1
|
Prosdocimi F, Farias STD. Coacervates meet the RNP-world: liquid-liquid phase separation and the emergence of biological compartmentalization. Biosystems 2025; 252:105480. [PMID: 40324711 DOI: 10.1016/j.biosystems.2025.105480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/02/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Understanding the emergence of biological compartmentalization in the context of the primordial soup is essential for unraveling the origin of life on Earth. This study revisits the classical coacervate theory, examining its historical development, supporting evidence, and major criticisms. Building upon Alexandr Oparin's foundational ideas, we propose an updated perspective in which the first biological compartments emerged through the formation of ribonucleoprotein (RNP) condensates-complexes of intrinsically disordered peptides and RNAs-via liquid-liquid phase separation (LLPS). Drawing on contemporary insights into how LLPS mediates intracellular organization, we argue that such membraneless RNP-based aggregates could have facilitated biochemical reactions in the aqueous environments of early Earth. By reinterpreting Oparin's coacervates through the lens of modern molecular biology, this study offers a renewed framework for understanding the origin of biological compartmentalization within the RNP-world hypothesis.
Collapse
Affiliation(s)
- Francisco Prosdocimi
- Laboratório de Biologia Teórica e de Sistemas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Savio Torres de Farias
- Laboratório de Genética Evolutiva Paulo Leminski, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil; Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds, LS7 3RB, UK
| |
Collapse
|
2
|
Toxvaerd S. Origin of homochirality in peptides: The first milestone at the origin of life. Biosystems 2025; 253:105479. [PMID: 40398721 DOI: 10.1016/j.biosystems.2025.105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/06/2025] [Accepted: 05/01/2025] [Indexed: 05/23/2025]
Abstract
Living organisms have some common structures, chemical reactions and molecular structures. The organisms consist of cells with cell division, they have homochirality of protein and carbohydrate units, metabolism, and genetics, and they are mortal. The molecular structures and chemical reactions underlying these features are common to all, from the simplest bacteria to human beings. The origin of life is evolutionary with the emergence of a network of spontaneous biochemical reactions, and the evolution has taken place over a very long time. The evolution contains, however, some "landmarks" and bottlenecks, which in a revolutionary manner directed the evolution, and the article establishes an order of some of these events. Recent articles show that peptides in living organisms are long-time unstable with loss of their secondary homochiral conformations and with D-amino acids. Based on these observations and an extensive scientific literature on Abiogenesis, we argue that the first milestone in the prebiotic evolution is at the emergence of homochiral peptides in an aqueous solution with a high concentration of amino acids and a lower water activity than in the cytosol in living organisms. The homochiral peptides in cytosol are unstable, and the long-time aging of peptides in the cytosol causes mortality of living organisms. The metabolism and genetics are established in an environment with homochiral peptides in the Earth's crust for ≈ 4 Gyr ago at a lower water activity than in the cytosol in living organisms. Finally, the cells with cell division are established in the Hot Springs environment at the interface between the crust and the Hadean Ocean.
Collapse
Affiliation(s)
- Søren Toxvaerd
- DNRF centre "Glass and Time", Department of Science and Environment, Roskilde University, Post Box 260, DK 4000, Denmark.
| |
Collapse
|
3
|
Ruzov AS, Ermakov AS. The non-canonical nucleotides and prebiotic evolution. Biosystems 2025; 248:105411. [PMID: 39900260 DOI: 10.1016/j.biosystems.2025.105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/23/2024] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
The mystery of the origin of life has been puzzling mankind for several millenia. Starting from the second half of the 20th century, when the crucial role of nucleic acids in biological heredity became apparent, the emphasis in the field has shifted to the explanation of the origin of nucleic acids and the mechanisms of copying of macromolecules. In the 1960s, the hypothesis of the RNA World was proposed, according to which the first stages of the origin of life on Earth were associated with the appearance of self-replicating complexes based on RNA, that were akin to RNA-enzymes that catalyze critical for life chemical reactions. Currently, it has been shown that different forms of RNA include not only canonical (adenine, uracil, guanine, cytosine), but also about 170 non-canonical nucleotides. In this review, we discuss potential roles of these non-canonical nucleotides in the processes of molecular prebiotic evolution, such as the emergence of canonical RNA nucleotides and catalytic RNAs, as well as the origin of template synthesis of RNA and proteins.
Collapse
Affiliation(s)
- Alexey S Ruzov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia
| | - Alexander S Ermakov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, 119991, Moscow, Russia.
| |
Collapse
|
4
|
Kleczkowski LA, Igamberdiev AU. Adenylate-driven equilibration of both ribo- and deoxyribonucleotides is under magnesium control: Quantification of the Mg 2+-signal. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154380. [PMID: 39709740 DOI: 10.1016/j.jplph.2024.154380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 12/24/2024]
Abstract
Nucleoside mono-, di- and triphosphates (NMP, NDP, and NTP) and their deoxy-counterparts (dNMP, dNDP, dNTP) are involved in energy metabolism and are the building blocks of RNA and DNA, respectively. The production of NTP and dNTP is carried out by several NMP kinases (NMPK) and NDP kinases (NDPK). All NMPKs are fully reversible and use defined Mg-free and Mg-complexed nucleotides in both directions of their reactions, with Mg2+ controlling the ratios of Mg-free and Mg-complexed reactants. Their activities are driven by adenylates produced by adenylate kinase which controls the direction of NMPK and NDPK reactions, depending on the energy status of a cell. This enzymatic machinery is localized in the cytosol, mitochondria, and plastids, i.e. compartments with high energy budgets and where (except for cytosol) RNA and DNA synthesis occur. Apparent equilibrium constants of NMPKs, based on total nucleotide contents, are [Mg2+]-dependent. This allows for an indirect estimation of internal [Mg2+], which constitutes a signal of the energetic status of a given tissue/cell/compartment. Adenylates contribute the most to this Mg2+-signal, followed by uridylates, guanylates, and cytidylates, with deoxynucleotides' contribution deemed negligible. A method to quantify the Mg2+-signal, using nucleotide datasets, is discussed.
Collapse
Affiliation(s)
- Leszek A Kleczkowski
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 901 87, Umeå, Sweden.
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C5S7, Canada.
| |
Collapse
|
5
|
Montemayor-Aldrete JA, Nieto-Villar JM, Villagómez CJ, Márquez-Caballé RF. An irreversible thermodynamic model of prebiological dissipative molecular structures inside vacuoles at the surface of the Archean Ocean. Biosystems 2025; 247:105379. [PMID: 39710184 DOI: 10.1016/j.biosystems.2024.105379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024]
Abstract
A prebiotic model, based in the framework of thermodynamic efficiency loss from small dissipative eukaryote organisms is developed to describe the maximum possible concentration of solar power to be dissipated on topological circular molecules structures encapsulated in lipid-walled vacuoles, which floated in the Archean oceans. By considering previously, the analysis of 71 species examined by covering 18 orders of mass magnitude from the Megapteranovaeangliae to Saccharomyces cerevisiae suggest that in molecular structures of smaller masses than any living being known nowadays, the power dissipation must be directly proportional to the power of the photons of solar origin that impinge them to give rise to the formation of more complex self-assembled molecular structures at the prebiotic stage by a quantum mechanics model of resonant photon wavelength excitation. The analysis of 12 circular molecules (encapsulated in lipid-walled vacuoles) relevant to the evolution of life on planet Earth such as the five nucleobases, and some aromatic molecules as pyrimidine, porphyrin, chlorin, coumarin, xanthine, etc., were carried out. Considering one vacuole of each type of molecule per square meter of the ocean's surface of planet Earth (1.8∗1015 vacuoles), their dissipative operation would require only 10-10 times the matter used by the biomass currently existing on Earth. Relevant numbers (1020-1021) for the annual dissipative cycles corresponding to high energy photo chemical events, which in principle allow the assembling of more complex polymers, were obtained. The previous figures are compatible with some results obtained by followers of the primordial soup theory where under certain suppositions about the Archean chemical kinetical changes on the precursors of RNA and DNA try to justify the formation rate of RNA and DNA components and the emergence of life within a 10-million-year window, 3.5 billion years ago. The physical foundation perspective and the simplicity of the proposed approach suggests that it can serve as a possible template for both, the development of new kind of experiments, and for prebiotic theories that address self-organization occurring inside such vacuoles. Our model provides a new way to conceptualize the self-production of simple cyclic dissipative molecular structures in the Archean period of planet Earth. © 2017 ElsevierInc.Allrightsreserved.
Collapse
Affiliation(s)
- Jorge A Montemayor-Aldrete
- Departamento de Estado Sólido, Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica, Ciudad Universitaria, Ciudad de México, 04510, Mexico.
| | - José Manuel Nieto-Villar
- Department of Chemical-Physics, A. Alzola Group of Thermodynamics of Complex Systems of M.V. Lomonosov Chair, Faculty of Chemistry, University of Havana, Cuba
| | - Carlos J Villagómez
- Departamento de Estado Sólido, Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica, Ciudad Universitaria, Ciudad de México, 04510, Mexico
| | - Rafael F Márquez-Caballé
- Departamento de Estado Sólido, Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica, Ciudad Universitaria, Ciudad de México, 04510, Mexico
| |
Collapse
|
6
|
Yoshimura A, Seki M. The Possible Crystallization Process in the Origin of Bacteria, Archaea, Viruses, and Mobile Elements. BIOLOGY 2024; 14:3. [PMID: 39857234 PMCID: PMC11763024 DOI: 10.3390/biology14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/03/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025]
Abstract
We propose a hypothesis for the simultaneous emergence of bacteria, archaea, viruses, and mobile elements by sequential and concrete biochemical pathways. The emergence process can be considered analogous to crystallization, where genetic and biochemical systems stabilize as organisms evolve from their common ancestor, the LUCA, which was a non-free-living pool of single operon type genomes including double-stranded (ds) DNA at an ancient submarine alkaline vent. Each dsDNA operon was transcribed by different systems in σ, TFIIB, or TBP genomes. Double-stranded DNA operons can fuse and stabilize through the action of specific transcription systems, leading to differentiation between the Bacteria (σ genome) and Archaea (TBP genome) domains. Error catastrophe can be overcome by the parallel gain of DNA replication and DNA repair mechanisms in both genomes. Enlarged DNA enabled efficient local biochemical reactions. Both genomes independently recruited lipids to facilitate reactions by forming coacervates at the chamber of the vent. Bilayer lipid membrane formation, proto-cell formation with a permeable membrane, proto-cell division, and the evolution of membrane-associated biochemistry are presented in detail. Simultaneous crystallization of systems in non-free-living bacteria and non-free-living archaea triggered the co-crystallization of primitive viruses and mobile elements. An arms race between non-free-living cells and primitive viruses finally led to free-living cells with a cell wall and mature viruses.
Collapse
Affiliation(s)
| | - Masayuki Seki
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan;
| |
Collapse
|
7
|
Igamberdiev AU. Reflexive neural circuits and the origin of language and music codes. Biosystems 2024; 246:105346. [PMID: 39349135 DOI: 10.1016/j.biosystems.2024.105346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Conscious activity is grounded in the reflexive self-awareness in sense perception, through which the codes signifying sensual perceptive events operate and constrain human behavior. These codes grow via the creative generation of hypertextual statements. We apply the model of Vladimir Lefebvre (Lefebvre, V.A., 1987, J. Soc. Biol. Struct. 10, 129-175) to reveal the underlying structures on which the perception and creative development of language and music codes are based. According to this model, the reflexive structure of conscious subject is grounded in three thermodynamic cycles united by the control of the basic functional cycle by the second one, and resulting in the internal action that it turn is perceived by the third cycle evaluating this action. In this arrangement, the generative language structures are formed and the frequencies of sounds that form musical phrases and patterns are selected. We discuss the participation of certain neural brain structures and the establishment of reflexive neural circuits in the ad hoc transformation of perceptive signals, and show the similarities between the processes of perception and of biological self-maintenance and morphogenesis. We trace the peculiarities of the temporal encoding of emotions in music and musical creativity, as well as the principles of sharing musical information between the performing and the perceiving individuals.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada.
| |
Collapse
|
8
|
Uddin I, Awan HH, Khalid M, Khan S, Akbar S, Sarker MR, Abdolrasol MGM, Alghamdi TAH. A hybrid residue based sequential encoding mechanism with XGBoost improved ensemble model for identifying 5-hydroxymethylcytosine modifications. Sci Rep 2024; 14:20819. [PMID: 39242695 PMCID: PMC11379919 DOI: 10.1038/s41598-024-71568-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
RNA modifications play an important role in actively controlling recently created formation in cellular regulation mechanisms, which link them to gene expression and protein. The RNA modifications have numerous alterations, presenting broad glimpses of RNA's operations and character. The modification process by the TET enzyme oxidation is the crucial change associated with cytosine hydroxymethylation. The effect of CR is an alteration in specific biochemical ways of the organism, such as gene expression and epigenetic alterations. Traditional laboratory systems that identify 5-hydroxymethylcytosine (5hmC) samples are expensive and time-consuming compared to other methods. To address this challenge, the paper proposed XGB5hmC, a machine learning algorithm based on a robust gradient boosting algorithm (XGBoost), with different residue based formulation methods to identify 5hmC samples. Their results were amalgamated, and six different frequency residue based encoding features were fused to form a hybrid vector in order to enhance model discrimination capabilities. In addition, the proposed model incorporates SHAP (Shapley Additive Explanations) based feature selection to demonstrate model interpretability by highlighting the high contributory features. Among the applied machine learning algorithms, the XGBoost ensemble model using the tenfold cross-validation test achieved improved results than existing state-of-the-art models. Our model reported an accuracy of 89.97%, sensitivity of 87.78%, specificity of 94.45%, F1-score of 0.8934%, and MCC of 0.8764%. This study highlights the potential to provide valuable insights for enhancing medical assessment and treatment protocols, representing a significant advancement in RNA modification analysis.
Collapse
Affiliation(s)
- Islam Uddin
- Department of Computer Science, Abdul Wali Khan University, Mardan, Pakistan
| | - Hamid Hussain Awan
- Department of Computer Science, Muslim Youth University, Islamabad, Pakistan
| | - Majdi Khalid
- Department of Computer Science and Artificial Intelligence, College of Computing, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Salman Khan
- Department of Computer Science, Abdul Wali Khan University, Mardan, Pakistan
| | - Shahid Akbar
- Department of Computer Science, Abdul Wali Khan University, Mardan, Pakistan.
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Mahidur R Sarker
- Institute of Visual Informatics, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
- Universidad de Diseño, Innovación y Tecnología, UDIT, Av. Alfonso XIII, 97, 28016, Madrid, Spain
| | - Maher G M Abdolrasol
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang, 43000, Malaysia
| | - Thamer A H Alghamdi
- Wolfson Centre for Magnetics, School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK.
- Electrical Engineering Department, Faculty of Engineering, Al-Baha University, Al-Baha, 65779, Saudi Arabia.
| |
Collapse
|
9
|
Vega F. The cell as a semiotic system that realizes closure to efficient causation: The semiotic (M, R) system. Biosystems 2024; 240:105226. [PMID: 38723994 DOI: 10.1016/j.biosystems.2024.105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/19/2024]
Abstract
Robert Rosen defines organisms as material systems closed to efficient causation, and proposes the replicative (M, R) system as a model for them. Recently, we presented a cell model that realizes Rosen's formal model, based on Hofmeyr's analysis of the functional organization of cell biochemistry and on Rosen's construction of the replication function. In this article we propose a cell model that, starting from the same biochemical processes, replaces the replication function with a set of semiotic relations between some of the elements that participate in cellular processes. The result is a cell model that constitutes a semiotic system that realizes closure to efficient causation: a semiotic (M, R) system. We compare the models of closure that correspond to the replicative (M, R) system and the semiotic (M, R) system. Additionally, we discuss the role that the genetic code and protein synthesis play in the semiotic closure to efficient causation. Finally, we outline the method to extend this analysis to more complex organisms.
Collapse
Affiliation(s)
- Federico Vega
- Department of Logic, History and Philosophy of Science, National Distance Education University (UNED), Spain.
| |
Collapse
|
10
|
Igamberdiev AU. Biological thermodynamics: Ervin Bauer and the unification of life sciences and physics. Biosystems 2024; 235:105089. [PMID: 38000544 DOI: 10.1016/j.biosystems.2023.105089] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Biological systems operate toward the maximization of their self-maintenance and adaptability. This is achieved through the establishment of robust self-maintaining configurations acting as attractors resistant to external and internal perturbations. Ervin Bauer (1890-1938) was the first who formulated this essential thermodynamic constraint in the operation of biological systems, which he defined as the stable non-equilibrium state. The latter appears as the basic attractor relative to which biological organization is established. The stable non-equilibrium state represents a generalized cell energy status corresponding to efficient spatiotemporal organization of the fluxes of matter and energy and constantly reproducing the conditions of self-maintenance of metabolism and controlling the rates of major metabolic fluxes that follow thermodynamically and kinetically defined computational principles. This state is realized in the autopoietic structures having closed loops of causation based on the operation of biological codes. The principle of thermodynamic buffering determines the conditions for optimization of the fluxes of load and consumption in metabolism establishing the conditions of metabolic stable non-equilibrium. In developing and evolving biological systems, the principle of stable non-equilibrium is transformed into the principle of increasing external work, which is grounded in the hyper-restorative non-equilibrium dynamics. Bauer's concept of the stable non-equilibrium state puts thermodynamics into the frames of the internal biological causality governing self-maintenance and development of living systems. It can be defined as a relational theory of biological thermodynamics since the standard to which it refers represents the actual biological function rather than the abstract state of thermodynamic equilibrium.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
11
|
Igamberdiev AU. Toward the Relational Formulation of Biological Thermodynamics. ENTROPY (BASEL, SWITZERLAND) 2023; 26:43. [PMID: 38248169 PMCID: PMC10814957 DOI: 10.3390/e26010043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
Classical thermodynamics employs the state of thermodynamic equilibrium, characterized by maximal disorder of the constituent particles, as the reference frame from which the Second Law is formulated and the definition of entropy is derived. Non-equilibrium thermodynamics analyzes the fluxes of matter and energy that are generated in the course of the general tendency to achieve equilibrium. The systems described by classical and non-equilibrium thermodynamics may be heuristically useful within certain limits, but epistemologically, they have fundamental problems in the application to autopoietic living systems. We discuss here the paradigm defined as a relational biological thermodynamics. The standard to which this refers relates to the biological function operating within the context of particular environment and not to the abstract state of thermodynamic equilibrium. This is defined as the stable non-equilibrium state, following Ervin Bauer. Similar to physics, where abandoning the absolute space-time resulted in the application of non-Euclidean geometry, relational biological thermodynamics leads to revealing the basic iterative structures that are formed as a consequence of the search for an optimal coordinate system by living organisms to maintain stable non-equilibrium. Through this search, the developing system achieves the condition of maximization of its power via synergistic effects.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1C 5S7, Canada
| |
Collapse
|
12
|
Igamberdiev AU, Gordon R. Macroevolution, differentiation trees, and the growth of coding systems. Biosystems 2023; 234:105044. [PMID: 37783374 DOI: 10.1016/j.biosystems.2023.105044] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
An open process of evolution of multicellular organisms is based on the rearrangement and growth of the program of differentiation that underlies biological morphogenesis. The maintenance of the final (adult) stable non-equilibrium state (stasis) of a developmental system determines the direction of the evolutionary process. This state is achieved via the sequence of differentiation events representable as differentiation trees. A special type of morphogenetic code, acting as a metacode governing gene expression, may include electromechanical signals appearing as differentiation waves. The excessive energy due to the incorporation of mitochondria in eukaryotic cells resulted not only in more active metabolism but also in establishing the differentiation code for interconnecting cells and forming tissues, which fueled the evolutionary process. The "invention" of "continuing differentiation" distinguishes multicellular eukaryotes from other organisms. The Janus-faced control, involving both top-down control by differentiation waves and bottom-up control via the mechanical consequences of cell differentiations, underlies the process of morphogenesis and results in the achievement of functional stable final states. Duplications of branches of the differentiation tree may be the basis for continuing differentiation and macroevolution, analogous to gene duplication permitting divergence of genes. Metamorphoses, if they are proven to be fusions of disparate species, may be classified according to the topology of fusions of two differentiation trees. In the process of unfolding of morphogenetic structures, microevolution can be defined as changes of the differentiation tree that preserve topology of the tree, while macroevolution represents any change that alters the topology of the differentiation tree.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Richard Gordon
- Gulf Specimen Marine Laboratory & Aquarium, 222 Clark Drive, Panacea, FL, 32346, USA.
| |
Collapse
|
13
|
Spirov A. Evolution of the RNA world: From signals to codes. Biosystems 2023; 234:105043. [PMID: 37852409 DOI: 10.1016/j.biosystems.2023.105043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
The accumulated material in evolutionary biology, greatly enhanced by the achievements of modern synthetic biology, allows us to envision certain key hypothetical stages of prebiotic (chemical) evolution. This is often understood as the further evolution in the RNA World towards the RNA-protein World. It is a path towards the emergence of translation and the genetic code (I), signaling pathways with signaling molecules (II), and the appearance of RNA-based components of future gene regulatory networks (III). We believe that these evolutionary paths can be constructively viewed from the perspective of the concept of biological codes (Barbieri, 2003). Crucial evolutionary events in these directions would involve the emergence of RNA-based adaptors. Such adaptors connect two families of functionally and chemically distinct molecules into one functional entity. The emergence of primitive translation processes is undoubtedly the major milestone in the evolutionary path towards modern life. The key aspect here is the appearance of adaptors between amino acids and their cognate triplet codons. The initial steps are believed to involve the emergence of proto-transfer RNAs capable of self-aminoacylation. The second significant evolutionary breakthrough is the development of biochemical regulatory networks based on signaling molecules of the RNA World (ribonucleotides and their derivatives), as well as receptors and effectors (riboswitches) for these messengers. Some authors refer to this as the "lost language of the RNA World." The third evolutionary step is the emergence of signal sequences for ribozymes on the molecules of their RNA targets. This level of regulation in the RNA World is comparable to the gene regulatory networks of modern organisms. We believe that the signal sequences on target molecules have been rediscovered and developed by evolution into the gene regulatory networks of modern cells. In conclusion, the immense diversity of modern biological codes, in some of its key characteristics, can be traced back to the achievements of prebiotic evolution.
Collapse
Affiliation(s)
- Alexander Spirov
- The Institute of Scientific Information for Social Sciences RAS, Moscow, Russia.
| |
Collapse
|
14
|
Vitas M, Dobovišek A. Is Darwinian selection a retrograde driving force of evolution? Biosystems 2023; 233:105031. [PMID: 37734699 DOI: 10.1016/j.biosystems.2023.105031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Modern science has still not provided a satisfactory empirical explanation for the increasing complexity of living organisms through evolutionary history. As no agreed-upon definitions of the complexity exist, the working definition of biological complexity has been formulated. There is no theoretical reason to expect evolutionary lineages to increase in complexity over time, and there is no empirical evidence that they do so. In our discussion we have assumed the hypothesis that at the origins of life, evolution had to first involve autocatalytic systems that only subsequently acquired the capacity of genetic heredity. We discuss the role of Darwinian selection in evolution and pose the hypothesis that Darwinian selection acts predominantly as a retrograde driving force of evolution. In this context we understand the term retrograde evolution as a degeneration of living systems from higher complexity towards living systems with lower complexity. With the proposed hypothesis we have closed the gap between Darwinism and Lamarckism early in the evolutionary process. By Lamarckism, the action of a special principle called complexification force is understood here rather than inheritance of acquired characteristics.
Collapse
Affiliation(s)
- Marko Vitas
- Laze pri Borovnici 38, 1353, Borovnica, Slovenia.
| | - Andrej Dobovišek
- University of Maribor, Faculty of Natural Sciences and Mathematics, Koroška Cesta 160, 2000, Maribor, Slovenia; University of Maribor, Faculty of Medicine, Taborska Ulica 6B, 2000, Maribor, Slovenia.
| |
Collapse
|
15
|
Farnsworth KD. How biological codes break causal chains to enable autonomy for organisms. Biosystems 2023; 232:105013. [PMID: 37657747 DOI: 10.1016/j.biosystems.2023.105013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
Autonomy, meaning freedom from exogenous control, requires independence of both constitution and cybernetic regulation. Here, the necessity of biological codes to achieve both is explained, assuming that Aristotelian efficient cause is 'formal cause empowered by physical force'. Constitutive independence requires closure to efficient causation (in the Rosen sense); cybernetic independence requires transformation of cause-effect into signal-response relations at the organism boundary; the combination of both kinds of independence enables adaptation and evolution. Codes and cyphers translate information from one form of physical embodiment (domain) to another. Because information can only contribute as formal cause to efficient cause within the domain of its embodiment, translation can extend or restrict the range over which information is effective. Closure to efficient causation requires internalised information to be isolated from the cycle of efficient causes that it informs: e.g. Von Neumann self-replicator requires a (template) source of information that is causally isolated from the physical replication system. Life operationalises this isolation with the genetic code translating from the (isolated) domain of codons to that of protein interactions. Separately, cybernetic freedom is achieved at the cell boundary because transducers, which embody molecular coding, translate exogenous information into a domain where it no longer has the power of efficient cause. Information, not efficient cause, passes through the boundary to serve as stimulus for an internally generated response. Coding further extends freedom by enabling historically accumulated information to be selectively transformed into efficient cause under internal control, leaving it otherwise stored inactive. Code-based translation thus enables selective causal isolation, controlling the flow from cause to effect. Genetic code, cell-signalling codes and, in eukaryotes, the histone code, signal sequence based protein sorting and other code-dependent processes all regulate and separate causal chains. The existence of life can be seen as an expression of the power of molecular codes to selectively isolate and thereby organise causal relations among molecular interactions to form an organism.
Collapse
Affiliation(s)
- Keith D Farnsworth
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT95DL, UK.
| |
Collapse
|
16
|
Stano P, Nehaniv C, Ikegami T, Damiano L, Witkowski O. Autopoiesis: Foundations of life, cognition, and emergence of self/other. Biosystems 2023; 232:105008. [PMID: 37619925 DOI: 10.1016/j.biosystems.2023.105008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.
| | - Chrystopher Nehaniv
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada.
| | - Takashi Ikegami
- The Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| | - Luisa Damiano
- Research Group on the Epistemology of the Sciences of the Artificial, Department of Communication, Arts and Media, IULM University, Milan, Italy.
| | - Olaf Witkowski
- Cross Labs, The University of Tokyo, Tokyo Institute of Technology, Tokyo, Japan.
| |
Collapse
|
17
|
Prosdocimi F, Cortines JR, José MV, Farias ST. Decoding viruses: An alternative perspective on their history, origins and role in nature. Biosystems 2023; 231:104960. [PMID: 37437771 DOI: 10.1016/j.biosystems.2023.104960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/14/2023]
Abstract
This article provides an alternative perspective on viruses, exploring their origins, ecology, and evolution. Viruses are recognized as the most prevalent biological entities on Earth, permeating nearly all environments and forming the virosphere-a significant biological layer. They play a crucial role in regulating bacterial populations within ecosystems and holobionts, influencing microbial communities and nutrient recycling. Viruses are also key drivers of molecular evolution, actively participating in the maintenance and regulation of ecosystems and cellular organisms. Many eukaryotic genomes contain genomic elements with viral origins, which contribute to organismal equilibrium and fitness. Viruses are involved in the generation of species-specific orphan genes, facilitating adaptation and the development of unique traits in biological lineages. They have been implicated in the formation of vital structures like the eukaryotic nucleus and the mammalian placenta. The presence of virus-specific genes absent in cellular organisms suggests that viruses may pre-date cellular life. Like progenotes, viruses are ribonucleoprotein entities with simpler capsid architectures compared to proteolipidic membranes. This article presents a comprehensive scenario describing major transitions in prebiotic evolution and proposes that viruses emerged prior to the Last Universal Common Ancestor (LUCA) during the progenote era. However, it is important to note that viruses do not form a monophyletic clade, and many viral taxonomic groups originated more recently as reductions of cellular structures. Thus, viral architecture should be seen as an ancient and evolutionarily stable strategy adopted by biological systems. The goal of this article is to reshape perceptions of viruses, highlighting their multifaceted significance in the complex tapestry of life and fostering a deeper understanding of their origins, ecological impact, and evolutionary dynamics.
Collapse
Affiliation(s)
- Francisco Prosdocimi
- Laboratório de Biologia Teórica e de Sistemas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Juliana Reis Cortines
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - Marco V José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CDMX, Mexico
| | - Sávio Torres Farias
- Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil; Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds, LS7 3RB, UK
| |
Collapse
|
18
|
Igamberdiev AU. Reflexive structure of the conscious subject and the origin of language codes. Biosystems 2023; 231:104983. [PMID: 37499739 DOI: 10.1016/j.biosystems.2023.104983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The code paradigm in biological and social sciences arises to Aristotle. For conscious activity, Aristotle introduced the notion of reflexive self-awareness in sense perception. This reflexive process generates the codes that signify sensual perceptive events and constrain human behavior. Coding systems grow via the generation of hypertextual statements reflecting new meanings in the process defined by Marcello Barbieri as a codepoiesis. It results in the establishment of higher-level codes (metacodes) forming the semiotic screen that has a nature of the set of perceived objects internalized by the conscious subject in encoding the symbolic actions. The characteristic feature of the semiotic screen consists in its property of being shared between the communicating agents. A sufficient complexity of nervous system, through the appearance of mirror neurons that are fired both when a subject executes certain action and when he observes another subject performing a similar action, represents a prerequisite for the emergence of reflexive codes in evolution. The codes appearing as a result of reflexive awareness and establishing different sociotypes, span from the symbolic systems of art and music through the common language to the formal language of logic and mathematics. Social dynamics is based on the implementation of reflexive coding activity and results in the growth and decay of social systems and civilizations.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
19
|
Bartas M, Slychko K, Červeň J, Pečinka P, Arndt-Jovin DJ, Jovin TM. Extensive Bioinformatics Analyses Reveal a Phylogenetically Conserved Winged Helix (WH) Domain (Zτ) of Topoisomerase IIα, Elucidating Its Very High Affinity for Left-Handed Z-DNA and Suggesting Novel Putative Functions. Int J Mol Sci 2023; 24:10740. [PMID: 37445918 DOI: 10.3390/ijms241310740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The dynamic processes operating on genomic DNA, such as gene expression and cellular division, lead inexorably to topological challenges in the form of entanglements, catenanes, knots, "bubbles", R-loops, and other outcomes of supercoiling and helical disruption. The resolution of toxic topological stress is the function attributed to DNA topoisomerases. A prominent example is the negative supercoiling (nsc) trailing processive enzymes such as DNA and RNA polymerases. The multiple equilibrium states that nscDNA can adopt by redistribution of helical twist and writhe include the left-handed double-helical conformation known as Z-DNA. Thirty years ago, one of our labs isolated a protein from Drosophila cells and embryos with a 100-fold greater affinity for Z-DNA than for B-DNA, and identified it as topoisomerase II (gene Top2, orthologous to the human UniProt proteins TOP2A and TOP2B). GTP increased the affinity and selectivity for Z-DNA even further and also led to inhibition of the isomerase enzymatic activity. An allosteric mechanism was proposed, in which topoII acts as a Z-DNA-binding protein (ZBP) to stabilize given states of topological (sub)domains and associated multiprotein complexes. We have now explored this possibility by comprehensive bioinformatic analyses of the available protein sequences of topoII representing organisms covering the whole tree of life. Multiple alignment of these sequences revealed an extremely high level of evolutionary conservation, including a winged-helix protein segment, here denoted as Zτ, constituting the putative structural homolog of Zα, the canonical Z-DNA/Z-RNA binding domain previously identified in the interferon-inducible RNA Adenosine-to-Inosine-editing deaminase, ADAR1p150. In contrast to Zα, which is separate from the protein segment responsible for catalysis, Zτ encompasses the active site tyrosine of topoII; a GTP-binding site and a GxxG sequence motif are in close proximity. Quantitative Zτ-Zα similarity comparisons and molecular docking with interaction scoring further supported the "B-Z-topoII hypothesis" and has led to an expanded mechanism for topoII function incorporating the recognition of Z-DNA segments ("Z-flipons") as an inherent and essential element. We further propose that the two Zτ domains of the topoII homodimer exhibit a single-turnover "conformase" activity on given G(ate) B-DNA segments ("Z-flipins"), inducing their transition to the left-handed Z-conformation. Inasmuch as the topoII-Z-DNA complexes are isomerase inactive, we infer that they fulfill important structural roles in key processes such as mitosis. Topoisomerases are preeminent targets of anti-cancer drug discovery, and we anticipate that detailed elucidation of their structural-functional interactions with Z-DNA and GTP will facilitate the design of novel, more potent and selective anti-cancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Martin Bartas
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Kristyna Slychko
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Jiří Červeň
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Petr Pečinka
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Donna J Arndt-Jovin
- Emeritus Laboratory of Cellular Dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Thomas M Jovin
- Emeritus Laboratory of Cellular Dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| |
Collapse
|