecules, particularly the cytoskeleton, in shaping the actualization patterns formed in the internal measurement process occurring in living systems. Cytoskeletal rearrangements determine cellular, morphogenetic, and perceptive transformations in living systems and participate in the combinatorial genetic events that lead to evolutionary transformations. The operation of neurons is based on the transmission of signals via the cytoskeleton, where the digital output is generated that can be decoded through a reflexive action of the perceiving agent. It is concluded that the principles of natural computation formulated by Liberman represent the most fundamental feature of living beings and form the basis for the general theory of biological systems, with essential consequences for understanding metabolic closure, morphogenesis, evolution, and consciousness.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada.
| | | |
Collapse
|
2
|
Igamberdiev AU, Müller M, Elek G, Mikhailovsky GE. Ervin Bauer and the foundations of theoretical biology. Biosystems 2025:105424. [PMID: 39952429 DOI: 10.1016/j.biosystems.2025.105424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Ervin Bauer (1890-1938) outlined the paradigm of theoretical biology in his monograph "Fundamental Principles of Biology as Pure Natural Science and their Applications in Physiology and Pathology" (1920) and further developed these ideas in his book "Theoretical Biology" (1935). In these works, he defined the foundations of theoretical biology from the perspective of biophysics and bioenergetics, formulated the principle of a sustainable non-equilibrium state, which is continuously maintained by all biological systems throughout their life, and developed original views on cell differentiation, adaptation, and evolution. In 1938, Ervin Bauer and his wife Stefánia became the victims of Stalin's Great Terror. The book of 1920 was published in 1920 in German. It outlines the main principles of Bauer's concept. Bauer's magnum opus "Theoretical Biology" (1935) was published in Russian and republished in 1967 in Hungarian (together with the monograph of 1920) and several times in Russian. Immediately after the Russian edition appeared, two chapters were also published in German translation. Only small excerpts of the book were published in English translation. Here we present a complete English translation of both books. The books contain many important ideas that remain actual today and have great potential for further development in modern concepts of the foundations of life, the structure of living matter, and evolution.
Collapse
Affiliation(s)
| | | | - Gábor Elek
- Hungarian Academy of Sciences, Budapest, Hungary.
| | | |
Collapse
|
3
|
Mazloomi S, Mousavi V, Aghadavod E, Mafi A. Circular RNAs: Emerging Modulators in the Pathophysiology of Polycystic Ovary Syndrome and their Clinical Implications. Curr Mol Med 2024; 24:153-166. [PMID: 36627779 DOI: 10.2174/1566524023666230110151155] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 01/12/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine/metabolic disorder in women of reproductive age. PCOS is characterized by hyperandrogenism, polycystic ovary morphology, and ovulatory dysfunction/anovulation. It involves multiple effects in patients, including granulosa/theca cell hyperplasia, menstrual disturbances, infertility, acne, obesity, insulin resistance, and cardiovascular disorders. Biochemical analyses and the results of RNA sequencing studies in recent years have shown a type of non-coding RNAs as a splicing product known as circular RNAs (circRNAs). Several biological functions have been identified in relation to circRNAs, including a role in miRNA sponge, protein sequestration, increased parental gene expression, and translation leading to polypeptides. These circular molecules are more plentiful and specialized than other types of RNAs. For this reason, they are referred to as potential biomarkers in different diseases. Evidence suggests that circRNAs may have regulatory potentials through different signaling pathways, such as the miRNA network. Probably most experts in the field of obstetricians are not aware of circRNAs as a useful biomarker. Therefore, this review focused on the researches that have been done on the involvement of circRNAs in PCOS and summarized recent supportive evidence, and evaluated the circRNA association and mechanisms involved in PCOS.
Collapse
Affiliation(s)
- Sahar Mazloomi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Vahide Mousavi
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- Department of Clinical Biochemistry, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Igamberdiev AU, Gordon R. Macroevolution, differentiation trees, and the growth of coding systems. Biosystems 2023; 234:105044. [PMID: 37783374 DOI: 10.1016/j.biosystems.2023.105044] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
An open process of evolution of multicellular organisms is based on the rearrangement and growth of the program of differentiation that underlies biological morphogenesis. The maintenance of the final (adult) stable non-equilibrium state (stasis) of a developmental system determines the direction of the evolutionary process. This state is achieved via the sequence of differentiation events representable as differentiation trees. A special type of morphogenetic code, acting as a metacode governing gene expression, may include electromechanical signals appearing as differentiation waves. The excessive energy due to the incorporation of mitochondria in eukaryotic cells resulted not only in more active metabolism but also in establishing the differentiation code for interconnecting cells and forming tissues, which fueled the evolutionary process. The "invention" of "continuing differentiation" distinguishes multicellular eukaryotes from other organisms. The Janus-faced control, involving both top-down control by differentiation waves and bottom-up control via the mechanical consequences of cell differentiations, underlies the process of morphogenesis and results in the achievement of functional stable final states. Duplications of branches of the differentiation tree may be the basis for continuing differentiation and macroevolution, analogous to gene duplication permitting divergence of genes. Metamorphoses, if they are proven to be fusions of disparate species, may be classified according to the topology of fusions of two differentiation trees. In the process of unfolding of morphogenetic structures, microevolution can be defined as changes of the differentiation tree that preserve topology of the tree, while macroevolution represents any change that alters the topology of the differentiation tree.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Richard Gordon
- Gulf Specimen Marine Laboratory & Aquarium, 222 Clark Drive, Panacea, FL, 32346, USA.
| |
Collapse
|
5
|
Olovnikova NI, Olovnikov IA, Kalmykova AI. "If I Were in Nature's Place, I Would Do It Like This..." Life and Hypotheses of Alexey Olovnikov. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1683-1691. [PMID: 38105190 DOI: 10.1134/s0006297923110019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 12/19/2023]
Abstract
In this article, we commemorate the life and scientific journey of the brilliant gerontologist-theorist Alexey Olovnikov (1936-2022). In 1971, he published his famous "marginotomy" hypothesis, in which he predicted the replicative shortening of telomeres and its role as a counter of cell divisions and biological age of an organism. This work put forth several remarkable assumptions, including the existence of telomerase, which were confirmed two decades later. Despite this, Alexey Olovnikov moved further in his theoretical studies of aging and proposed a series of new hypotheses that seem no less exotic than the marginotomy hypothesis once appeared. Alexey Olovnikov had an extraordinary way of looking at biological problems and, in addition to aging, authored striking concepts about development, biorhythms, and evolution.
Collapse
Affiliation(s)
- Natalia I Olovnikova
- National Medical Research Renter for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | | | - Alla I Kalmykova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
6
|
Toward understanding the emergence of life: A dual function of the system of nucleotides in the metabolically closed autopoietic organization. Biosystems 2023; 224:104837. [PMID: 36649884 DOI: 10.1016/j.biosystems.2023.104837] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
General structure of metabolism includes the reproduction of catalysts that govern metabolism. In this structure, the system becomes autopoietic in the sense of Maturana and Varela, and it is closed to efficient causation as defined by Robert Rosen. The autopoietic maintenance and operation of the catalysts takes place via the set of free nucleotides while the synthesis of catalysts occurs via the information encoded by the set of nucleotides arranged in polymers of RNA and DNA. Both energy charge and genetic information use the components of the same pool of nucleoside triphosphates, which is equilibrated by thermodynamic buffering enzymes such as nucleoside diphosphate kinase and adenylate kinase. This occurs in a way that the system becomes internally stable and metabolically closed, which initially could be realized at the level of ribozymes catalyzing basic metabolic reactions as well as own reproduction. The function of ATP, GTP, UTP, and CTP is dual, as these species participate both in the general metabolism as free nucleotides and in the transfer of genetic information via covalent polymerization to nucleic acids. The changes in their pools directly impact both bioenergetic pathways and nucleic acid turnover. Here we outline the concept of metabolic closure of biosystems grounded in the dual function of nucleotide coenzymes that serve both as energetic and informational molecules and through this duality generate the autopoietic performance and the ability for codepoietic evolutionary transformations of living systems starting from the emergence of prebiotic systems.
Collapse
|
7
|
Salnikov L. Aging is a Side Effect of the Ontogenesis Program of Multicellular Organisms. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1498-1503. [PMID: 36717443 DOI: 10.1134/s0006297922120070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The review presents a brief outline of the current state of the main theoretical approaches to the aging problem. The works of authors, supporting the theory of "accumulation of errors" and theories stating the presence of a hypothetical "aging program" in all multicellular organisms are reviewed. The role of apoptosis and its connection with phenoptosis, as well as the theory of "hyperfunction" are analyzed. Our own approach to this problem is presented, in which aging is explained by the redistribution of limited resources between the two main aims of the organism: its self-sufficiency, based on the function of the housekeeping genes (HG) group, and functional specialization, provided by the integrative genes (IntG) group. Agreeing with the inseparable connection between aging and the ontogenesis program, the main role in the aging mechanisms is assigned to the redistribution of resources from the HG self-sufficiency genes to the IntGs necessary for the operation of all specialized functions of the organism as a whole. The growing imbalance between HGs and IntGs with age, suggests that switching of cellular resources in favor of IntGs is a side effect of ontogenesis program implementation and the main reason for aging, inherent in the nature of genome functioning under conditions of highly integrated multicellularity. The hypothesis of functional subdivision of the genome also points to the leading role of slow-dividing and postmitotic cells, as the most sensitive to reduction of repair levels, for triggering and realization of the aging process.
Collapse
|
8
|
Cottam R, Iurato G, Igamberdiev AU. Fundamentals of evolutionary transformations in biological systems. Biosystems 2022; 222:104779. [PMID: 36103919 DOI: 10.1016/j.biosystems.2022.104779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ron Cottam
- The Living Systems Project, Dept. of Electronics and Informatics, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Brussels, Belgium.
| | | | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, 45 Arctic Avenue, A1C 5S7, Canada.
| |
Collapse
|
9
|
Iurato G, Igamberdiev AU. The reversibility of cellular determination: An evolutive pattern of epigenetic plasticity. Biosystems 2022; 221:104774. [PMID: 36067834 DOI: 10.1016/j.biosystems.2022.104774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/11/2022] [Accepted: 08/28/2022] [Indexed: 12/13/2022]
Abstract
Until the middle of the 20th century, embryogenesis patterns were considered as based on a rigid, unidirectional ontogenetic development, whose nuclear programming yields an irreversibility feature for cellular determination. Further empirical pieces of evidence have provided new insights about a certain reversibility to cellular determination, finding new biomolecular mechanisms (nuclear reprogramming, dedifferentiation, transdifferentiation) which have clearly shown that such a reversibility exists, warranting a certain cellular plasticity inside cell cycle; moreover, they seem mainly ruled by epigenetic factors. In this framework, evolution can be viewed as a systemic transformation of the spatiotemporal epigenetic organization, and the maintenance of the stable final adult stage includes a possibility of dedifferentiation at the particular points of ontogenetic development leading to the achievement of the final stage though the alternate sets of epigenetic trajectories. This paper is aimed to briefly outline historically the main aspects which have led to define the mechanisms of cellular plasticity, highlighting the chief empirical facts supporting it and the related still unresolved problematic issues.
Collapse
|
10
|
Igamberdiev AU. Overcoming the limits of natural computation in biological evolution toward the maximization of system efficiency. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The goal-directedness of biological evolution is realized via the anticipatory achievement of the final state of the system that corresponds to the condition of its perfection in self-maintenance and in adaptability. In the course of individual development, a biological system maximizes its power via synergistic effects and becomes able to perform external work most efficiently. In this state, defined as stasis, robust self-maintaining configurations act as attractors resistant to external and internal perturbations. This corresponds to the local energy–time constraints that most efficiently fit the integral optimization of the whole system. In evolution, major evolutionary transitions that establish new states of stasis are achieved via codepoiesis, a process in which the undecided statements of existing coding systems form the basis for the evolutionary unfolding of the system by assigning new values to them. The genetic fixation of this macroevolutionary process leads to new programmes of individual development representing the process of natural computation. The phenomenon of complexification in evolution represents a metasystem transition that results in maximization of a system’s power and in the ability to increase external work performed by the system.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland , St. John’s, NL, A1C 5S7 , Canada
| |
Collapse
|