1
|
Tseliou V, Damian M, Mendoza-Avila J, Rabuffetti M, Mutti FG. Reductive amination: Methods for cell-free and whole-cell biocatalysis. Methods Enzymol 2025; 714:269-295. [PMID: 40288842 DOI: 10.1016/bs.mie.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Enzymatic reductive amination is now a green and selective method for the efficient conversion of ketones into chiral amines with high optical purity. Transaminases (TAs) have been widely employed at both laboratory and industrial scale for the synthesis of primary amines. Additionally, amine dehydrogenases (AmDHs), imine reductases (IREDs) and reductive aminases (RedAms) enable the stereoselective synthesis of primary, secondary and tertiary amines. Recent advancements in protein engineering have expanded the substrate scope and improved the stability of these biocatalysts, enabling broader applications. The use of immobilized enzymes and whole-cell systems further enhances the efficiency and sustainability of these methods. This chapter provides detailed protocols for enzymatic reductive amination for the synthesis of primary, secondary, and tertiary chiral amines using isolated or immobilized enzymes, or whole-cell biocatalysts.
Collapse
Affiliation(s)
- Vasilis Tseliou
- Van't Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Matteo Damian
- Van't Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Josemarco Mendoza-Avila
- Van't Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands; Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Marco Rabuffetti
- Van't Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands; Department of Chemistry, University of Milan, Via Golgi 19, Milan, Italy
| | - Francesco G Mutti
- Van't Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands.
| |
Collapse
|
2
|
Wu S, Luo L, Luo H, Qiao L, Chen H, Li M, Pei X, Xie T, Wang A, Sheldon RA. Combining Protein Phase Separation and Bio-orthogonal Linking to Coimmobilize Enzymes for Cascade Biocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404018. [PMID: 39133083 DOI: 10.1002/smll.202404018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/28/2024] [Indexed: 08/13/2024]
Abstract
The designed and ordered co-immobilization of multiple enzymes for vectorial biocatalysis is challenging. Here, a combination of protein phase separation and bioorthogonal linking is used to generate a zeolitic imidazole framework (ZIF-8) containing co-immobilized enzymes. Zn2+ ions induce the clustering of minimal protein modules, such as 6-His tag, proline-rich motif (PRM) and SRC homology 3 (SH3) domains, and allow for phase separation of the coupled aldoketoreductase (AKR) and alcohol dehydrogenase (ADH) at low concentrations. This is achieved by fusing SpyCatcher and PRM-SH3-6His peptide fragments to the C and N termini of AKR, respectively, and the SpyTag to ADH. Addition of 2-methylimidazole results in droplet formation and enables in situ spatial embedding the recombinant AKR and ADH to generate the cascade biocalysis system encapsulated in ZIF-8 (AAE@ZIF). In synthesizing (S)-1-(2-chlorophenyl) ethanol, ater 6 cycles, the yield can still reach 91%, with 99.99% enantiomeric excess (ee) value for each cycle. However, the yield could only reach 72.9% when traditionally encapsulated AKR and ADH in ZIF-8 are used. Thus, this work demonstrates that a combination of protein phase separation and bio-orthogonal linking enables the in situ creation of a stable and spatially organized bi-enzyme system with enhanced channeling effects in ZIF-8.
Collapse
Affiliation(s)
- Shujiao Wu
- School of Pharmacy, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Lingling Luo
- School of Pharmacy, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Houtian Luo
- School of Pharmacy, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Li Qiao
- College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Haomin Chen
- College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Mijun Li
- School of Pharmacy, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Xiaolin Pei
- College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Anming Wang
- College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, PO Wits. 2050, South Africa
- Department of Biotechnology, Section BOC, Delft University of Technology, van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| |
Collapse
|
3
|
Chadha A, Padhi SK, Stella S, Venkataraman S, Saravanan T. Microbial alcohol dehydrogenases: recent developments and applications in asymmetric synthesis. Org Biomol Chem 2024; 22:228-251. [PMID: 38050738 DOI: 10.1039/d3ob01447a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Alcohol dehydrogenases are a well-known group of enzymes in the class of oxidoreductases that use electron transfer cofactors such as NAD(P)+/NAD(P)H for oxidation or reduction reactions of alcohols or carbonyl compounds respectively. These enzymes are utilized mainly as purified enzymes and offer some advantages in terms of green chemistry. They are environmentally friendly and a sustainable alternative to traditional chemical synthesis of bulk and fine chemicals. Industry has implemented several whole-cell biocatalytic processes to synthesize pharmaceutically active ingredients by exploring the high selectivity of enzymes. Unlike the whole cell system where cofactor regeneration is well conserved within the cellular environment, purified enzymes require additional cofactors or a cofactor recycling system in the reaction, even though cleaner reactions can be carried out with fewer downstream work-up problems. The challenge of producing purified enzymes in large quantities has been solved in large part by the use of recombinant enzymes. Most importantly, recombinant enzymes find applications in many cascade biotransformations to produce several important chiral precursors. Inevitably, several dehydrogenases were engineered as mere recombinant enzymes could not meet the industrial requirements for substrate and stereoselectivity. In recent years, a significant number of engineered alcohol dehydrogenases have been employed in asymmetric synthesis in industry. In a parallel development, several enzymatic and non-enzymatic methods have been established for regenerating expensive cofactors (NAD+/NADP+) to make the overall enzymatic process more efficient and economically viable. In this review article, recent developments and applications of microbial alcohol dehydrogenases are summarized by emphasizing notable examples.
Collapse
Affiliation(s)
- Anju Chadha
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India.
| | - Santosh Kumar Padhi
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India.
| | - Selvaraj Stella
- Department of Chemistry, Sarah Tucker College (Affiliated to Manonmaniam Sundaranar University), Tirunelveli-627007, Tamil Nadu, India.
| | - Sowmyalakshmi Venkataraman
- Department of Pharmaceutical Chemistry, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education & Research, Chennai, 600116, Tamil Nadu, India.
| | - Thangavelu Saravanan
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India.
| |
Collapse
|
4
|
Bertelmann C, Mock M, Schmid A, Bühler B. Efficiency aspects of regioselective testosterone hydroxylation with highly active CYP450-based whole-cell biocatalysts. Microb Biotechnol 2024; 17:e14378. [PMID: 38018939 PMCID: PMC10832557 DOI: 10.1111/1751-7915.14378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023] Open
Abstract
Steroid hydroxylations belong to the industrially most relevant reactions catalysed by cytochrome P450 monooxygenases (CYP450s) due to the pharmacological relevance of hydroxylated derivatives. The implementation of respective bioprocesses at an industrial scale still suffers from several limitations commonly found in CYP450 catalysis, that is low turnover rates, enzyme instability, inhibition and toxicity related to the substrate(s) and/or product(s). Recently, we achieved a new level of steroid hydroxylation rates by introducing highly active testosterone-hydroxylating CYP450 BM3 variants together with the hydrophobic outer membrane protein AlkL into Escherichia coli-based whole-cell biocatalysts. However, the activity tended to decrease, which possibly impedes overall productivities and final product titres. In this study, a considerable instability was confirmed and subject to a systematic investigation regarding possible causes. In-depth evaluation of whole-cell biocatalyst kinetics and stability revealed a limitation in substrate availability due to poor testosterone solubility as well as inhibition by the main product 15β-hydroxytestosterone. Instability of CYP450 BM3 variants was disclosed as another critical factor, which is of general significance for CYP450-based biocatalysis. Presented results reveal biocatalyst, reaction and process engineering strategies auguring well for industrial implementation of the developed steroid hydroxylation platform.
Collapse
Affiliation(s)
| | - Magdalena Mock
- Department of Solar MaterialsLeipzigGermany
- Present address:
Department of Mechanical Engineering and Material SciencesGeorg Agricola University of Applied SciencesBochumGermany
| | | | - Bruno Bühler
- Department of Solar MaterialsLeipzigGermany
- Department of Microbial BiotechnologyHelmholtz Centre for Environmental Research GmbH–UFZLeipzigGermany
| |
Collapse
|
5
|
Cheng J, Zhang C, Zhang K, Li J, Hou Y, Xin J, Sun Y, Xu C, Xu W. Cyanobacteria-Mediated Light-Driven Biotransformation: The Current Status and Perspectives. ACS OMEGA 2023; 8:42062-42071. [PMID: 38024730 PMCID: PMC10653055 DOI: 10.1021/acsomega.3c05407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Most chemicals are manufactured by traditional chemical processes but at the expense of toxic catalyst use, high energy consumption, and waste generation. Biotransformation is a green, sustainable, and cost-effective process. As cyanobacteria can use light as the energy source to power the synthesis of NADPH and ATP, using cyanobacteria as the chassis organisms to design and develop light-driven biotransformation platforms for chemical synthesis has been gaining attention, since it can provide a theoretical and practical basis for the sustainable and green production of chemicals. Meanwhile, metabolic engineering and genome editing techniques have tremendous prospects for further engineering and optimizing chassis cells to achieve efficient light-driven systems for synthesizing various chemicals. Here, we display the potential of cyanobacteria as a promising light-driven biotransformation platform for the efficient synthesis of green chemicals and current achievements of light-driven biotransformation processes in wild-type or genetically modified cyanobacteria. Meanwhile, future perspectives of one-pot enzymatic cascade biotransformation from biobased materials in cyanobacteria have been proposed, which could provide additional research insights for green biotransformation and accelerate the advancement of biomanufacturing industries.
Collapse
Affiliation(s)
- Jie Cheng
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chaobo Zhang
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Kaidian Zhang
- State
Key Laboratory of Marine Resource Utilization in the South China Sea,
School of Marine Biology and Aquaculture, Hainan University, Haikou, Hainan 570100, China
- Xiamen
Key Laboratory of Urban Sea Ecological Conservation and Restoration,
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Jiashun Li
- Xiamen
Key Laboratory of Urban Sea Ecological Conservation and Restoration,
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuyong Hou
- Key
Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotech-nology, Chinese
Academy of Sciences, Tianjin 300308, China
| | - Jiachao Xin
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Yang Sun
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chengshuai Xu
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Wei Xu
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| |
Collapse
|
6
|
Willetts A. Bicyclo[3.2.0]carbocyclic Molecules and Redox Biotransformations: The Evolution of Closed-Loop Artificial Linear Biocatalytic Cascades and Related Redox-Neutral Systems. Molecules 2023; 28:7249. [PMID: 37959669 PMCID: PMC10649493 DOI: 10.3390/molecules28217249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
The role of cofactor recycling in determining the efficiency of artificial biocatalytic cascades has become paramount in recent years. Closed-loop cofactor recycling, which initially emerged in the 1990s, has made a valuable contribution to the development of this aspect of biotechnology. However, the evolution of redox-neutral closed-loop cofactor recycling has a longer history that has been integrally linked to the enzymology of oxy-functionalised bicyclo[3.2.0]carbocyclic molecule metabolism throughout. This review traces that relevant history from the mid-1960s to current times.
Collapse
Affiliation(s)
- Andrew Willetts
- Curnow Consultancies Ltd., Trewithen House, Helston TR13 9PQ, Cornwall, UK
| |
Collapse
|
7
|
Qiao J, Yang D, Feng Y, Wei W, Liu X, Zhang Y, Zheng J, Ying X. Engineering a Bacillus subtilis esterase for selective hydrolysis of d, l-menthyl acetate in an organic solvent-free system †. RSC Adv 2023; 13:10468-10475. [PMID: 37021103 PMCID: PMC10068921 DOI: 10.1039/d3ra00490b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Esterase/lipase-catalyzed selective hydrolysis of d, l-menthyl esters has become one of the promising approaches for producing l-menthol, one of the most important flavoring chemicals with extensive uses. However, the activity and l-enantioselectivity of the biocatalyst are not sufficient for meeting the industrial requirements. Herein, a highly active para-nitrobenzyl esterase from Bacillus subtilis 168 (pnbA-BS) was cloned and then engineered to enhance its l-enantioselectivity. On the basis of the strategy tailoring the steric exclusion effect and structural flexibility of the region adjacent to the substrate, the substitution of Ala400 to Pro caused a remarkable improvement in the E value from 1.0 to 466.6. The variant A400P was purified and further confirmed with strict l-enantioselectivity in the selective hydrolysis of d, l-menthyl acetate, whereas the improved l-enantioselectivity caused decreased activity. To develop an efficient, easy-to-use, and green methodology, organic solvent was omitted and substrate constant feeding was integrated into the whole-cell catalyzed system. During the catalytic process, the selective hydrolysis of 1.0 M d, l-menthyl acetate in 14 h offered a conversion of 48.9%, e.e.p value of >99%, and space-time yield of 160.52 g (l d)−1. Esterase/lipase-catalyzed selective hydrolysis of d, l-menthyl esters has become one of the promising approaches for producing l-menthol, one of the most important flavoring chemicals with extensive uses.![]()
Collapse
Affiliation(s)
- Jingjing Qiao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou 310014China
| | - Duxia Yang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou 310014China
| | - Yingting Feng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou 310014China
| | - Wan Wei
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou 310014China
| | - Xun Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou 310014China
| | - Yinjun Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou 310014China
| | - Jianyong Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou 310014China
| | | |
Collapse
|
8
|
Efficient Synthesis of Furfuryl Alcohol from Corncob in a Deep Eutectic Solvent System. Processes (Basel) 2022. [DOI: 10.3390/pr10091873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
As a versatile and valuable intermediate, furfuryl alcohol (FOL) has been widely used in manufacturing resins, vitamin C, perfumes, lubricants, plasticizers, fuel additives, biofuels, and other furan-based chemicals. This work developed an efficient hybrid strategy for the valorization of lignocellulosic biomass to FOL. Corncob (75 g/L) was catalyzed with heterogenous catalyst Sn-SSXR (2 wt%) to generate FAL (65.4% yield) in a deep eutectic solvent ChCl:LA–water system (30:70, v/v; 180 °C) after 15 min. Subsequently, the obtained FAL liquor containing FAL and formate could be biologically reduced to FOL by recombinant E. coli CF containing aldehyde reductase and formate dehydrogenase at pH 6.5 and 35 °C, achieving the FOL productivity of 0.66 g FOL/(g xylan in corncob). The formed formate could be used as a cosubstrate for the bioreduction of FAL into FOL. In addition, other biomasses (e.g., sugarcane bagasse and rice straw) could be converted into FOL at a high yield. Overall, this hybrid strategy that combines chemocatalysis and biocatalysis can be utilized to efficiently valorize lignocellulosic materials into valuable biofurans.
Collapse
|
9
|
Fessner ND, Weber H, Glieder A. Regioselective Hydroxylation of Stilbenes by White‐Rot Fungal P450s Enables Preparative‐Scale Synthesis of Stilbenoids. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nico Dennis Fessner
- Technische Universitat Graz Fakultät für Technische Chemie, Verfahrenstechnik und Biotechnologie Petersgasse 14 8010 Graz AUSTRIA
| | - Hansjörg Weber
- Graz University of Technology: Technische Universitat Graz Institute of Organic Chemistry 8010 Graz AUSTRIA
| | - Anton Glieder
- Graz University of Technology: Technische Universitat Graz Institute of Molecular Biotechnology 8010 Graz AUSTRIA
| |
Collapse
|
10
|
Fessner ND, Weber H, Glieder A. Regiospecific 7-hydroxylation of ten-carbon monoterpenes by detoxifying CYP5035S7 monooxygenase of the white-rot fungus Polyporus arcularius. Biochem Biophys Res Commun 2022; 595:35-40. [DOI: 10.1016/j.bbrc.2022.01.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/18/2022] [Indexed: 12/22/2022]
|
11
|
Wang P, Zhang X, Tao Y, Lv X, Cheng S, Liu C. Improved l-phenylglycine synthesis by introducing an engineered cofactor self-sufficient system. Synth Syst Biotechnol 2022; 7:513-521. [PMID: 35024478 PMCID: PMC8715069 DOI: 10.1016/j.synbio.2021.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/18/2021] [Accepted: 12/16/2021] [Indexed: 11/09/2022] Open
Abstract
l-phenylglycine (L-phg) is a valuable non-proteinogenic amino acid used as a precursor to β-lactam antibiotics, antitumor agent taxol and many other pharmaceuticals. L-phg synthesis through microbial bioconversion allows for high enantioselectivity and sustainable production, which will be of great commercial and environmental value compared with organic synthesis methods. In this work, an L-phg synthesis pathway was built in Escherichia coli resulting in 0.23 mM L-phg production from 10 mM l-phenylalanine. Then, new hydroxymandelate synthases and hydroxymandelate oxidases were applied in the L-phg synthesis leading to a 5-fold increase in L-phg production. To address 2-oxoglutarate, NH4 +, and NADH shortage, a cofactor self-sufficient system was introduced, which converted by-product l-glutamate and NAD+ to these three cofactors simultaneously. In this way, L-phg increased 2.5-fold to 2.82 mM. Additionally, in order to reduce the loss of these three cofactors, a protein scaffold between synthesis pathway and cofactor regeneration modular was built, which further improved the L-phg production to 3.72 mM with a yield of 0.34 g/g L-phe. This work illustrated a strategy applying for whole-cell biocatalyst converting amino acid to its value-added chiral amine in a cofactor self-sufficient manner.
Collapse
Affiliation(s)
- Pengchao Wang
- School of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
- Key Laboratory for Enzymes and Enzyme-like Material Engineering of Heilongjiang, PR China
| | - Xiwen Zhang
- School of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Yucheng Tao
- School of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Xubing Lv
- School of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Shengjie Cheng
- School of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Chengwei Liu
- School of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
- Key Laboratory for Enzymes and Enzyme-like Material Engineering of Heilongjiang, PR China
| |
Collapse
|
12
|
Kim IJ, Brack Y, Bayer T, Bornscheuer UT. Two novel cyanobacterial α-dioxygenases for the biosynthesis of fatty aldehydes. Appl Microbiol Biotechnol 2021; 106:197-210. [PMID: 34882252 PMCID: PMC8720084 DOI: 10.1007/s00253-021-11724-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 11/21/2022]
Abstract
α-Dioxygenases (α-DOXs) are known as plant enzymes involved in the α-oxidation of fatty acids through which fatty aldehydes, with a high commercial value as flavor and fragrance compounds, are synthesized as products. Currently, little is known about α-DOXs from non-plant organisms. The phylogenic analysis reported here identified a substantial number of α-DOX enzymes across various taxa. Here, we report the functional characterization and Escherichia coli whole-cell application of two novel α-DOXs identified from cyanobacteria: CalDOX from Calothrix parietina and LepDOX from Leptolyngbya sp. The catalytic behavior of the recombinantly expressed CalDOX and LepDOX revealed that they are heme-dependent like plant α-DOXs but exhibit activities toward medium carbon fatty acids ranging from C10 to C14 unlike plant α-DOXs. The in-depth molecular investigation of cyanobacterial α-DOXs and their application in an E. coli whole system employed in this study is useful not only for the understanding of the molecular function of α-DOXs, but also for their industrial utilization in fatty aldehyde biosynthesis. Key points • Two novel α-dioxygenases from Cyanobacteria are reported • Both enzymes prefer medium-chain fatty acids • Both enzymes are useful for fatty aldehyde biosynthesis
Collapse
Affiliation(s)
- In Jung Kim
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Yannik Brack
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Thomas Bayer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany.
| |
Collapse
|
13
|
Fessner ND, Grimm C, Kroutil W, Glieder A. Late-Stage Functionalisation of Polycyclic ( N-Hetero-) Aromatic Hydrocarbons by Detoxifying CYP5035S7 Monooxygenase of the White-Rot Fungus Polyporus arcularius. Biomolecules 2021; 11:1708. [PMID: 34827706 PMCID: PMC8615681 DOI: 10.3390/biom11111708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/04/2022] Open
Abstract
Functionalisation of polycyclic aromatic hydrocarbons (PAHs) and their N-heteroarene analogues (NPAHs) is a tedious synthetic endeavour that requires diverse bottom-up approaches. Cytochrome P450 enzymes of white-rot fungi were shown to participate in the fungal detoxification of xenobiotics and environmental hazards via hydroxylation of PAH compounds. In this paper, the recently discovered activity of the monooxygenase CYP5035S7 towards (N)PAHs was investigated in detail, and products formed from the substrates azulene, acenaphthene, fluorene, anthracene, and phenanthrene by whole-cell biocatalysis were isolated and characterised. The observed regioselectivity of CYP5035S7 could be explained by a combination of the substrate's electron density and steric factors influencing the substrate orientation giving insight into the active-site geometry of the enzyme.
Collapse
Affiliation(s)
- Nico D. Fessner
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, 8010 Graz, Austria;
| | - Christopher Grimm
- Institute of Chemistry, University of Graz, NAWI Graz, 8010 Graz, Austria; (C.G.); (W.K.)
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, 8010 Graz, Austria; (C.G.); (W.K.)
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Anton Glieder
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, 8010 Graz, Austria;
| |
Collapse
|
14
|
Rapp C, Pival-Marko S, Tassano E, Nidetzky B, Kratzer R. Reductive enzymatic dynamic kinetic resolution affording 115 g/L (S)-2-phenylpropanol. BMC Biotechnol 2021; 21:58. [PMID: 34635076 PMCID: PMC8507385 DOI: 10.1186/s12896-021-00715-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background Published biocatalytic routes for accessing enantiopure 2-phenylpropanol using oxidoreductases afforded maximal product titers of only 80 mM. Enzyme deactivation was identified as the major limitation and was attributed to adduct formation of the aldehyde substrate with amino acid residues of the reductase. Results A single point mutant of Candida tenuis xylose reductase (CtXR D51A) with very high catalytic efficiency (43·103 s−1 M−1) for (S)-2-phenylpropanal was found. The enzyme showed high enantioselectivity for the (S)-enantiomer but was deactivated by 0.5 mM substrate within 2 h. A whole-cell biocatalyst expressing the engineered reductase and a yeast formate dehydrogenase for NADH-recycling provided substantial stabilization of the reductase. The relatively slow in situ racemization of 2-phenylpropanal and the still limited biocatalyst stability required a subtle adjustment of the substrate-to-catalyst ratio. A value of 3.4 gsubstrate/gcell-dry-weight was selected as a suitable compromise between product ee and the conversion ratio. A catalyst loading of 40 gcell-dry-weight was used to convert 1 M racemic 2-phenylpropanal into 843 mM (115 g/L) (S)-phenylpropanol with 93.1% ee. Conclusion The current industrial production of profenols mainly relies on hydrolases. The bioreduction route established here represents an alternative method for the production of profenols that is competitive with hydrolase-catalyzed kinetic resolutions. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00715-5.
Collapse
Affiliation(s)
- Christian Rapp
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria
| | - Simone Pival-Marko
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), 8010, Graz, Austria
| | - Erika Tassano
- Department of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), 8010, Graz, Austria
| | - Regina Kratzer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria.
| |
Collapse
|
15
|
Cascading Old Yellow Enzyme, Alcohol Dehydrogenase and Glucose Dehydrogenase for Selective Reduction of (E/Z)-Citral to (S)-Citronellol. Catalysts 2021. [DOI: 10.3390/catal11080931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Citronellol is a kind of unsaturated alcohol with rose-like smell and its (S)-enantiomer serves as an important intermediate for organic synthesis of (-)-cis-rose oxide. Chemical methods are commonly used for the synthesis of citronellol and its (S)-enantiomer, which suffers from severe reaction conditions and poor selectivity. Here, the first one-pot double reduction of (E/Z)-citral to (S)-citronellol was achieved in a multi-enzymatic cascade system: N-ethylmaleimide reductase from Providencia stuartii (NemR-PS) was selected to catalyze the selective reduction of (E/Z)-citral to (S)-citronellal, alcohol dehydrogenase from Yokenella sp. WZY002 (YsADH) performed the further reduction of (S)-citronellal to (S)-citronellol, meanwhile a variant of glucose dehydrogenase from Bacillus megaterium (BmGDHM6), together with glucose, drove efficient NADPH regeneration. The Escherichia coli strain co-expressing NemR-PS, YsADH, and BmGDHM6 was successfully constructed and used as the whole-cell catalyst. Various factors were investigated for achieving high conversion and reducing the accumulation of the intermediate (S)-citronellal and by-products. 0.4 mM NADP+ was essential for maintaining high catalytic activity, while the feeding of the cells expressing BmGDHM6 effectively eliminated the intermediate and by-products and shortened the reaction time. Under optimized conditions, the bio-transformation of 400 mM citral caused nearly complete conversion (>99.5%) to enantio-pure (S)-citronellol within 36 h, demonstrating promise for industrial application.
Collapse
|
16
|
Abstract
Baeyer–Villiger monooxygenases (BVMOs) are flavin-dependent oxidative enzymes capable of catalyzing the insertion of an oxygen atom between a carbonylic Csp2 and the Csp3 at the alpha position, therefore transforming linear and cyclic ketones into esters and lactones. These enzymes are dependent on nicotinamides (NAD(P)H) for the flavin reduction and subsequent reaction with molecular oxygen. BVMOs can be included in cascade reactions, coupled to other redox enzymes, such as alcohol dehydrogenases (ADHs) or ene-reductases (EREDs), so that the direct conversion of alcohols or α,β-unsaturated carbonylic compounds to the corresponding esters can be achieved. In the present review, the different synthetic methodologies that have been performed by employing multienzymatic strategies with BVMOs combining whole cells or isolated enzymes, through sequential or parallel methods, are described, with the aim of highlighting the advantages of performing multienzymatic systems, and show the recent advances for overcoming the drawbacks of using BVMOs in these techniques.
Collapse
|
17
|
Xue F, Li C, Xu Q. Biocatalytic approaches for the synthesis of optically pure vic-halohydrins. Appl Microbiol Biotechnol 2021; 105:3411-3421. [PMID: 33851239 DOI: 10.1007/s00253-021-11266-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/28/2021] [Accepted: 04/04/2021] [Indexed: 11/30/2022]
Abstract
Enantiopure vicinal halohydrins (vic-halohydrins) are highly valuable building blocks for the synthesis of many different natural products and pharmaceuticals, and biocatalytic methods for their synthesis have received considerable interest. This review emphasizes the application of biocatalytic approaches as an efficient alternative or complement to conventional chemical reactions, with a special focus on the asymmetric reductions catalyzed by ketoreductases, kinetic resolution catalyzed using lipases or esterases, stereoselective biotransformation catalyzed by halohydrin dehalogenases, asymmetric hydroxylation catalyzed by cytochrome P450 monooxygenases, asymmetric dehalogenation catalyzed by haloalkane dehalogenases, and aldehyde condensation catalyzed by aldolases. Although many chiral vic-halohydrins have been successfully synthesized using wild-type biocatalysts, their enantioselectivity is often too low for enantiopure synthesis. To overcome these limitations, catalytic properties of wild-type enzymes have been improved by rational and semi-rational protein design or directed evolution. This review briefly introduces the research status in this field, highlighting aspects of basic academic research in the biocatalytic synthesis of optically active vic-halohydrins by employing such unconventional approaches. KEY POINTS: • Outlines the enzymatic strategies for the production of enantiopure vic-halohydrins • Highlights recent advances in biocatalytic production of enantiopure vic-halohydrins • Provide guidance for efficient preparation of enantiopure vic-halohydrins.
Collapse
Affiliation(s)
- Feng Xue
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, NO 1, Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Changfan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, NO 1, Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, NO 1, Wenyuan Road, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
18
|
Qiao Y, Wang C, Zeng Y, Wang T, Qiao J, Lu C, Wang Z, Ying X. Efficient whole-cell oxidation of α,β-unsaturated alcohols to α,β-unsaturated aldehydes through the cascade biocatalysis of alcohol dehydrogenase, NADPH oxidase and hemoglobin. Microb Cell Fact 2021; 20:17. [PMID: 33468136 PMCID: PMC7816460 DOI: 10.1186/s12934-021-01511-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Background α,β-Unsaturated aldehydes are widely used in the organic synthesis of fine chemicals for application in products such as flavoring agents, fragrances and pharmaceuticals. In the selective oxidation of α,β-unsaturated alcohols to the corresponding α,β-unsaturated aldehydes, it remains challenging to overcome poor selectivity, overoxidation and a low atom efficiency in chemical routes. Results An E. coli strain coexpressing the NADP+-specific alcohol dehydrogenase YsADH and the oxygen-dependent NADPH oxidase TkNOX was constructed; these components enabled the NADP+ regeneration and catalyzed the oxidation of 100 mM 3-methyl-2-buten-1-ol to 3-methyl-2-butenal with a yield of 21.3%. The oxygen supply was strengthened by introducing the hemoglobin protein VsHGB into recombinant E. coli cells and replacing the atmosphere of the reactor with pure oxygen, which increased the yield to 51.3%. To further improve catalytic performance, the E. coli cells expressing the multifunctional fusion enzyme YsADH-(GSG)-TkNOX-(GSG)-VsHGB were generated, which completely converted 250 mM 3-methyl-2-buten-1-ol to 3-methyl-2-butenal after 8 h of whole-cell oxidation. The reaction conditions for the cascade biocatalysis were optimized, in which supplementation with 0.2 mM FAD and 0.4 mM NADP+ was essential for maintaining high catalytic activity. Finally, the established whole-cell system could serve as a platform for the synthesis of valuable α,β-unsaturated aldehydes through the selective oxidation of various α,β-unsaturated alcohols. Conclusions The construction of a strain expressing the fusion enzyme YsADH-(GSG)-TkNOX-(GSG)-VsHGB achieved efficient NADP+ regeneration and the selective oxidation of various α,β-unsaturated alcohols to the corresponding α,β-unsaturated aldehydes. Among the available redox enzymes, the fusion enzyme YsADH-(GSG)-TkNOX-(GSG)-VsHGB has become the most recent successful example to improve catalytic performance in comparison with its separate components.
Collapse
Affiliation(s)
- Yan Qiao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Can Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yin Zeng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Tairan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingjing Qiao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chenze Lu
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiangxian Ying
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
19
|
Li YY, Li Q, Zhang PQ, Ma CL, Xu JH, He YC. Catalytic conversion of corncob to furfuryl alcohol in tandem reaction with tin-loaded sulfonated zeolite and NADPH-dependent reductase biocatalyst. BIORESOURCE TECHNOLOGY 2021; 320:124267. [PMID: 33120059 DOI: 10.1016/j.biortech.2020.124267] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
In this study, tin-loaded sulfonated zeolite (Sn-zeolite) catalyst was synthesized for catalysis of raw corncob (75.0 g/L) to 103.0 mM furfural at 52.3% yield in water (pH 1.0) at 170 °C. This corncob-derived furfural was subsequently biotransformed with recombinant E. coli CG-19 cells coexpressing NADPH-dependent reductase and glucose dehydrogenase at 35 °C by supplementary of glucose (1.5 mol glucose/mol furfural), sodium dodecyl sulfate (0.50 mM) and NADP+ (1.0 μmol NADP+/mmol furfural) in the aqueous catalytic media (pH 7.5). Both sodium dodecyl sulfate (0.50 mM) and Sn4+ (1.0 mM) could promote reductase activity by 1.4-folds. Within 3 h, furfural was wholly catalyzed into furfuryl alcohol. By combining chemical catalysis with Sn-zeolite and biocatalysis with CG-19 cells in one-pot, an effective and sustainable process was established for tandemly catalyzing renewable biomass into furfuryl alcohol under environmentally-friendly way.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- Laboratory of Bioresourse and Bioprocessing, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, People's Republic of China
| | - Qing Li
- Laboratory of Biomass and Bioenergy, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Peng-Qi Zhang
- Laboratory of Biomass and Bioenergy, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Cui-Luan Ma
- Laboratory of Bioresourse and Bioprocessing, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, People's Republic of China; Laboratory of Biomass and Bioenergy, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, People's Republic of China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yu-Cai He
- Laboratory of Bioresourse and Bioprocessing, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, People's Republic of China; Laboratory of Biomass and Bioenergy, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, People's Republic of China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China; Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, People's Republic of China.
| |
Collapse
|
20
|
González‐Martínez D, Gotor V, Gotor‐Fernández V. Chemo‐ and Stereoselective Synthesis of Fluorinated Amino Alcohols through One‐pot Reactions using Alcohol Dehydrogenases and Amine Transaminases. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Vicente Gotor
- Organic and Inorganic Chemistry Department Universidad de Oviedo 33006 Oviedo Asturias Spain
| | - Vicente Gotor‐Fernández
- Organic and Inorganic Chemistry Department Universidad de Oviedo 33006 Oviedo Asturias Spain
| |
Collapse
|
21
|
Immobilization of Aldoxime Dehydratases and Their Use as Biocatalysts in Aqueous Reaction Media. Catalysts 2020. [DOI: 10.3390/catal10091073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Immobilization of biocatalysts is a current topic in research enabling the easy recovery of catalysts from the reaction medium after the reaction, and it is often accompanied by a stabilization of the catalysts, which enables recycling. Within our ongoing research on the utilization of aldoxime dehydratases in the cyanide-free synthesis of nitriles through dehydration of readily available aldoximes, a screening of different immobilization methods for free enzymes was performed. The applied immobilization methods are based on covalent binding and hydrophobic interactions of the enzyme with the carrier material and whole-cell immobilization in calcium alginate beads with and without subsequent coating. In our study, we found that the immobilization with purified free aldoxime dehydratases from OxdRE (Rhodococcus erythropolis) and OxdB (Bacillus sp. strain OxB-1) leads to high immobilization efficiencies, but also to a strong loss of activity with a residual activity of <20%, regardless of the carrier material used. However, when using whole cells for immobilization instead of purified enzymes, we could increase the residual activity significantly. Escherichia coli BL21(DE3)-CodonPlus-RIL OxdRE and OxdB whole cells were entrapped in calcium alginate beads and coated with silica using tetraethylorthosilicate (TEOS), leading to immobilized catalysts with up to 75% residual activity and a higher stability compared to the free whole cells. Even after three rounds of recycling, which corresponds to a 3 d reaction time, the immobilized OxdB whole cells showed a residual activity of 85%.
Collapse
|
22
|
Deep Eutectic Solvents as Smart Cosubstrate in Alcohol Dehydrogenase-Catalyzed Reductions. Catalysts 2020. [DOI: 10.3390/catal10091013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Alcohol dehydrogenase (ADH) catalyzed reductions in deep eutectic solvents (DESs) may become efficient and sustainable alternatives to afford alcohols. This paper successfully explores the ADH-catalyzed reduction of ketones and aldehydes in a DES composed of choline chloride and 1,4-butanediol, in combination with buffer (Tris-HCl, 20% v/v). 1,4-butanediol (a DES component), acts as a smart cosubstrate for the enzymatic cofactor regeneration, shifting the thermodynamic equilibrium to the product side. By means of the novel DES media, cyclohexanone reduction was optimized to yield maximum productivity with low enzyme amounts (in the range of 10 g L−1 d−1). Notably, with the herein developed reaction media, cinnamaldehyde was reduced to cinnamyl alcohol, an important compound for the fragrance industry, with promising high productivities of ~75 g L−1 d−1.
Collapse
|
23
|
Fessner ND, Srdič M, Weber H, Schmid C, Schönauer D, Schwaneberg U, Glieder A. Preparative‐Scale Production of Testosterone Metabolites by Human Liver Cytochrome P450 Enzyme 3A4. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Nico D. Fessner
- Institute of Molecular BiotechnologyGraz University of Technology, NAWI Graz Petersgasse 14/3 Austria
| | - Matic Srdič
- SeSaM-Biotech GmbH Aachen Germany
- Bisy GmbH Hofstaetten Austria
| | - Hansjörg Weber
- Institute of Organic ChemistryGraz University of Technology, NAWI Graz Austria
| | - Christian Schmid
- Institute of Molecular BiotechnologyGraz University of Technology, NAWI Graz Petersgasse 14/3 Austria
- Austrian Centre of Industrial Biotechnology (ACIB) Graz Austria
| | | | | | - Anton Glieder
- Institute of Molecular BiotechnologyGraz University of Technology, NAWI Graz Petersgasse 14/3 Austria
| |
Collapse
|
24
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
25
|
Moens E, Bolca S, Possemiers S, Verstraete W. A Wake-Up Call for the Efficient Use of the Bacterial Resting Cell Process, with Focus on Low Solubility Products. Curr Microbiol 2020; 77:1349-1362. [PMID: 32270205 DOI: 10.1007/s00284-020-01959-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/21/2020] [Indexed: 11/24/2022]
Abstract
Micro-organisms are often subjected to stressful conditions. Owing to their capacity to adapt, they try to rapidly cope with the unfavorable conditions by lowering their growth rate, changing their morphology, and developing altered metabolite production and other stress-related metabolism. The stress-related metabolism of the cells which interrupted their growth is often referred to as resting metabolism and can be exploit for specific and high rate production of secondary metabolites. Although the bacterial resting cell process has been described decades ago, we find it worthwhile to bring the process under renewed attention and refer to this type of processes as non-growing metabolically active (NGMA) cell processes. Despite their use may sound counterproductive, NGMA cells can be of interest to increase substrate conversion rates or enable conversion of certain substrates, not accessible to growing cells due to their bacteriostatic nature or requirement of resistance to a multitude of different stress mechanisms. Biomass reuse is an interesting feature to improve the economics of NGMA cell processes. Yet, for lipophilic compounds or compounds with low solubility, biomass separation can be delicate. This review draws the attention on existing examples of NGMA cell processes, summarizing some developmental tools and highlighting drawbacks and opportunities, to answer the research question if NGMA cells can have a distinct added value in industry. Particular elaboration is made on a novel and more broadly applicable strategy to enable biomass reuse for conversions of compounds with low solubility.
Collapse
Affiliation(s)
- Esther Moens
- ProDigest BVBA, Technol Pk 82, 9052, Ghent, Belgium
| | - Selin Bolca
- ProDigest BVBA, Technol Pk 82, 9052, Ghent, Belgium
| | | | | |
Collapse
|
26
|
Engineered P450 BM3 and cpADH5 coupled cascade reaction for β-oxo fatty acid methyl ester production in whole cells. Enzyme Microb Technol 2020; 138:109555. [PMID: 32527525 DOI: 10.1016/j.enzmictec.2020.109555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/01/2023]
Abstract
Hydroxy- or ketone- functionalized fatty acid methyl esters (FAMEs) are important compounds for production of pharmaceuticals, vitamins, cosmetics or dietary supplements. Biocatalysis through enzymatic cascades has drawn attention to the efficient, sustainable, and greener synthetic processes. Furthermore, whole cell catalysts offer important advantages such as cofactor regeneration by cell metabolism, omission of protein purification steps and increased enzyme stability. Here, we report the first whole cell catalysis employing an engineered P450 BM3 variant and cpADH5 coupled cascade reaction for the biosynthesis of hydroxy- and keto-FAMEs. Firstly, P450 BM3 was engineered through the KnowVolution approach yielding P450 BM3 variant YE_M1_2, (R47S/Y51W/T235S/N239R/I401 M) which exhibited boosted performance toward methyl hexanoate. The initial oxidation rate of YE_M1_2 toward methyl hexanoate was determined to be 23-fold higher than the wild type enzyme and a 1.5-fold increase in methyl 3-hydroxyhexanoate production was obtained (YE_M1_2; 2.75 mM and WT; 1.8 mM). Subsequently, the whole cell catalyst for the synthesis of methyl 3-hydroxyhexanoate and methyl 3-oxohexanoate was constructed by combining the engineered P450 BM3 and cpADH5 variants in an artificial operon. A 2.06 mM total product formation was achieved by the whole cell catalyst including co-expressed channel protein, FhuA and co-solvent addition. Moreover, the generated whole cell biocatalyst also accepted methyl valerate, methyl heptanoate as well as methyl octanoate as substrates and yielded ω-1 ketones as the main product.
Collapse
|
27
|
Huang L, Bittner JP, Domínguez de María P, Jakobtorweihen S, Kara S. Modeling Alcohol Dehydrogenase Catalysis in Deep Eutectic Solvent/Water Mixtures. Chembiochem 2020; 21:811-817. [PMID: 31605652 PMCID: PMC7154551 DOI: 10.1002/cbic.201900624] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Indexed: 11/17/2022]
Abstract
The use of oxidoreductases (EC1) in non-conventional reaction media has been increasingly explored. In particular, deep eutectic solvents (DESs) have emerged as a novel class of solvents. Herein, an in-depth study of bioreduction with an alcohol dehydrogenase (ADH) in the DES glyceline is presented. The activity and stability of ADH in mixtures of glyceline/water with varying water contents were measured. Furthermore, the thermodynamic water activity and viscosity of mixtures of glyceline/water have been determined. For a better understanding of the observations, molecular dynamics simulations were performed to quantify the molecular flexibility, hydration layer, and intraprotein hydrogen bonds of ADH. The behavior of the enzyme in DESs follows the classic dependence of water activity (aW ) in non-conventional media. At low aW values (<0.2), ADH does not show any activity; at higher aW values, the activity was still lower than that in pure water due to the high viscosities of the DES. These findings could be further explained by increased enzyme flexibility with increasing water content.
Collapse
Affiliation(s)
- Lei Huang
- Department of EngineeringBiocatalysis and Bioprocessing GroupAarhus UniversityGustav Wieds Vej 108000AarhusDenmark
| | - Jan Philipp Bittner
- Institute of Thermal Separation ProcessesHamburg University of TechnologyEißendorfer Strasse 3821073HamburgGermany
| | | | - Sven Jakobtorweihen
- Institute of Thermal Separation ProcessesHamburg University of TechnologyEißendorfer Strasse 3821073HamburgGermany
| | - Selin Kara
- Department of EngineeringBiocatalysis and Bioprocessing GroupAarhus UniversityGustav Wieds Vej 108000AarhusDenmark
| |
Collapse
|
28
|
Shah S, Sunder AV, Singh P, Wangikar PP. Characterization and Application of a Robust Glucose Dehydrogenase from Paenibacillus pini for Cofactor Regeneration in Biocatalysis. Indian J Microbiol 2020; 60:87-95. [PMID: 32089578 DOI: 10.1007/s12088-019-00834-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023] Open
Abstract
Glucose dehydrogenases are important auxiliary enzymes in biocatalysis, employed in the regeneration of reduced nicotinamide cofactors for oxidoreductase catalysed reactions. Here we report the identification and characterization of a novel glucose-1-dehydrogenase (GDH) from Paenibacillus pini that prefers NAD+ as cofactor over NADP+. The purified recombinant P. pini GDH displayed a specific activity of 247.5 U/mg. The enzyme was stable in the pH range 4-8.5 and exhibited excellent thermostability till 50 °C for 24 h, even in the absence of NaCl or glycerol. Paenibacillus pini GDH was also tolerant to organic solvents, demonstrating its potential for recycling cofactors for biotransformation. The potential application of the enzyme was evaluated by coupling with a NAD+-dependent alcohol dehydrogenase for the reduction of acetophenone and ethyl-4-chloro-3-oxo-butanoate. Conversions higher than 95% were achieved within 2 h with low enzyme loading using lyophilized cell lysate, suggesting that P. pini GDH could be highly effective for recycling NADH in redox biocatalysis.
Collapse
Affiliation(s)
- Shikha Shah
- 1Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Avinash Vellore Sunder
- 1Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Pooja Singh
- 1Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India.,2Department of Biochemistry, Savitribai Phule Pune University, Pune, 411007 India
| | - Pramod P Wangikar
- 1Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| |
Collapse
|
29
|
Using Choline Chloride-Based DESs as Co-Solvent for 3,5-Bis(trifluoromethyl) Acetophenone Bioreduction with Rhodococcus erythropolis XS1012. Catalysts 2019. [DOI: 10.3390/catal10010030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
(S)-3,5-Bistrifluoromethylphenyl ethanol((S)-BTPE) is a key pharmaceutical intermediate of the NK-1 receptor antagonist. The asymmetric bioreduction of 3,5-bis(trifluoromethyl) acetophenone (BTAP) to (S)-BTPE using Rhodococcus erythropolis XS1012 has been established in a phosphate buffer system. To overcome the problem of unsatisfactory yields at high substrate concentration, deep eutectic solvents (DESs) have been introduced to the buffer system. After screening 13 kinds of choline chloride-based DESs, [choline chloride][urea] ([ChCl][U]) showed great influence on the cell activity and significantly increased the cell membrane permeability. Subsequently, some major parameters for this reaction were determined. A remarkable (S)-BTPE yield of 91.9% was gained at 150 mM substrate concentration under optimized reaction conditions with >99.9% product enantioselectivity. Compared to reduction in a buffer system, the developed [ChCl][U]-containing system increased the yield from 82.6% to 91.9%. It maintains a yield of 80.7% with the substrate concentration up to 300 mM, compared to only 63.0% in buffer system. This study demonstrated that [ChCl][U] is a feasible co-solvent to improve the bioreduction process.
Collapse
|
30
|
Biocatalysis as Useful Tool in Asymmetric Synthesis: An Assessment of Recently Granted Patents (2014–2019). Catalysts 2019. [DOI: 10.3390/catal9100802] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The broad interdisciplinary nature of biocatalysis fosters innovation, as different technical fields are interconnected and synergized. A way to depict that innovation is by conducting a survey on patent activities. This paper analyses the intellectual property activities of the last five years (2014–2019) with a specific focus on biocatalysis applied to asymmetric synthesis. Furthermore, to reflect the inventive and innovative steps, only patents that were granted during that period are considered. Patent searches using several keywords (e.g., enzyme names) have been conducted by using several patent engine servers (e.g., Espacenet, SciFinder, Google Patents), with focus on granted patents during the period 2014–2019. Around 200 granted patents have been identified, covering all enzyme types. The inventive pattern focuses on the protection of novel protein sequences, as well as on new substrates. In some other cases, combined processes, multi-step enzymatic reactions, as well as process conditions are the innovative basis. Both industries and academic groups are active in patenting. As a conclusion of this survey, we can assert that biocatalysis is increasingly recognized as a useful tool for asymmetric synthesis and being considered as an innovative option to build IP and protect synthetic routes.
Collapse
|
31
|
Houwman JA, Knaus T, Costa M, Mutti FG. Efficient synthesis of enantiopure amines from alcohols using resting E. coli cells and ammonia. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2019; 21:3846-3857. [PMID: 33628111 PMCID: PMC7116806 DOI: 10.1039/c9gc01059a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
α-Chiral amines are pivotal building blocks for chemical manufacturing. Stereoselective amination of alcohols is receiving increased interest due to its higher atom-efficiency and overall improved environmental footprint compared with other chemocatalytic and biocatalytic methods. We previously developed a hydrogen-borrowing amination by combining an alcohol dehydrogenase (ADH) with an amine dehydrogenase (AmDH) in vitro. Herein, we implemented the ADH-AmDH bioamination in resting Escherichia coli cells for the first time. Different genetic constructs were created and tested in order to obtain balanced expression levels of the dehydrogenase enzymes in E. coli. Using the optimized constructs, the influence of several parameters towards the productivity of the system were investigated such as the intracellular NAD+/NADH redox balance, the cell loading, the survival rate of recombinant E. coli cells, the possible toxicity of the components of the reaction at different concentrations and the influence of different substrates and cosolvents. In particular, the cofactor redox-balance for the bioamination was maintained by the addition of moderate and precise amounts of glucose. Higher concentrations of certain amine products resulted in toxicity and cell death, which could be alleviated by the addition of a co-solvent. Notably, amine formation was consistent using several independently grown E. coli batches. The optimized E. coli/ADH-AmDH strains produced enantiopure amines from the alcohols with up to 80% conversion and a molar productivity up to 15 mM. Practical applicability was demonstrated in a gram-scale biotransformation. In summary, the present E. coli-ADH-AmDH system represents an important advancement towards the development of 'green', efficient and selective biocatalytic processes for the amination of alcohols.
Collapse
Affiliation(s)
| | - Tanja Knaus
- Van ’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH, The Netherlands
| | - Magda Costa
- Van ’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH, The Netherlands
| | - Francesco G. Mutti
- Van ’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH, The Netherlands
| |
Collapse
|
32
|
Hoschek A, Toepel J, Hochkeppel A, Karande R, Bühler B, Schmid A. Light‐Dependent and Aeration‐Independent Gram‐Scale Hydroxylation of Cyclohexane to Cyclohexanol by CYP450 Harboring
Synechocystis
sp. PCC 6803. Biotechnol J 2019; 14:e1800724. [DOI: 10.1002/biot.201800724] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/01/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Anna Hoschek
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research GmbH‐UFZ Permoserstrasse 15 04318 Leipzig Germany
| | - Jörg Toepel
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research GmbH‐UFZ Permoserstrasse 15 04318 Leipzig Germany
| | - Adrian Hochkeppel
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research GmbH‐UFZ Permoserstrasse 15 04318 Leipzig Germany
| | - Rohan Karande
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research GmbH‐UFZ Permoserstrasse 15 04318 Leipzig Germany
| | - Bruno Bühler
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research GmbH‐UFZ Permoserstrasse 15 04318 Leipzig Germany
| | - Andreas Schmid
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research GmbH‐UFZ Permoserstrasse 15 04318 Leipzig Germany
| |
Collapse
|
33
|
Kamiura R, Matsuda F, Ichihashi N. Survival of membrane-damaged Escherichia coli in a cytosol-mimicking solution. J Biosci Bioeng 2019; 128:558-563. [PMID: 31182278 DOI: 10.1016/j.jbiosc.2019.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 11/19/2022]
Abstract
Selective permeability of cell membrane is critically important for cell survival. The damage caused to cell membrane by pore-forming antimicrobial peptides may result in the loss of selective permeability and leakage of intracellular molecules, eventually leading to cell death. Here, we examined whether the membrane-damaged Escherichia coli cells survive in a cytosol-mimicking solution (CMS), which compensates for the lethal leakage of intracellular molecules. We prepared a CMS comprising 34 low molecular weight compounds from the cytosol and found that the cells were able to grow in CMS even in the presence of a pore-forming peptide, melittin. We confirmed that the melittin-treated cells lost selective membrane permeability by staining with membrane-impermeable dyes, propidium iodide and SYTOX green. Some stained cells maintained the colony formation ability in CMS. These results provide an evidence that E. coli cells can at least partially survive in the CMS even after the temporary impairment of membrane selective permeability. This study demonstrates a technique that allows temporal loss of the selective permeability of the cell membrane while maintaining the viability of cells that may be useful for the introduction of membrane-impermeable molecules into E. coli cells.
Collapse
Affiliation(s)
- Rikuto Kamiura
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Fumio Matsuda
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Norikazu Ichihashi
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Frontier Bioscience, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Arts and Science, Komaba Institute for Science, Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
34
|
Billingsley JM, Anguiano JL, Tang Y. Production of semi-biosynthetic nepetalactone in yeast. J Ind Microbiol Biotechnol 2019; 46:1365-1370. [PMID: 31165969 DOI: 10.1007/s10295-019-02199-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/25/2019] [Indexed: 12/18/2022]
Abstract
Microbial-based production of natural products provides a promising alternative to synthetic production and isolation from the native producer. The recently discovered NEPS1 cyclase/oxidase completes the biosynthetic pathway to nepetalactone, a biologically relevant iridoid known as both an insect repellent and cat attractant. In this work, we employ yeast-based whole-cell biocatalysis to produce semi-biosynthetic nepetalactone from a low-cost precursor via a four-step enzymatic process. The dependence of product yield on bioprocess parameters ranging from induction of gene expression to substrate loading was investigated. Subsequent factorial design and response surface methodology optimization approach enabled a 5.8-fold increase in nepetalactone titer to 153 mg/L. Our study provides insights into strategies for operating plasmid-based bioconversion of a fed substrate and sets the stage for scalable, microbial synthesis of nepetalactone.
Collapse
Affiliation(s)
- John M Billingsley
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Jose L Anguiano
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA. .,Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
35
|
de Gonzalo G, Alcántara AR, Domínguez de María P. Cyclopentyl Methyl Ether (CPME): A Versatile Eco-Friendly Solvent for Applications in Biotechnology and Biorefineries. CHEMSUSCHEM 2019; 12:2083-2097. [PMID: 30735610 DOI: 10.1002/cssc.201900079] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/04/2019] [Indexed: 05/14/2023]
Abstract
The quest for sustainable solvents is currently a matter of intense research and development, as solvents significantly contribute heavily to the waste generated by chemical industries. Cyclopentyl methyl ether (CPME) is a promising eco-friendly solvent with valuable properties such as low peroxide formation rate, stability under basic and acidic conditions, and relatively high boiling point. This Review discusses the potential use of CPME for applications in biotechnology (e.g., biotransformations, as solvent or cosolvent), biorefineries, and bioeconomy (e.g., for furan synthesis or as an extractive agent in liquid-liquid separations), as well as for other purposes, such as chromatography or peptide synthesis. Although CPME is currently produced by petrochemical means with a remarkably high atom economy, its biogenic production can be envisaged from substrates such as cyclopentanol or cyclopentanone, which can be derived from furfural or from (bio-based) adipic acid, respectively. The combination of the promising properties of CPME as a (co)solvent with a future (economic) biogenic origin would be advantageous for setting strategies aligned with the sustainable chemistry principles.
Collapse
Affiliation(s)
- Gonzalo de Gonzalo
- Departamento de Química Orgánica, Universidad de Sevilla, c/ Profesor García González 2, 41012, Sevilla, Spain
| | - Andrés R Alcántara
- Department of Chemistry in Pharmaceutical Sciences, Section of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, Complutense University of Madrid, Plaza de Ramón y Cajal, s/n., E-28040, Madrid, Spain
| | - Pablo Domínguez de María
- Sustainable Momentum, SL, Av. Ansite 3, 4-6, Las Palmas Gran Canaria, E-35011, Canary Islands, Spain
| |
Collapse
|
36
|
Hoschek A, Bühler B, Schmid A. Stabilization and scale‐up of photosynthesis‐driven ω‐hydroxylation of nonanoic acid methyl ester by two‐liquid phase whole‐cell biocatalysis. Biotechnol Bioeng 2019; 116:1887-1900. [DOI: 10.1002/bit.27006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/19/2019] [Accepted: 04/25/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Anna Hoschek
- Department of Solar MaterialsHelmholtz Centre for Environmental Research GmbH‐UFZLeipzig Germany
| | - Bruno Bühler
- Department of Solar MaterialsHelmholtz Centre for Environmental Research GmbH‐UFZLeipzig Germany
| | - Andreas Schmid
- Department of Solar MaterialsHelmholtz Centre for Environmental Research GmbH‐UFZLeipzig Germany
| |
Collapse
|
37
|
Abstract
The review is devoted to biocatalysts based on actinobacteria of the genus Rhodococcus, which are promising for environmental biotechnologies. In the review, biotechnological advantages of Rhodococcus bacteria are evaluated, approaches used to develop robust and efficient biocatalysts are discussed, and their relevant applications are given. We focus on Rhodococcus cell immobilization in detail (methods of immobilization, criteria for strains and carriers, and optimization of process parameters) as the most efficient approach for stabilizing biocatalysts. It is shown that advanced Rhodococcus biocatalysts with improved working characteristics, enhanced stress tolerance, high catalytic activities, human and environment friendly, and commercially viable are developed, which are suitable for wastewater treatment, bioremediation, and biofuel production.
Collapse
|
38
|
Deep eutectic solvents for redox biocatalysis. J Biotechnol 2019; 293:24-35. [DOI: 10.1016/j.jbiotec.2018.12.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/26/2018] [Accepted: 12/01/2018] [Indexed: 11/23/2022]
|
39
|
Ying X, Zhang J, Wang C, Huang M, Ji Y, Cheng F, Yu M, Wang Z, Ying M. Characterization of a Carbonyl Reductase from Rhodococcus erythropolis WZ010 and Its Variant Y54F for Asymmetric Synthesis of ( S)- N-Boc-3-Hydroxypiperidine. Molecules 2018; 23:molecules23123117. [PMID: 30487432 PMCID: PMC6321125 DOI: 10.3390/molecules23123117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 11/25/2018] [Accepted: 11/27/2018] [Indexed: 11/16/2022] Open
Abstract
The recombinant carbonyl reductase from Rhodococcus erythropolis WZ010 (ReCR) demonstrated strict (S)-stereoselectivity and catalyzed the irreversible reduction of N-Boc-3-piperidone (NBPO) to (S)-N-Boc-3-hydroxypiperidine [(S)-NBHP], a key chiral intermediate in the synthesis of ibrutinib. The NAD(H)-specific enzyme was active within broad ranges of pH and temperature and had remarkable activity in the presence of higher concentration of organic solvents. The amino acid residue at position 54 was critical for the activity and the substitution of Tyr54 to Phe significantly enhanced the catalytic efficiency of ReCR. The kcat/Km values of ReCR Y54F for NBPO, (R/S)-2-octanol, and 2-propanol were 49.17 s−1 mM−1, 56.56 s−1 mM−1, and 20.69 s−1 mM−1, respectively. In addition, the (S)-NBHP yield was as high as 95.92% when whole cells of E. coli overexpressing ReCR variant Y54F catalyzed the asymmetric reduction of 1.5 M NBPO for 12 h in the aqueous/(R/S)-2-octanol biphasic system, demonstrating the great potential of ReCR variant Y54F for practical applications.
Collapse
Affiliation(s)
- Xiangxian Ying
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jie Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Can Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Meijuan Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yuting Ji
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Meilan Yu
- College of Life Sciences, Zhejiang Sci-Tech Univeristy, Hangzhou 310018, China.
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Meirong Ying
- Grain and Oil Products Quality Inspection Center of Zhejiang Province, Hangzhou 310012, China.
| |
Collapse
|
40
|
Xue XX, Ma CL, Di JH, Huo XY, He YC. One-pot chemo-enzymatic conversion of D-xylose to furfuralcohol by sequential dehydration with oxalic acid plus tin-based solid acid and bioreduction with whole-cells. BIORESOURCE TECHNOLOGY 2018; 268:292-299. [PMID: 30086456 DOI: 10.1016/j.biortech.2018.07.152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
In this study, organic acid could be used as co-catalyst for assisting solid acid SO42-/SnO2-argil to convert hemicellulose-derived D-xylose into furfural. The relationship between pKa of organic acid and turnover frequency (TOF) of co-catalysis with organic acid plus SO42-/SnO2-argil was explored on the conversion of D-xylose to furfural. Oxalic acid (pKa = 1.25) (0.35 wt%) was found to be the optimum co-catalyst for assisting SO42-/SnO2-argil (3.6 wt%) to synthesize furfural from D-xylose (20 g/L) at 180 °C for 20 min, and the furfural yield and TOF could be obtained at 57.07% and 6.26 h-1, respectively. Finally, the obtained furfural (107.6 mM) could be completely biotransformed to furfuralcohol by recombinant Escherichia coli CCZU-K14 whole-cells at 30 °C and pH 6.5 in the presence of 1.5 mol glucose/mol furfural and 400 mM D-xylose. Clearly, this strategy shows high potential application for the effective synthesis of furfuralcohol from biomass-derived D-xylose.
Collapse
Affiliation(s)
- Xin-Xia Xue
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Cui-Luan Ma
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, PR China
| | - Jun-Hua Di
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Xiao-Yu Huo
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Yu-Cai He
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, PR China.
| |
Collapse
|
41
|
Shah S, Agera R, Sharma P, Sunder AV, Singh H, James HM, Gaikaiwari RP, Wangikar PP. Development of biotransformation process for asymmetric reduction with novel anti-Prelog NADH-dependent alcohol dehydrogenases. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Stereoselective Enzymatic Reduction of 1,4-Diaryl-1,4-Diones to the Corresponding Diols Employing Alcohol Dehydrogenases. Catalysts 2018. [DOI: 10.3390/catal8040150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
43
|
Schmölzer K, Lemmerer M, Nidetzky B. Glycosyltransferase cascades made fit for chemical production: Integrated biocatalytic process for the natural polyphenol C-glucoside nothofagin. Biotechnol Bioeng 2018; 115:545-556. [PMID: 29131308 DOI: 10.1002/bit.26491] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 12/17/2023]
Abstract
Glycosyltransferase cascades are promising tools of biocatalysis for natural product glycosylation, but their suitability for actual production remains to be shown. Here, we demonstrate at a scale of 100 g isolated product the integrated biocatalytic production of nothofagin, the natural 3'-C-β-D-glucoside of the polyphenol phloretin. A parallel reaction cascade involving coupled C-glucosyltransferase and sucrose synthase was optimized for the one-pot glucosylation of phloretin from sucrose via an UDP/UDP-glucose shuttle. Inclusion complexation with the highly water soluble 2-hydroxypropyl-β-cyclodextrin pushed the phloretin solubility to its upper practical limit (∼120 mM) and so removed the main bottleneck on an efficient synthesis of nothofagin. The biotransformation thus intensified had excellent performance metrics of 97% yield and ∼50 gproduct /L at a space-time yield of 3 g/L/hr. The UDP-glucose was regenerated up to ∼220 times. A scalable downstream process for efficient recovery of nothofagin (≥95% purity; ≥65% yield) was developed. A tailored anion-exchange chromatography at pH 8.5 was used for capture and initial purification of the product. Recycling of the 2-hydroxypropyl-β-cyclodextrin would also be possible at this step. Product precipitation at a lowered pH of 6.0 and re-dissolution in acetone effectively replaced desalting by size exclusion chromatography in the final step of nothofagin purification. This study therefore, reveals the potential for process intensification in the glycosylation of polyphenol acceptors by glycosyltransferase cascades. It demonstrates that, with up- and downstream processing carefully optimized and suitably interconnected, a powerful biocatalytic technology becomes available for the production of an important class of glycosides difficult to prepare otherwise.
Collapse
Affiliation(s)
| | | | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology, Graz, Austria
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| |
Collapse
|
44
|
Tsunekawa R, Hanaya K, Higashibayashi S, Shoji M, Sugai T. Chemoenzymatic approaches to the synthesis of the (1 S ,2 R )-isomer of benzyl 2-hydroxycyclohexanecarboxylate. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2017.10.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Wang P, Yang X, Lin B, Huang J, Tao Y. Cofactor self-sufficient whole-cell biocatalysts for the production of 2-phenylethanol. Metab Eng 2017; 44:143-149. [DOI: 10.1016/j.ymben.2017.09.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/11/2017] [Accepted: 09/19/2017] [Indexed: 11/24/2022]
|
46
|
Guo C, Wu ZL. Construction and functional analysis of a whole-cell biocatalyst based on CYP108N7. Enzyme Microb Technol 2017; 106:28-34. [DOI: 10.1016/j.enzmictec.2017.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/31/2022]
|
47
|
Asymmetric reduction of ketopantolactone using a strictly (R)-stereoselective carbonyl reductase through efficient NADPH regeneration and the substrate constant-feeding strategy. Biotechnol Lett 2017; 39:1741-1746. [PMID: 28828561 DOI: 10.1007/s10529-017-2415-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/20/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVES To characterize a recombinant carbonyl reductase from Saccharomyces cerevisiae (SceCPR1) and explore its use in asymmetric synthesis of (R)-pantolactone [(R)-PL]. RESULTS The NADPH-dependent SceCPR1 exhibited strict (R)-enantioselectivity and high activity in the asymmetric reduction of ketopantolactone (KPL) to (R)-PL. Escherichia coli, coexpressing SceCPR1 and glucose dehydrogenase from Exiguobacterium sibiricum (EsGDH), was constructed to fulfill efficient NADPH regeneration. During the whole-cell catalyzed asymmetric reduction of KPL, the spontaneous hydrolysis of KPL significantly affected the yield of (R)-PL, which was effectively alleviated by the employment of the substrate constant-feeding strategy. The established whole-cell bioreduction for 6 h afforded 458 mM (R)-PL with the enantiomeric excess value of >99.9% and the yield of 91.6%. CONCLUSIONS Escherichia coli coexpressing SceCPR1 and EsGDH efficiently catalyzed the asymmetric synthesis of (R)-PL through the substrate constant-feeding strategy.
Collapse
|
48
|
Kadisch M, Willrodt C, Hillen M, Bühler B, Schmid A. Maximizing the stability of metabolic engineering-derived whole-cell biocatalysts. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600170] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/22/2017] [Accepted: 06/08/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Marvin Kadisch
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Christian Willrodt
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Michael Hillen
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Bruno Bühler
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Andreas Schmid
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| |
Collapse
|
49
|
Abstract
Whole-cell biocatalysts provide unique advantages and have been widely used for the efficient biosynthesis of value-added fine and bulk chemicals, as well as pharmaceutically active ingredients. What is more, advances in synthetic biology and metabolic engineering, together with the rapid development of molecular genetic tools, have brought about a renaissance of whole-cell biocatalysis. These rapid advancements mean that whole-cell biocatalysts can increasingly be rationally designed. Genes of heterologous enzymes or synthetic pathways are increasingly being introduced into microbial hosts, and depending on the complexity of the synthetic pathway or the target products, they can enable the production of value-added chemicals from cheap feedstock. Metabolic engineering and synthetic biology efforts aimed at optimizing the existing microbial cell factories concentrate on improving heterologous pathway flux, precursor supply, and cofactor balance, as well as other aspects of cellular metabolism, to enhance the efficiency of biocatalysts. In the present review, we take a critical look at recent developments in whole-cell biocatalysis, with an emphasis on strategies applied to designing and optimizing the organisms that are increasingly modified for efficient production of chemicals.
Collapse
Affiliation(s)
- Baixue Lin
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| |
Collapse
|
50
|
Castiglione K, Fu Y, Polte I, Leupold S, Meo A, Weuster-Botz D. Asymmetric whole-cell bioreduction of ( R )-carvone by recombinant Escherichia coli with in situ substrate supply and product removal. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|